
TiDB Data Migration Documentation

PingCAP Inc.

20220809

Table of Contents

1 Overview 10
1.1 Data Migration Overview · 10

1.1.1 Architecture · 10
1.1.2 Data migration features · 11
1.1.3 Usage restrictions · 12

1.2 DM-worker Introduction · 13
1.2.1 DM-worker processing unit · 14
1.2.2 Privileges required by DM-worker · 14

1.3 Data Migration Relay Log · 17
1.3.1 Directory structure · 17
1.3.2 Initial migration rules · 18
1.3.3 Data purge · 19

2 Features 21
2.1 Data Migration Features · 21

2.1.1 Table routing · 21
2.1.2 Block and allow table lists · 23
2.1.3 Binlog event filter· 28
2.1.4 Column mapping · 32
2.1.5 Migration delay monitoring · 36

1

2.2 DM online-ddl-scheme · 37
2.2.1 Overview · 37
2.2.2 Configuration · 37
2.2.3 online-schema-change: gh-ost · 38
2.2.4 online-schema-change: pt · 40

2.3 Sharding Support · 43
2.3.1 Merge and migrate Data from Sharded Tables · 43
2.3.2 Handle Sharding DDL Locks Manually in DM · 50

3 Benchmark 63
3.1 DM 1.0-GA Benchmark Report · 63

3.1.1 Test purpose · 63
3.1.2 Test environment · 63
3.1.3 Test scenario · 64
3.1.4 Recommended parameters · 67

3.2 DM 1.0-alpha Benchmark Report · 68
3.2.1 Test purpose · 68
3.2.2 Test environment · 68
3.2.3 Test scenario · 69
3.2.4 Test result · 70

4 Usage Scenarios 71
4.1 Data Migration Simple Usage Scenario · 71

4.1.1 Upstream instances · 71
4.1.2 Migration requirements · 72
4.1.3 Downstream instances · 72
4.1.4 Migration solution · 73
4.1.5 Migration task configuration · 74

4.2 Data Migration Shard Merge Scenario · 77
4.2.1 Upstream instances · 77
4.2.2 Migration requirements · 77
4.2.3 Downstream instances · 78
4.2.4 Migration solution · 78
4.2.5 Migration task configuration · 80

2

4.3 Best Practices of Data Migration in the Shard Merge Scenario · · · · · · · · · · · · · 82
4.3.1 Use a separate data migration task · 82
4.3.2 Handle sharding DDL locks manually · 83
4.3.3 Handle conflicts of auto-increment primary key· 83
4.3.4 Create/drop tables in the upstream · 85
4.3.5 Speed limits and traffic flow control · 86

4.4 Switch DM-worker Connection between Upstream MySQL Instances · · · · · · · · 86
4.4.1 Switch DM-worker connection via virtual IP · 87
4.4.2 Change the address of the upstream MySQL instance that DM-worker

connects to · 88

5 TiDB DM (Data Migration) Tutorial 88
5.1 Architecture · 90
5.2 Setup · 90
5.3 Migrating shards · 92
5.4 Starting DM master and workers· 93
5.5 Conclusion· 100

6 Deploy 100
6.1 Deploy a DM Cluster· 100

6.1.1 Deploy Data Migration Using DM-Ansible· 100
6.1.2 Deploy Data Migration Cluster Using DM Binary · · · · · · · · · · · · · · · · · · 120
6.1.3 Use Kubernetes (Experimental) · 128

6.2 Migrate Data Using Data Migration · 128
6.2.1 Step 1: Deploy the DM cluster · 128
6.2.2 Step 2: Check the cluster information· 128
6.2.3 Step 3: Configure the data migration task · 129
6.2.4 Step 4: Start the data migration task · 131
6.2.5 Step 5: Check the data migration task · 132
6.2.6 Step 6: Stop the data migration task · 132
6.2.7 Step 7: Monitor the task and check logs· 132

7 Configure 133

3

7.1 Data Migration Configuration File Overview · 133
7.1.1 DM process configuration files · 133
7.1.2 DM migration task configuration · 133

7.2 DM-master Configuration File · 135
7.2.1 Configuration file template · 135
7.2.2 Configurable items · 135

7.3 DM-worker Configuration File · 136
7.3.1 Configuration file template · 136
7.3.2 Configuration parameters · 137

7.4 DM-worker Advanced Configuration File · 138
7.4.1 Configuration file template · 138
7.4.2 Configuration parameters · 139

7.5 Data Migration Task Configuration File· 142
7.5.1 Important concepts · 142
7.5.2 Task configuration file template (basic) · 142

7.6 “‘yaml · 143
7.7 ———– Global configuration ———– · 143

7.7.1 ********** Basic configuration ************ · 143
7.7.2 Configuration order · 144
7.7.3 Global configuration · 144
7.7.4 Instance configuration · 144
7.7.5 Modify the task configuration · 145

7.8 DM Advanced Task Configuration File · 145
7.8.1 Important concepts · 145
7.8.2 Disable checking items· 145
7.8.3 Task configuration file template (advanced)· 146
7.8.4 Configuration order · 150
7.8.5 Global configuration · 150
7.8.6 Instance configuration · 151

8 Manage the DM Cluster 152

4

8.1 Data Migration Cluster Operations · 152
8.1.1 Start a cluster· 152
8.1.2 Stop a cluster · 152
8.1.3 Restart cluster components · 152
8.1.4 Upgrade the component version · 155
8.1.5 Add a DM-worker instance · 155
8.1.6 Remove a DM-worker instance· 157
8.1.7 Replace/migrate a DM-master instance · 157
8.1.8 Replace/migrate a DM-worker instance · 159

8.2 Upgrade Data Migration · 161
8.2.1 Upgrade to v1.0.3· 161
8.2.2 Upgrade to v1.0.2· 162
8.2.3 Upgrade to v1.0.1· 164
8.2.4 Upgrade to v1.0.0-10-geb2889c9 (1.0 GA) · 164
8.2.5 Upgrade to v1.0.0-rc.1-12-gaa39ff9· 165

9 Manage Migration Tasks 166
9.1 Manage the Data Migration Task · 166

9.1.1 dmctl interactive mode · 166
9.1.2 Manage the data migration task · 168
9.1.3 Manage DDL locks· 177
9.1.4 Other task and cluster management commands · 177
9.1.5 Refresh worker tasks · 183
9.1.6 dmctl command mode · 183
9.1.7 Deprecated or unrecommended commands· 184

9.2 Precheck the upstream MySQL instance configuration· 185
9.2.1 Command · 185
9.2.2 Checking items · 185

9.3 Data Migration Query Status· 190
9.3.1 Query result · 190
9.3.2 Task status · 191
9.3.3 Detailed query result · 194
9.3.4 Subtask status · 200

5

9.4 Skip or Replace Abnormal SQL Statements· 202
9.4.1 Restrictions · 202
9.4.2 Match the binlog event · 203
9.4.3 Supported scenarios · 204
9.4.4 Implementation principles· 204
9.4.5 Command · 206
9.4.6 Usage examples · 210

10 Data Migration Monitoring Metrics 218
10.1 Task · 219

10.1.1 overview · 219
10.1.2 Task state · 220
10.1.3 Relay log · 221
10.1.4 Dump/Load unit · 224
10.1.5 Binlog replication · 226

10.2 Instance · 233
10.2.1 Relay log · 233
10.2.2 Task · 236

11 Migrate from MySQL-compatible Database 238
11.1 Migrate from a MySQL-compatible Database - Taking Amazon Aurora

MySQL as an Example · 238
11.1.1 Step 1: Enable binlog in the Aurora cluster · 238
11.1.2 Step 2: Deploy the DM cluster · 239
11.1.3 Step 3: Check the cluster informtaion· 239
11.1.4 Step 4: Configure the task · 240
11.1.5 Step 5: Start the task · 242
11.1.6 Step 6: Query the task · 243

12 DM Portal Overview 244
12.1 Features · 244

12.1.1 Configure the migration mode · 244
12.1.2 Configure the instance information · 244
12.1.3 Configure the binlog event filter· 244
12.1.4 Generate the configuration file · 244

6

12.2 Restrictions · 244
12.3 Deploy · 245

12.3.1 Deploy using binary · 245
12.3.2 Deploy using DM Ansible · 245

12.4 Usage · 245
12.4.1 Create rules· 245
12.4.2 Configure the basic information · 246
12.4.3 Configure the instance information · 246
12.4.4 Configure the binlog filter · 247
12.4.5 Configure table routing · 250

13 Alert 262
13.1 DM Alert Information · 262
13.2 Handle Alerts · 263

13.2.1 Alert rules related to task status · 263
13.2.2 Alert rules related to relay log · 263
13.2.3 Alert rules related to Dump/Load · 265
13.2.4 Alert rules related to binlog replication · 265

14 Troubleshoot 266
14.1 Handle Errors · 266

14.1.1 Error system · 266
14.1.2 Troubleshooting · 268
14.1.3 Handle common errors· 269

14.2 Handle Performance Issues · 272
14.2.1 relay log unit· 273
14.2.2 Load unit· 274
14.2.3 Binlog replication unit· 274

15 TiDB Data Migration FAQ 276

7

15.1 Does DM support migrating data from Alibaba RDS or other cloud databases?276
15.2 Does the regular expression of the block and allow list in the task configuration

support non-capturing (?!)? · 277
15.3 If a statement executed upstream contains multiple DDL operations, does DM

support such migration? · 277
15.4 How to handle incompatible DDL statements? · 277
15.5 How to reset the data migration task? · 277

15.5.1 Reset the data migration task when the relay log is in the normal state 277
15.5.2 Reset the data migration task when the relay log is in the abnormal

state · 278
15.6 How to handle the error returned by the DDL operation related to the gh-ost

table, after online-ddl-scheme: "gh-ost" is set? · 279
15.7 How to add tables to the existing data migration tasks? · · · · · · · · · · · · · · · · · · · 280

15.7.1 In the Dump stage · 280
15.7.2 In the Load stage · 280
15.7.3 In the Sync stage · 280

15.8 In DM v1.0, why does the command sql-skip fail to skip some statements
when the task is in error? · 281

15.9 Why do REPLACE statements keep appearing in the downstream when DM is
replicating? · 282

16 Releases 282
16.1 v1.0 · 282

16.1.1 DM 1.0.7 Release Notes · 282
16.1.2 DM 1.0.6 Release Notes · 282
16.1.3 DM 1.0.5 Release Notes · 284
16.1.4 DM 1.0.4 Release Notes · 285
16.1.5 DM 1.0.3 Release Notes · 286
16.1.6 DM 1.0.2 Release Notes · 287

17 TiDB Data Migration Glossary 288
17.1 B· 288

17.1.1 Binlog · 288
17.1.2 Binlog event · 288
17.1.3 Binlog event filter· 288

8

17.1.4 Binlog position · 288
17.1.5 Binlog replication processing unit · 288
17.1.6 Block & allow table list · 289

17.2 C· 289
17.2.1 Checkpoint · 289

17.3 D · 289
17.3.1 Dump processing unit · 289

17.4 G · 289
17.4.1 GTID · 289

17.5 H · 290
17.5.1 Heartbeat · 290

17.6 L · 290
17.6.1 Load processing unit · 290

17.7 M · 290
17.7.1 Migrate/migration · 290

17.8 R· 290
17.8.1 Relay log · 290
17.8.2 Relay processing unit· 290
17.8.3 Replicate/replication · 291

17.9 S · 291
17.9.1 Safe mode · 291
17.9.2 Shard DDL · 291
17.9.3 Shard DDL lock · 291
17.9.4 Shard group · 291
17.9.5 Subtask · 292
17.9.6 Subtask status · 292

17.10 T· 292
17.10.1 Table routing · 292
17.10.2 Task · 292
17.10.3 Task status · 292

9

1 Overview

1.1 Data Migration Overview

TiDB Data Migration (DM) is an integrated data migration task management platform
that supports the full data migration and the incremental data replication from MySQL/-
MariaDB into TiDB. It can help to reduce the operations cost and simplify the troubleshoot-
ing process.

Note:
DM migrates data to TiDB in the form of SQL statements, so each version of
DM is compatible with all versions of TiDB. In the production environment,
it is recommended to use the latest released version of DM. To install DM,
see DM download link.

1.1.1 Architecture

The Data Migration tool includes three components: DM-master, DM-worker, and dm-
ctl.

Figure 1: Data Migration architecture

10

https://github.com/pingcap/dm
https://pingcap.com/docs/stable/reference/tools/download/#tidb-dm-data-migration

1.1.1.1 DM-master
DM-master manages and schedules the operation of data migration tasks.

• Storing the topology information of the DM cluster
• Monitoring the running state of DM-worker processes
• Monitoring the running state of data migration tasks
• Providing a unified portal for the management of data migration tasks
• Coordinating the DDL migration of sharded tables in each instance under the sharding

scenario

1.1.1.2 DM-worker
DM-worker executes specific data migration tasks.

• Persisting the binlog data to the local storage
• Storing the configuration information of the data migration subtasks
• Orchestrating the operation of the data migration subtasks
• Monitoring the running state of the data migration subtasks

After DM-worker is started, it automatically migrates the upstream binlog to the local
configuration directory (the default migration directory is <deploy_dir>/relay_log if DM
is deployed using DM-Ansible). For details about DM-worker, see DM-worker Introduction.
For details about the relay log, see Relay Log.

1.1.1.3 dmctl
dmctl is the command line tool used to control the DM cluster.

• Creating/Updating/Dropping data migration tasks
• Checking the state of data migration tasks
• Handling the errors during data migration tasks
• Verifying the configuration correctness of data migration tasks

1.1.2 Data migration features

This section describes the data migration features provided by the Data Migration tool.

1.1.2.1 Schema and table routing
The schema and table routing feature means that DM can migrate a certain table of the

upstream MySQL or MariaDB instance to the specified table in the downstream, which can
be used to merge or migrate the sharding data.

11

1.1.2.2 Block and allow lists migration at the schema and table levels
The block and allow lists filtering rule of the upstream database instance tables is similar

to MySQL replication-rules-db/replication-rules-table, which can be used to filter
or only replicate all operations of some databases or some tables.

1.1.2.3 Binlog event filtering
Binlog event filtering is a more fine-grained filtering rule than the block and allow lists

filtering rule. You can use statements like INSERT or TRUNCATE TABLE to specify the binlog
events of schema/table that you need to migrate or filter out.

1.1.2.4 Sharding support
DM supports merging the original sharded instances and tables into TiDB, but with

some restrictions.

1.1.3 Usage restrictions

Before using the DM tool, note the following restrictions:

• Database version

– 5.5 < MySQL version < 8.0
– MariaDB version >= 10.1.2

Note:
If there is a primary-secondary migration structure between the upstream
MySQL/MariaDB servers, then choose the following version.
– 5.7.1 < MySQL version < 8.0
– MariaDB version >= 10.1.3

Data Migration prechecks the corresponding privileges and configuration automatically
while starting the data migration task using dmctl.

• DDL syntax

– Currently, TiDB is not compatible with all the DDL statements that MySQL
supports. Because DM uses the TiDB parser to process DDL statements, it only
supports the DDL syntax supported by the TiDB parser. For details, see MySQL
Compatibility.

12

https://pingcap.com/docs/stable/reference/mysql-compatibility/#ddl
https://pingcap.com/docs/stable/reference/mysql-compatibility/#ddl

– DM reports an error when it encounters an incompatible DDL statement. To
solve this error, you need to manually handle it using dmctl, either skipping this
DDL statement or replacing it with a specified DDL statement(s). For details,
see Skip or replace abnormal SQL statements.

• Sharding

– If conflict exists between sharded tables, solve the conflict by referring to han-
dling conflicts of auto-increment primary key. Otherwise, data migration is not
supported. Conflicting data can cover each other and cause data loss.

– For other sharding restrictions, see Sharding DDL usage restrictions.

• Operations

– After DM-worker is restarted, the data migration task cannot be automatically
restored. You need to manually run start-task. For details, see Manage the
Data Migration Task.

– After DM-worker is restarted, the DDL lock migration cannot be automatically
restored in some conditions. You need to manually handle it. For details, see
Handle Sharding DDL Locks Manually.

• Switching DM-worker connection to another MySQL instance
When DM-worker connects the upstream MySQL instance via a virtual IP (VIP), if
you switch the VIP connection to another MySQL instance, DM might connect to
the new and old MySQL instances at the same time in different connections. In this
situation, the binlog migrated to DM is not consistent with other upstream status
that DM receives, causing unpredictable anomalies and even data damage. To make
necessary changes to DM manually, refer to Switch DM-worker connection via virtual
IP.

1.2 DM-worker Introduction

DM-worker is a tool used to migrate data from MySQL/MariaDB to TiDB.
It has the following features:

• Acts as a secondary database of any MySQL or MariaDB instance
• Reads the binlog events from MySQL/MariaDB and persists them to the local storage
• A single DM-worker supports migrating the data of one MySQL/MariaDB instance to

multiple TiDB instances
• Multiple DM-workers support migrating the data of multiple MySQL/MariaDB in-

stances to one TiDB instance

13

1.2.1 DM-worker processing unit

A DM-worker task contains multiple logic units, including relay log, the dump processing
unit, the load processing unit, and binlog replication.

1.2.1.1 Relay log
The relay log persistently stores the binlog data from the upstream MySQL/MariaDB

and provides the feature of accessing binlog events for the binlog replication.
Its rationale and features are similar to the secondary relay log of MySQL. For details,

see The Secondary Relay Log.

1.2.1.2 Dump processing unit/dump unit
The dump processing unit dumps the full data from the upstream MySQL/MariaDB to

the local disk.

1.2.1.3 Load processing unit/load unit
The load processing unit reads the files of the dump unit and then loads these files to

the downstream TiDB.

1.2.1.4 Binlog replication/sync processing unit
Binlog replication processing unit (namely, sync processing unit), reads the binlog events

of the relay log, transforms these events to SQL statements, and then applies these statements
to the downstream TiDB.

1.2.2 Privileges required by DM-worker

This section describes the upstream and downstream database users’ privileges required
by DM-worker, and the user privileges required by the respective processing unit.

1.2.2.1 Upstream database user privileges
The upstream database (MySQL/MariaDB) user must have the following privileges:

Privilege Scope
SELECT Tables
RELOAD Global
REPLICATION SLAVE Global
REPLICATION CLIENT Global

If you need to migrate the data from db1 to TiDB, execute the following GRANT statement:

14

https://dev.mysql.com/doc/refman/5.7/en/slave-logs-relaylog.html

GRANT RELOAD,REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO 'your_user'@'
↪→ your_wildcard_of_host'

GRANT SELECT ON db1.* TO 'your_user'@'your_wildcard_of_host';

If you also need to migrate the data from other databases into TiDB, make sure the
same privileges are granted to the user of the respective databases.

1.2.2.2 Downstream database user privileges
The downstream database (TiDB) user must have the following privileges:

Privilege Scope
SELECT Tables
INSERT Tables
UPDATE Tables
DELETE Tables
CREATE Databases, tables
DROP Databases, tables
ALTER Tables
INDEX Tables

Execute the following GRANT statement for the databases or tables that you need to
migrate:
GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP,ALTER,INDEX ON db.table TO '

↪→ your_user'@'your_wildcard_of_host';

1.2.2.3 Minimal privilege required by each processing unit

Processing
unit

Minimal upstream
(MySQL/MariaDB)
privilege

Minimal
downstream
(TiDB)
privilege

Minimal
sys-
tem
privi-
lege

Relay
log

REPLICATION SLAVE
(reads the
binlog)REPLICATION
↪→ CLIENT
(show master
↪→ status,
show slave status)

NULL Read/Write
local
files

15

Processing
unit

Minimal upstream
(MySQL/MariaDB)
privilege

Minimal
downstream
(TiDB)
privilege

Minimal
sys-
tem
privi-
lege

Dump SELECTRELOAD
(flushes tables with
Read lock and
unlocks tables）

NULL Write
local
files

Load NULL SELECT
(Query the
checkpoint
his-
tory)CREATE
(creates a
database/table)DELETE
↪→ (deletes
check-
point)INSERT
(Inserts the
Dump data)

Read/Write
local
files

Binlog
repli-
cation

REPLICATION SLAVE
(reads the
binlog)REPLICATION
↪→ CLIENT
(show master
↪→ status,
show slave status)

SELECT
(shows the
index and col-
umn)INSERT
(DML)UPDATE
↪→
(DML)DELETE
↪→
(DML)CREATE
↪→ (creates a
database/table)DROP
↪→ (drops
databases/ta-
bles)ALTER
(alters a
table)INDEX
(creates/-
drops an
index)

Read/Write
local
files

Note:

16

These privileges are not immutable and they change as the request changes.

1.3 Data Migration Relay Log

The Data Migration (DM) relay log consists of a set of numbered files containing events
that describe database changes, and an index file that contains the names of all used relay
log files.

After DM-worker is started, it automatically replicates the upstream binlog to the local
configuration directory (the default migration directory is <deploy_dir>/relay_log if DM
is deployed using DM-Ansible). When DM-worker is running, it migrates the upstream
binlog to the local file in real time. The sync processing unit of DM-worker, reads the binlog
events of the local relay log in real time, transforms these events to SQL statements, and
then migrates these statements to the downstream database.

This document introduces the directory structure, initial migration rules and data purge
of DM relay logs.

1.3.1 Directory structure

An example of the directory structure of the local storage for a relay log:
<deploy_dir>/relay_log/
|-- 7e427cc0-091c-11e9-9e45-72b7c59d52d7.000001
| |-- mysql-bin.000001
| |-- mysql-bin.000002
| |-- mysql-bin.000003
| |-- mysql-bin.000004
| `-- relay.meta
|-- 842965eb-091c-11e9-9e45-9a3bff03fa39.000002
| |-- mysql-bin.000001
| `-- relay.meta
`-- server-uuid.index

• subdir:

– DM-worker stores the binlog migrated from the upstream database in the same
directory. Each directory is a subdir.

– subdir is named <Upstream database UUID>.<Local subdir serial number
↪→ >.

– After a switch between primary and secondary instances in the upstream, DM-
worker generates a new subdir directory with an incremental serial number.

17

* In the above example, for the 7e427cc0-091c-11e9-9e45-72b7c59d52d7
↪→ .000001 directory, 7e427cc0-091c-11e9-9e45-72b7c59d52d7 is the up-
stream database UUID and 000001 is the local subdir serial number.

• server-uuid.index: Records a list of names of currently available subdir directory.

• relay.meta: Stores the information of the migrated binlog in each subdir. For exam-
ple,
$ cat c0149e17-dff1-11e8-b6a8-0242ac110004.000001/relay.meta
binlog-name = "mysql-bin.000010" # The name of the

↪→ currently replicated binlog.
binlog-pos = 63083620 # The position of

↪→ the currently replicated binlog.
binlog-gtid = "c0149e17-dff1-11e8-b6a8-0242ac110004:1-3328" # GTID of

↪→ the currently replicated binlog.
There might be

↪→ multiple
↪→ GTIDs.

$ cat 92acbd8a-c844-11e7-94a1-1866daf8accc.000001/relay.meta
binlog-name = "mysql-bin.018393"
binlog-pos = 277987307
binlog-gtid = "3ccc475b-2343-11e7-be21-6c0b84d59f30:1-14,406a3f61-690d

↪→ -11e7-87c5-6c92bf46f384:1-94321383,53bfca22-690d-11e7-8a62-18
↪→ ded7a37b78:1-495,686e1ab6-c47e-11e7-a42c-6c92bf46f384
↪→ :1-34981190,03fc0263-28c7-11e7-a653-6c0b84d59f30:1-7041423,05474
↪→ d3c-28c7-11e7-8352-203db246dd3d:1-170,10b039fc-c843-11e7-8f6a
↪→ -1866daf8d810:1-308290454"

1.3.2 Initial migration rules

For each start of DM-worker (or the relay log resuming migration after a pause), the
starting position of migration includes the following conditions:

• If a valid local relay log (a valid relay log is a relay log with valid server-uuid.index,
subdir and relay.meta files), DM-worker resumes migration from a position recorded
by relay.meta.

• If a valid local relay log does not exist, and relay-binlog-name or relay-binlog-
↪→ gtid is not specified in the DM configuration file:

– In the non-GTID mode, DM-worker starts migration from the initial upstream
binlog and migrates all the upstream binlog files to the latest successively.

– In the GTID mode, DM-worker starts migration from the initial upstream GTID.

18

Note:
If the upstream relay log is purged, an error occurs. In this case, set
relay-binlog-gtid to specify the starting position of migration.

• If a valid local relay log does not exist:

– In the non-GTID mode, if relay-binlog-name is specified, DM-worker starts
migration from the specified binlog file.

– In the GTID mode, if relay-binlog-gtid is specified, DM-worker starts migra-
tion from the specified GTID.

1.3.3 Data purge

Through the detection mechanism of reading and writing files, DM-worker does not purge
the relay log that is being used or will be used later by the existing data migration tasks.

The data purge methods for the relay log include automatic purge and manual purge.

1.3.3.1 Automatic data purge
You can configure the automatic data purge strategy of DM-worker using the following

two methods:
Method 1: Use the command-line options.

• purge-interval

– The interval of automatic purge in the background, in seconds.
– “3600” by default, indicating a background purge task is performed every 3600

seconds.

• purge-expires

– The number of hours that a relay log that is not written by the relay processing
unit, or that does not need to be read by the existing data migration task, can
be retained for before being purged in the automatic background purge.

– “0” by default, indicating data purge is not performed according to the update
time of the relay log.

• purge-remain-space

– The amount of remaining disk space in GB less than which the specified DM-
worker machine tries to purge the relay log that can be purged securely in the
automatic background purge. If it is set to 0, data purge is not performed accord-
ing to the remaining disk space.

– “15” by default, indicating when the available disk space is less than 15GB, DM-
master tries to purge the relay log securely.

19

Method 2: Add the [purge] section in the configuration file of DM-worker.
relay log purge strategy
[purge]
interval = 3600
expires = 24
remain-space = 15

1.3.3.2 Manual data purge
Manual data purge means using the purge-relay command provided by dmctl to specify

subdir and the binlog name thus to purge all the relay logs before the specified binlog. If
the -subdir option in the command is not specified, all relay logs before the current relay
log sub-directory are purged.

Assuming that the directory structure of the current relay log is as follows:
$ tree .
.
|-- deb76a2b-09cc-11e9-9129-5242cf3bb246.000001
| |-- mysql-bin.000001
| |-- mysql-bin.000002
| |-- mysql-bin.000003
| `-- relay.meta
|-- deb76a2b-09cc-11e9-9129-5242cf3bb246.000003
| |-- mysql-bin.000001
| `-- relay.meta
|-- e4e0e8ab-09cc-11e9-9220-82cc35207219.000002
| |-- mysql-bin.000001
| `-- relay.meta
`-- server-uuid.index

$ cat server-uuid.index
deb76a2b-09cc-11e9-9129-5242cf3bb246.000001
e4e0e8ab-09cc-11e9-9220-82cc35207219.000002
deb76a2b-09cc-11e9-9129-5242cf3bb246.000003

• Executing the following purge-relay command in dmctl purges all relay log files be-
fore e4e0e8ab-09cc-11e9-9220-82cc35207219.000002/mysql-bin.000001, which
is all relay log files in deb76a2b-09cc-11e9-9129-5242cf3bb246.000001.
» purge-relay -w 10.128.16.223:10081 --filename mysql-bin.000001 --sub-

↪→ dir e4e0e8ab-09cc-11e9-9220-82cc35207219.000002

• Executing the following purge-relay command in dmctl purges all relay log file be-
fore the current (deb76a2b-09cc-11e9-9129-5242cf3bb246.000003) directory’s

20

mysql-bin.000001, which is all relay log files in deb76a2b-09cc-11e9-9129-5242
↪→ cf3bb246.000001 and e4e0e8ab-09cc-11e9-9220-82cc35207219.000002.
» purge-relay -w 10.128.16.223:10081 --filename mysql-bin.000001

2 Features

2.1 Data Migration Features

This document describes the data migration features provided by the Data Migration
tool and explains the configuration of corresponding parameters.

For different DM versions, pay attention to the different match rules of schema or table
names in the table routing, block & allow lists, and binlog event filter features:

• For DM v1.0.5 or later versions, all the above features support the wildcard match.
For all versions of DM, note that there can be only one * in the wildcard expression,
and * must be placed at the end.

• For DM versions earlier than v1.0.5, table routing and binlog event filter support the
wildcard but do not support the [...] and [!...] expressions. The block & allow
lists only supports the regular expression.

It is recommended that you use the wildcard for matching in simple scenarios.

2.1.1 Table routing

The table routing feature enables DM to migrate a certain table of the upstream MySQL
or MariaDB instance to the specified table in the downstream.

Note:

• Configuring multiple different routing rules for a single table is not sup-
ported.

• The match rule of schema needs to be configured separately, which is
used to migrate create/drop schema xx, as shown in rule-2 of the
parameter configuration.

21

https://en.wikipedia.org/wiki/Glob_(programming)#Syntax

2.1.1.1 Parameter configuration
routes:
rule-1:
schema-pattern: "test_*"
table-pattern: "t_*"
target-schema: "test"
target-table: "t"

rule-2:
schema-pattern: "test_*"
target-schema: "test"

2.1.1.2 Parameter explanation
DM migrates the upstream MySQL or MariaDB instance table that matches the schema

↪→ -pattern/table-pattern rule provided by Table selector to the downstream target-
↪→ schema/target-table.

2.1.1.3 Usage examples
This sections shows the usage examples in different scenarios.

2.1.1.3.1 Merge sharded schemas and tables
Assuming in the scenario of sharded schemas and tables, you want to migrate the test_

↪→ {1,2,3...}.t_{1,2,3...} tables in two upstream MySQL instances to the test.t table
in the downstream TiDB instance.

To migrate the upstream instances to the downstream test.t, you must create two
routing rules:

• rule-1 is used to migrate DML or DDL statements of the table that matches schema
↪→ -pattern: "test_*" and table-pattern: "t_*" to the downstream test.t.

• rule-2 is used to migrate DDL statements of the schema that matches schema-
↪→ pattern: "test_*", such as create/drop schema xx.

Note:

• If the downstream schema: test already exists and will not be deleted,
you can omit rule-2.

• If the downstream schema: test does not exist and only rule-1 is con-
figured, then it reports the schema test doesn't exist error during
migration.

22

rule-1:
schema-pattern: "test_*"
table-pattern: "t_*"
target-schema: "test"
target-table: "t"

rule-2:
schema-pattern: "test_*"
target-schema: "test"

2.1.1.3.2 Merge sharded schemas
Assuming in the scenario of sharded schemas, you want to migrate the test_{1,2,3...}

↪→ .t_{1,2,3...} tables in the two upstream MySQL instances to the test.t_{1,2,3...}
tables in the downstream TiDB instance.

To migrate the upstream schemas to the downstream test.t_[1,2,3], you only need to
create one routing rule.
rule-1:
schema-pattern: "test_*"
target-schema: "test"

2.1.1.3.3 Incorrect table routing
Assuming that the following two routing rules are configured and test_1_bak.t_1_bak

matches both rule-1 and rule-2, an error is reported because the table routing configura-
tion violates the number limitation.
rule-1:
schema-pattern: "test_*"
table-pattern: "t_*"
target-schema: "test"
target-table: "t"

rule-2:
schema-pattern: "test_1_bak"
table-pattern: "t_1_bak"
target-schema: "test"
target-table: "t_bak"

2.1.2 Block and allow table lists

The block and allow lists filtering rule of the upstream database instance tables is sim-
ilar to MySQL replication-rules-db/tables, which can be used to filter or only migrate all
operations of some databases or some tables.

23

2.1.2.1 Parameter configuration
block-allow-list: # Use black-white-list if the DM's version <= v1

↪→ .0.6.
rule-1:
do-dbs: ["test*"] # Starting with characters other than "~"

↪→ indicates that it is a wildcard;
v1.0.5 or later versions support the regular

↪→ expression rules.
 do-tables:

- db-name: "test[123]" # Matches test1, test2, and test3.
tbl-name: "t[1-5]" # Matches t1, t2, t3, t4, and t5.

- db-name: "test"
tbl-name: "t"

rule-2:
do-dbs: ["~^test.*"] # Starting with "~" indicates that it is a

↪→ regular expression.
 ignore-dbs: ["mysql"]

do-tables:
- db-name: "~^test.*"
tbl-name: "~^t.*"

- db-name: "test"
tbl-name: "t"

ignore-tables:
- db-name: "test"
tbl-name: "log"

2.1.2.2 Parameter explanation

• do-dbs: allow lists of the schemas to be replicated, similar to replicate-do-db in
MySQL

• ignore-dbs: block lists of the schemas to be replicated, similar to replicate-ignore
↪→ -db in MySQL

• do-tables: allow lists of the tables to be replicated, similar to replicate-do-table
in MySQL

• ignore-tables: block lists of the tables to be replicated, similar to replicate-ignore
↪→ -table in MySQl

If a value of the above parameters starts with the ~ character, the subsequent characters
of this value are treated as a regular expression. You can use this parameter to match schema
or table names.

2.1.2.3 Filtering process

24

https://dev.mysql.com/doc/refman/5.7/en/replication-options-slave.html#option_mysqld_replicate-do-db
https://dev.mysql.com/doc/refman/5.7/en/replication-options-slave.html#option_mysqld_replicate-ignore-db
https://dev.mysql.com/doc/refman/5.7/en/replication-options-slave.html#option_mysqld_replicate-ignore-db
https://dev.mysql.com/doc/refman/5.7/en/replication-options-slave.html#option_mysqld_replicate-do-table
https://dev.mysql.com/doc/refman/5.7/en/replication-options-slave.html#option_mysqld_replicate-ignore-table
https://dev.mysql.com/doc/refman/5.7/en/replication-options-slave.html#option_mysqld_replicate-ignore-table
https://golang.org/pkg/regexp/syntax/#hdr-syntax

The filtering rules corresponding to do-dbs and ignore-dbs are similar to the Evaluation
of Database-Level Replication and Binary Logging Options in MySQL. The filtering rules
corresponding to do-tables and ignore-tables are similar to the Evaluation of Table-Level
Replication Options in MySQL.

Note:
In DM and in MySQL, the allow and block lists filtering rules are different in
the following ways:

• In MySQL, replicate-wild-do-table and replicate-wild-ignore-
↪→ table support wildcard characters. In DM, some parameter values
directly supports regular expressions that start with the ~ character.

• DM currently only supports binlogs in the ROW format, and does not
support those in the STATEMENT or MIXED format. Therefore, the filtering
rules in DM correspond to those in the ROW format in MySQL.

• MySQL determines a DDL statement only by the database name explic-
itly specified in the USE section of the statement. DM determines a state-
ment first based on the database name section in the DDL statement. If
the DDL statement does not contain such section, DM determines the
statement by the USE section. Suppose that the SQL statement to be de-
termined is USE test_db_2; CREATE TABLE test_db_1.test_table
↪→ (c1 INT PRIMARY KEY); that replicate-do-db=test_db_1 is con-
figured in MySQL and do-dbs: ["test_db_1"] is configured in DM.
Then this rule only applies to DM and not to MySQL.

The filtering process is as follows:

1. Filter at the schema level:

• If do-dbs is not empty, judge whether a matched schema exists in do-dbs.
– If yes, continue to filter at the table level.
– If not, filter test.t.

• If do-dbs is empty and ignore-dbs is not empty, judge whether a matched schema
exits in ignore-dbs.
– If yes, filter test.t.
– If not, continue to filter at the table level.

• If both do-dbs and ignore-dbs are empty, continue to filter at the table level.

2. Filter at the table level:

25

https://dev.mysql.com/doc/refman/5.7/en/replication-rules-db-options.html
https://dev.mysql.com/doc/refman/5.7/en/replication-rules-db-options.html
https://dev.mysql.com/doc/refman/5.7/en/replication-rules-table-options.html
https://dev.mysql.com/doc/refman/5.7/en/replication-rules-table-options.html
https://dev.mysql.com/doc/refman/5.7/en/replication-options-slave.html#option_mysqld_replicate-wild-do-table
https://dev.mysql.com/doc/refman/5.7/en/replication-options-slave.html#option_mysqld_replicate-wild-ignore-table
https://dev.mysql.com/doc/refman/5.7/en/replication-options-slave.html#option_mysqld_replicate-wild-ignore-table

1. If do-tables is not empty, judge whether a matched table exists in do-tables.
• If yes, migrate test.t.
• If not, filter test.t.

2. If ignore-tables is not empty, judge whether a matched table exists in ignore
↪→ -tables.
• If yes, filter test.t.
• If not, migrate test.t.

3. If both do-tables and ignore-tables are empty, migrate test.t.

Note:
To judge whether the schema test is filtered, you only need to filter at the
schema level.

2.1.2.4 Usage example
Assume that the upstream MySQL instances include the following tables:

`logs`.`messages_2016`
`logs`.`messages_2017`
`logs`.`messages_2018`
`forum`.`users`
`forum`.`messages`
`forum_backup_2016`.`messages`
`forum_backup_2017`.`messages`
`forum_backup_2018`.`messages`

The configuration is as follows:
block-allow-list: # Use black-white-list if the DM's version <= v1.0.6.
bw-rule:
do-dbs: ["forum_backup_2018", "forum"]
ignore-dbs: ["~^forum_backup_"]
do-tables:
- db-name: "logs"
tbl-name: "~_2018$"

- db-name: "~^forum.*"
 tbl-name: "messages"

ignore-tables:
- db-name: "~.*"

 tbl-name: "^messages.*"

After using the bw-rule rule:

26

Table

Whether
to
filter Why filter

logs
↪→ .messages_2016
↪→

Yes The schema
logs fails to
match any
do-dbs.

logs
↪→ .messages_2017
↪→

Yes The schema
logs fails to
match any
do-dbs.

logs
↪→ .messages_2018
↪→

Yes The schema
logs fails to
match any
do-dbs.

forum_backup_2016
↪→ .messages
↪→

Yes The schema
forum_backup_2016
↪→ fails to
match any
do-dbs.

forum_backup_2017
↪→ .messages
↪→

Yes The schema
forum_backup_2017
↪→ fails to
match any
do-dbs.

forum
↪→ .users
↪→

Yes 1. The schema
forum matches
do-dbs and
continues to
filter at the
table level. 2.
The schema and
table fail to
match any of
do-tables and
ignore-tables
and do-tables
is not empty.

27

Table

Whether
to
filter Why filter

forum
↪→ .messages
↪→

No 1. The schema
forum matches
do-dbs and
continues to
filter at the
table level. 2.
The table
messages is in
the
db-name: "~^
↪→ forum.*",
↪→ tbl-name:
↪→ "messages"
of do-tables.

forum_backup_2018
↪→ .messages
↪→

No 1. The schema
forum_backup_2018
↪→ matches
do-dbs and
continues to
filter at the
table level. 2.
The schema and
table match the
db-name: "~^
↪→ forum.*",
↪→ tbl-name:
↪→ "messages"
of do-tables.

2.1.3 Binlog event filter

Binlog event filter is a more fine-grained filtering rule than the block and allow lists
filtering rule. You can use statements like INSERT or TRUNCATE TABLE to specify the binlog
events of schema/table that you need to migrate or filter out.

Note:
If a same table matches multiple rules, these rules are applied in order and
the block list has priority over the allow list. This means if both the Ignore
and Do rules are applied to a single table, the Ignore rule takes effect.

28

2.1.3.1 Parameter configuration
filters:
rule-1:
schema-pattern: "test_*"
 table-pattern: "t_*"
 events: ["truncate table", "drop table"]
sql-pattern: ["^DROP\\s+PROCEDURE", "^CREATE\\s+PROCEDURE"]
 action: Ignore

2.1.3.2 Parameter explanation

• schema-pattern/table-pattern: the binlog events or DDL SQL statements of
upstream MySQL or MariaDB instance tables that match schema-pattern/table-
↪→ pattern are filtered by the rules below.

• events: the binlog event array.

Events Type Description
all Includes all the events below
all dml Includes all DML events below
all ddl Includes all DDL events below
none Includes none of the events below
none ddl Includes none of the DDL events below
none dml Includes none of the DML events below
insert DML The INSERT DML event
update DML The UPDATE DML event
delete DML The DELETE DML event
create database DDL The CREATE DATABASE DDL event
drop database DDL The DROP DATABASE DDL event
create table DDL The CREATE TABLE DDL event
create index DDL The CREATE INDEX DDL event
drop table DDL The DROP TABLE DDL event
truncate table DDL The TRUNCATE TABLE DDL event
rename table DDL The RENAME TABLE DDL event
drop index DDL The DROP INDEX DDL event
alter table DDL The ALTER TABLE DDL event

• sql-pattern: it is used to filter specified DDL SQL statements. The matching rule
supports using a regular expression. For example, "^DROP\\s+PROCEDURE".

29

• action: the string (Do/Ignore). Based on the following rules, it judges whether to
filter. If either of the two rules is satisfied, the binlog will be filtered; otherwise, the
binlog will not be filtered.

– Do: the allow list. The binlog will be filtered in either of the following two
conditions:
* The type of the event is not in the event list of the rule.
* The SQL statement of the event cannot be matched by sql-pattern of the
rule.

– Ignore: the block list. The binlog will be filtered in either of the following two
conditions:
* The type of the event is in the event list of the rule.
* The SQL statement of the event can be matched by sql-pattern of the rule.

2.1.3.3 Usage examples
This sections shows the usage examples in the scenario of sharding (sharded schemas

and tables).

2.1.3.3.1 Filter all sharding deletion operations
To filter out all deletion operations, configure the following two filtering rules:

• filter-table-rule filters out the truncate table, drop table and delete
↪→ statement operations of all tables that match the test_*.t_* pattern.

• filter-schema-rule filters out the drop database operation of all schemas that
match the test_* pattern.

filters:
filter-table-rule:
schema-pattern: "test_*"
table-pattern: "t_*"
events: ["truncate table", "drop table", "delete"]
action: Ignore

filter-schema-rule:
schema-pattern: "test_*"
events: ["drop database"]
action: Ignore

2.1.3.3.2 Only migrate sharding DML statements
To only migrate sharding DML statements, configure the following two filtering rules:

30

• do-table-rule only migrates the create table, insert, update and delete state-
ments of all tables that match the test_*.t_* pattern.

• do-schema-rule only migrates the create database statement of all schemas that
match the test_* pattern.

Note:
The reason why the create database/table statement is migrated is that
you can migrate DML statements only after the schema and table are created.

filters:
do-table-rule:
schema-pattern: "test_*"
table-pattern: "t_*"
events: ["create table", "all dml"]
action: Do

do-schema-rule:
schema-pattern: "test_*"
events: ["create database"]
action: Do

2.1.3.3.3 Filter out the SQL statements that TiDB does not support
To filter out the PROCEDURE statements that TiDB does not support, configure the fol-

lowing filter-procedure-rule:
filters:
filter-procedure-rule:
schema-pattern: "test_*"
table-pattern: "t_*"
sql-pattern: ["^DROP\\s+PROCEDURE", "^CREATE\\s+PROCEDURE"]
action: Ignore

filter-procedure-rule filters out the ^CREATE\\s+PROCEDURE and ^DROP\\s+
↪→ PROCEDURE statements of all tables that match the test_*.t_* pattern.

2.1.3.3.4 Filter out the SQL statements that the TiDB parser does not sup-
port

For the SQL statements that the TiDB parser does not support, DM cannot parse them
and get the schema/table information. So you must use the global filtering rule: schema-
↪→ pattern: "*".

31

Note:
To avoid unexpectedly filtering out data that need to be migrated, you must
configure the global filtering rule as strictly as possible.

To filter out the PARTITION statements that the TiDB parser does not support, configure
the following filtering rule:
filters:
filter-partition-rule:
schema-pattern: "*"
sql-pattern: ["ALTER\\s+TABLE[\\s\\S]*ADD\\s+PARTITION", "ALTER\\s+TABLE

↪→ [\\s\\S]*DROP\\s+PARTITION"]
action: Ignore

2.1.4 Column mapping

Note:
The column mapping is not recommended as the primary solution due to
its usage restrictions. The preferable solution is handling conflicts of auto-
increment primary key.

The column mapping feature supports modifying the value of table columns. You can
execute different modification operations on the specified column according to different ex-
pressions. Currently, only the built-in expressions provided by DM are supported.

Note:

• It does not support modifying the column type and the table schema.
• It does not support configuring multiple different column mapping rules

for a same table.

32

2.1.4.1 Parameter configuration
column-mappings:
rule-1:

 schema-pattern: "test_*"
 table-pattern: "t_*"
 expression: "partition id"
 source-column: "id"
 target-column: "id"
 arguments: ["1", "test", "t", "_"]
rule-2:

 schema-pattern: "test_*"
 table-pattern: "t_*"
 expression: "partition id"
 source-column: "id"
 target-column: "id"
 arguments: ["2", "test", "t", "_"]

2.1.4.2 Parameter explanation

• schema-pattern/table-pattern: to execute column value modifying operations on
the upstream MySQL or MariaDB instance tables that match the schema-pattern
↪→ /table-pattern filtering rule.

• source-column, target-column: to modify the value of the source-column column
according to specified expression and assign the new value to target-column.

• expression: the expression used to modify data. Currently, only the partition id
built-in expression is supported.

2.1.4.2.1 The partition id expression
partition id is used to resolve the conflicts of auto-increment primary keys of sharded

tables.
partition id restrictions
Note the following restrictions:

• The partition id expression only supports the bigint type of auto-increment primary
key.

• If the schema prefix is not empty, the schema name format must be schema prefix
↪→ or schema prefix + separator + number (the schema ID). For example, it
supports s and s_1, but does not support s_a.

• If the table prefix is not empty, the table name format must be table prefix or
table prefix + separator + number (the table ID).

• If the schema/table name does not contain the … + separator + number part, the
corresponding ID is considered as 0.

33

• Restrictions on sharding size:

– It supports 16 MySQL or MariaDB instances at most (Requirement: 0 <= in-
stance ID <= 15).

– Each instance supports 128 schemas at most (Requirement: 0 <= schema ID <=
127).

– Each schema of each instance supports 256 tables at most (Requirement: 0 <=
table ID <= 255).

– The range of the mapped column should meet the requirement: 0 <= ID <=
17592186044415.

– The {instance ID, schema ID, table ID} group must be unique.

partition id arguments configuration
Configure the following three or four arguments in order:

• instance_id: the ID of the upstream sharded MySQL or MariaDB instance (0 <=
instance ID <= 15)

• schema prefix: used to parse the schema name and get the schema ID
• table prefix: used to parse the table name and get the table ID
• The separator: used to separate between the prefix and the IDs, and can be omitted

to use an empty string as separator

Any of instance_id, schema prefix and table prefix can be set to an empty string
("") to indicate that the corresponding parts will not be encoded into the partition ID.

partition id expression rules
partition id fills the beginning bit of the auto-increment primary key ID with the

argument number, and computes an int64 (MySQL bigint) type of value. The specific rules
are as follows:

instance_id schema prefix table prefix Encoding
� defined � defined � defined [S: 1 bit]

[I: 4 bits]
[D: 7 bits]
[T: 8 bits]

[P: 44 bits]
� empty � defined � defined [S: 1 bit]

[D: 7 bits]
[T: 8 bits]

[P: 48 bits]
� defined � empty � defined [S: 1 bit]

[I: 4 bits]
[T: 8 bits]

[P: 51 bits]

34

instance_id schema prefix table prefix Encoding
� defined � defined � empty [S: 1 bit]

[I: 4 bits]
[D: 7 bits]

[P: 52 bits]
� empty � empty � defined [S: 1 bit]

[T: 8 bits]
[P: 55 bits]

� empty � defined � empty [S: 1 bit]
[D: 7 bits]

[P: 56 bits]
� defined � empty � empty [S: 1 bit]

[I: 4 bits]
[P: 59 bits]

• S: the sign bit, reserved
• I: the instance ID, 4 bits by default if set
• D: the schema ID, 7 bits by default if set
• T: the table ID, 8 bits by default if set
• P: the auto-increment primary key ID, occupying the rest of bits (�44 bits)

2.1.4.3 Usage example
Assuming in the sharding scenario where all tables have the auto-increment primary

key, you want to migrate two upstream MySQL instances test_{1,2,3...}.t_{1,2,3...}
to the downstream TiDB instances test.t.

Configure the following two rules:
column-mappings:
rule-1:

 schema-pattern: "test_*"
 table-pattern: "t_*"
 expression: "partition id"
 source-column: "id"
 target-column: "id"
 arguments: ["1", "test", "t", "_"]
rule-2:

 schema-pattern: "test_*"
 table-pattern: "t_*"
 expression: "partition id"
 source-column: "id"
 target-column: "id"
 arguments: ["2", "test", "t", "_"]

35

• The column ID of the MySQL instance 1 table test_1.t_1 is converted from 1 to
1 << (64-1-4)| 1 << (64-1-4 -7)| 1 << 44 | 1 = 580981944116838401.

• The row ID of the MySQL instance 2 table test_1.t_2 is converted from 2 to 2 <<
↪→ (64-1-4)| 1 << (64-1-4 -7)| 2 << 44 | 2 = 1157460288606306306.

2.1.5 Migration delay monitoring

The heartbeat feature supports calculating the real-time migration delay between each
migration task and MySQL or MariaDB based on real migration data.

Note:

• The estimation accuracy of the migration delay is at the second level.
• The heartbeat related binlog will not be migrated into the downstream,

which is discarded after calculating the migration delay.

2.1.5.1 System privileges
If the heartbeat feature is enabled, the upstream MySQL or MariaDB instances must

provide the following privileges:

• SELECT
• INSERT
• CREATE (databases, tables)
• DELETE

2.1.5.2 Parameter configuration
In the task configuration file, enable the heartbeat feature:

enable-heartbeat: true

2.1.5.3 Principles introduction

• DM-worker creates the dm_heartbeat (currently unconfigurable) schema in the corre-
sponding upstream MySQL or MariaDB.

• DM-worker creates the heartbeat (currently unconfigurable) table in the correspond-
ing upstream MySQL or MariaDB.

• DM-worker uses replace statement to update the current TS_primary timestamp
every second (currently unconfigurable) in the corresponding upstream MySQL or
MariaDB dm_heartbeat.heartbeat tables.

36

• DM-worker updates the TS_secondary_task migration time after each migration task
obtains the dm_heartbeat.heartbeat binlog.

• DM-worker queries the current TS_primary timestamp in the corresponding upstream
MySQL or MariaDB dm_heartbeat.heartbeat tables every 10 seconds, and calculates
task_lag = TS_primary - TS_secondary_task for each task.

See the replicate lag in the binlog replication processing unit of DM monitoring met-
rics.

2.2 DM online-ddl-scheme

This document introduces the online-ddl-scheme feature of DM.

2.2.1 Overview

DDL statements are always used in the database applications. MySQL 5.6 and later
versions support online-ddl, but there are limitations for usage. For example, to acquire the
MDL lock, some DDLs still need to be copied. In production scenario, the table lock during
DDL execution can block the reads or writes to and from the database to a certain extent.

By using gh-ost and pt-osc, DDLs can be executed on the MySQL database more grace-
fully, and the impact on reads and writes is reduced as much as possible.

TiDB is implemented based on the online asynchronous schema change algorithm of
Google F1. It does not block reads and writes during the DDL execution. Therefore, the
large amount of intermediate table data and binlog events generated by gh-ost and pt-osc
in the process of online-schema-change is not needed during the replication from MySQL to
TiDB.

For Data Migration (DM), which supports the data replication fromMySQL to TiDB, the
online-ddl-scheme feature is to perform special processing on the above two online-schema-
change tools (gh-ost and pt-osc). This way, the required DDL replication can be completed
more rapidly.

2.2.2 Configuration

In the task configuration file, online-ddl-scheme is at the same level of name. For
example:
----------- Global configuration -----------
********* Basic configuration *********
name: test # The name of the task. Should be globally

↪→ unique.
task-mode: all # The task mode. Can be set to `full`/`

↪→ incremental`/`all`.
is-sharding: true # Whether it is a task to merge shards.

37

meta-schema: "dm_meta" # The downstream database that stores the `meta`
↪→ information.

remove-meta: false # Whether to remove the `meta` information (`
↪→ checkpoint` and `onlineddl`) corresponding to the task name before
↪→ starting the replication task.

enable-heartbeat: false # Whether to enable the heartbeat feature.
online-ddl-scheme: "gh-ost" # Only "gh-ost" and "pt" are currently supported

↪→ .
target-database: # Configuration of the downstream database

↪→ instance.
host: "192.168.0.1"
port: 4000
user: "root"
password: "" # The password must be encrypted using dmctl if

↪→ it is not empty.

For the advanced configuration and the description of each configuration parameter, refer
to DM advanced task configuration file template.

2.2.3 online-schema-change: gh-ost

When gh-ost implements online-schema-change, 3 types of tables are created:

• gho: used to apply DDLs. When the data is fully replicated and the gho table is
consistent with the origin table, the origin table is replaced by renaming.

• ghc: used to store information that is related to online-schema-change.
• del: created by renaming the origin table.

In the process of replication, DM divides the above tables into 3 categories:

• ghostTable: _*_gho
• trashTable: _*_ghc, _*_del
• realTable: the origin table that executes online-ddl.

The SQL statements mostly used by gh-ost and the corresponding operation of DM are
as follows:

1. Create the _ghc table:
Create /* gh-ost */ table `test`.`_test4_ghc` (

id bigint auto_increment,
last_update timestamp not null DEFAULT

↪→ CURRENT_TIMESTAMP ON UPDATE
↪→ CURRENT_TIMESTAMP,

38

hint varchar(64) charset ascii not null,
value varchar(4096) charset ascii not null,
primary key(id),
unique key hint_uidx(hint)

) auto_increment=256 ;

DM does not create the _test4_ghc table.

2. Create the _gho table:
Create /* gh-ost */ table `test`.`_test4_gho` like `test`.`test4` ;

DM does not create the _test4_gho table. DM deletes the dm_meta.{task_name}\
↪→ _onlineddl record in the downstream according to ghost_schema, ghost_table,
and the server_id of dm_worker, and clears the related information in memory.
DELETE FROM dm_meta.{task_name}_onlineddl WHERE id = {server_id} and

↪→ ghost_schema = {ghost_schema} and ghost_table = {ghost_table};

3. Apply the DDL that needs to be executed in the _gho table:
Alter /* gh-ost */ table `test`.`_test4_gho` add column cl1 varchar

↪→ (20) not null ;

DM does not perform the DDL operation of _test4_gho. It records this DDL in
dm_meta.{task_name}_onlineddl and memory.
REPLACE INTO dm_meta.{task_name}_onlineddl (id, ghost_schema ,

↪→ ghost_table , ddls) VALUES (......);

4. Write data to the _ghc table, and replicate the origin table data to the _gho table:
Insert /* gh-ost */ into `test`.`_test4_ghc` values (......);
Insert /* gh-ost `test`.`test4` */ ignore into `test`.`_test4_gho` (`

↪→ id`, `date`, `account_id`, `conversion_price`, `
↪→ ocpc_matched_conversions`, `ad_cost`, `cl2`)

(select `id`, `date`, `account_id`, `conversion_price`, `
↪→ ocpc_matched_conversions`, `ad_cost`, `cl2` from `test`.`test4`
↪→ force index (`PRIMARY`)

where (((`id` > _binary'1') or ((`id` = _binary'1'))) and ((`id` <
↪→ _binary'2') or ((`id` = _binary'2')))) lock in share mode

) ;

DM does not execute DML statements that are not for realtable.

5. After the replication is completed, both the origin table and _gho table are renamed,
and the online DDL operation is completed:

39

Rename /* gh-ost */ table `test`.`test4` to `test`.`_test4_del`, `test
↪→ `.`_test4_gho` to `test`.`test4`;

DM performs the following two operations:

• DM splits the above rename operation into two SQL statements.
rename test.test4 to test._test4_del;
rename test._test4_gho to test.test4;

• DM does not execute rename to _test4_del. When executing rename
↪→ ghost_table to origin table, DM takes the following steps:
– Read the DDL recorded in memory in Step 3
– Replace ghost_table and ghost_schema with origin_table and its corre-

sponding schema
– Execute the DDL that has been replaced

alter table test._test4_gho add column cl1 varchar(20) not null;
-- Replaced with:
alter table test.test4 add column cl1 varchar(20) not null;

Note:
The specific SQL statements of gh-ost vary with the parameters used in the
execution. This document only lists the major SQL statements. For more
details, refer to the gh-ost documentation.

2.2.4 online-schema-change: pt

When pt-osc implements online-schema-change, 2 types of tables are created:

• new: used to apply DDL. When the data is fully replicated and the new table is
consistent with the origin table, the origin table is replaced by renaming.

• old: created by renaming the origin table.
• 3 kinds of Trigger: pt_osc_*_ins, pt_osc_*_upd, pt_osc_*_del. In the

process of pt_osc, the new data generated by the origin table is replicated to new by
the Trigger.

In the process of replication, DM divides the above tables into 3 categories:

• ghostTable: _*_new

40

https://github.com/github/gh-ost#gh-ost

• trashTable: _*_old
• realTable: the origin table that executes online-ddl.

The SQL statements mostly used by pt-osc and the corresponding operation of DM are
as follows:

1. Create the _new table:
CREATE TABLE `test`.`_test4_new` (id int(11) NOT NULL AUTO_INCREMENT,
date date DEFAULT NULL, account_id bigint(20) DEFAULT NULL,

↪→ conversion_price decimal(20,3) DEFAULT NULL,
↪→ ocpc_matched_conversions bigint(20) DEFAULT NULL, ad_cost
↪→ decimal(20,3) DEFAULT NULL,cl2 varchar(20) COLLATE utf8mb4_bin
↪→ NOT NULL,cl1 varchar(20) COLLATE utf8mb4_bin NOT NULL,PRIMARY
↪→ KEY (id)) ENGINE=InnoDB AUTO_INCREMENT=3 DEFAULT CHARSET=
↪→ utf8mb4 COLLATE=utf8mb4_bin ;

DM does not create the _test4_new table. DM deletes the dm_meta.{task_name}\
↪→ _onlineddl record in the downstream according to ghost_schema, ghost_table,
and the server_id of dm_worker, and clears the related information in memory.
DELETE FROM dm_meta.{task_name}_onlineddl WHERE id = {server_id} and

↪→ ghost_schema = {ghost_schema} and ghost_table = {ghost_table};

2. Execute DDL in the _new table:
ALTER TABLE `test`.`_test4_new` add column c3 int;

DM does not perform the DDL operation of _test4_new. Instead, it records this DDL
in dm_meta.{task_name}_onlineddl and memory.
REPLACE INTO dm_meta.{task_name}_onlineddl (id, ghost_schema ,

↪→ ghost_table , ddls) VALUES (......);

3. Create 3 Triggers used for data replication:
CREATE TRIGGER `pt_osc_test_test4_del` AFTER DELETE ON `test`.`test4`

↪→ ;
CREATE TRIGGER `pt_osc_test_test4_upd` AFTER UPDATE ON `test`.`test4`

↪→ ;
CREATE TRIGGER `pt_osc_test_test4_ins` AFTER INSERT ON `test`.`test4`

↪→ ;

DM does not execute Trigger operations that are not supported in TiDB.

4. Replicate the origin table data to the _new table:

41

INSERT LOW_PRIORITY IGNORE INTO `test`.`_test4_new` (`id`, `date`, `
↪→ account_id`, `conversion_price`, `ocpc_matched_conversions`, `
↪→ ad_cost`, `cl2`, `cl1`) SELECT `id`, `date`, `account_id`, `
↪→ conversion_price`, `ocpc_matched_conversions`, `ad_cost`, `cl2`,
↪→ `cl1` FROM `test`.`test4` LOCK IN SHARE MODE /*pt-online-schema-
↪→ change 3227 copy table*/

DM does not execute the DML statements that are not for realtable.

5. After the data replication is completed, the origin table and _new table are renamed,
and the online DDL operation is completed:
RENAME TABLE `test`.`test4` TO `test`.`_test4_old`, `test`.`_test4_new`

↪→ TO `test`.`test4`

DM performs the following two operations:

• DM splits the above rename operation into two SQL statements:
sql rename test.test4 to test._test4_old; rename test._test4_new
↪→ to test.test4;

• DM does not execute rename to _test4_old. When executing rename
↪→ ghost_table to origin table, DM takes the following steps:
– Read the DDL recorded in memory in Step 2
– Replace ghost_table and ghost_schema with origin_table and its corre-

sponding schema
– Execute the DDL that has been replaced

ALTER TABLE `test`.`_test4_new` add column c3 int;
-- Replaced with:
ALTER TABLE `test`.`test4` add column c3 int;

6. Delete the _old table and 3 Triggers of the online DDL operation:
DROP TABLE IF EXISTS `test`.`_test4_old`;
DROP TRIGGER IF EXISTS `pt_osc_test_test4_del` AFTER DELETE ON `test

↪→ `.`test4` ;
DROP TRIGGER IF EXISTS `pt_osc_test_test4_upd` AFTER UPDATE ON `test

↪→ `.`test4` ;
DROP TRIGGER IF EXISTS `pt_osc_test_test4_ins` AFTER INSERT ON `test

↪→ `.`test4` ;

DM does not delete _test4_old and Triggers.

42

Note:
The specific SQL statements of pt-osc vary with the parameters used in the
execution. This document only lists the major SQL statements. For more
details, refer to the pt-osc documentation.

2.3 Sharding Support

2.3.1 Merge and migrate Data from Sharded Tables

This document introduces the sharding support feature provided by Data Migration
(DM). This feature allows you to merge and migrate the data of tables with the same table
schema in the upstreamMySQL or MariaDB instances into one same table in the downstream
TiDB. It supports not only migrating the upstream DML statements, but also coordinating
to migrate the table schema change using DDL statements in multiple upstream sharded
tables.

Note:
To merge and migrate data from the sharded tables, you must configure the
is-sharding: true item in the task configuration file.

2.3.1.1 Restrictions
DM has the following sharding DDL usage restrictions:

• In a logical sharding group (composed of all sharded tables that need to be merged
and migrated into one same downstream table), the same DDL statements must be
executed in the same order in all upstream sharded tables (the schema name and the
table name can be different), and the next DDL statement cannot be executed unless
the current DDL operation is completely finished.

– For example, if you add column A to table_1 before you add column B, then you
cannot add column B to table_2 before you add column A. Executing the DDL
statements in a different order is not supported.

• For each sharding group, it is recommended to use one independent task to perform
the migration.

43

https://www.percona.com/doc/percona-toolkit/2.2/pt-online-schema-change.html

– If multiple sharding groups exist in a task, you cannot start to execute the DDL
statements in other sharding groups until the DDL statements in one sharding
group has been migrated successfully.

• In a sharding group, the corresponding DDL statements should be executed in all
upstream sharded tables.

– For example, if DDL statements are not executed on one or more upstream
sharded tables corresponding to DM-worker-2, then other DM-workers that have
executed the DDL statements pause their migration task and wait for DM-worker
↪→ -2 to receive the upstream DDL statements.

• The sharding group migration task does not support DROP DATABASE/DROP TABLE.

– The sync unit in DM-worker automatically ignores the DROP DATABASE/DROP
↪→ TABLE statement of upstream sharded tables.

• The sharding group migration task supports RENAME TABLE, but with the following
limitations (Online DDL is supported in another solution):

– A table can only be renamed to a new name that is not used by any other table.
– A single RENAME TABLE statement can only involve a single RENAME operation.

• The table schema of each sharded table must be the same at the starting point of
the incremental replication task, so as to make sure the DML statements of different
sharded tables can be migrated into the downstream with a definite table schema, and
the subsequent sharding DDL statements can be correctly matched and migrated.

• If you need to change the table routing rule, you have to wait for the migration of all
sharding DDL statements to complete.

– During the migration of sharding DDL statements, an error is reported if you use
dmctl to change router-rules.

• If you need to CREATE a new table to a sharding group where DDL statements are
being executed, you have to make sure that the table schema is the same as the newly
modified table schema.

– For example, both the original table_1 and table_2 have two columns (a, b)
initially, and have three columns (a, b, c) after the sharding DDL operation, so
after the migration the newly created table should also have three columns (a, b,
c).

• Because the DM-worker that has received the DDL statements will pause the task to
wait for other DM-workers to receive their DDL statements, the delay of data migration
will be increased.

2.3.1.2 Background
Currently, DM uses the binlog in the ROW format to perform the migration task. The

binlog does not contain the table schema information. When you use the ROW binlog to

44

migrate data, if you have not migrated multiple upstream tables into the same downstream
table, then there only exist DDL operations of one upstream table that can update the table
schema of the downstream table. The ROW binlog can be considered to have the nature
of self-description. During the migration process, the DML statements can be constructed
accordingly with the column values and the downstream table schema.

However, in the process of merging and migrating sharded tables, if DDL statements
are executed on the upstream tables to modify the table schema, then you need to perform
extra operations to migrate the DDL statements so as to avoid the inconsistency between the
DML statements produced by the column values and the actual downstream table schema.

Here is a simple example:

Figure 2: shard-ddl-example-1

In the above example, the merging process is simplified, where only two MySQL instances
exist in the upstream and each instance has only one table. When the migration begins, the
table schema version of two sharded tables is marked as schema V1, and the table schema
version after executing DDL statements is marked as schema V2.

Now assume that in the migration process, the binlog data received from the two up-
stream sharded tables has the following time sequence:

1. When the migration begins, the sync unit in DM-worker receives the DML events of
schema V1 from the two sharded tables.

2. At t1, the sharding DDL events from instance 1 are received.
3. From t2 on, the sync unit receives the DML events of schema V2 from instance 1; but

from instance 2, it still receives the DML events of schema V1.
4. At t3, the sharding DDL events from instance 2 are received.
5. From t4 on, the sync unit receives the DML events of schema V2 from instance 2 as

well.

45

Assume that the DDL statements of sharded tables are not processed during the mi-
gration process. After DDL statements of instance 1 are migrated to the downstream, the
downstream table schema is changed to schema V2. But for instance 2, the sync unit in
DM-worker is still receiving DML events of schema V1 from t2 to t3. Therefore, when the
DML statements of schema V1 are migrated to the downstream, the inconsistency between
the DML statements and the table schema can cause errors and the data cannot be migrated
successfully.

2.3.1.3 Principles
This section shows how DM migrates DDL statements in the process of merging sharded

tables based on the above example in the background section.

Figure 3: shard-ddl-flow

In this example, DM-worker-1 migrates the data from MySQL instance 1 and DM-worker
↪→ -2migrates the data from MySQL instance 2. DM-master coordinates the DDL migration
among multiple DM-workers. Starting from DM-worker-1 receiving the DDL statements, the
DDL migration process is simplified as follows:

1. DM-worker-1 receives the DDL statement from MySQL instance 1 at t1, pauses the
data migration of the corresponding DDL and DML statements, and sends the DDL
information to DM-master.

2. DM-master decides that the migration of this DDL statement needs to be coordinated
based on the received DDL information, creates a lock for this DDL statement, sends
the DDL lock information back to DM-worker-1 and marks DM-worker-1 as the owner
of this lock at the same time.

46

3. DM-worker-2 continues migrating the DML statement until it receives the DDL state-
ment from MySQL instance 2 at t3, pauses the data migration of this DDL statement,
and sends the DDL information to DM-master.

4. DM-master decides that the lock of this DDL statement already exists based on the
received DDL information, and sends the lock information directly to DM-worker-2.

5. Based on the configuration information when the task is started, the sharded table
information in the upstream MySQL instances, and the deployment topology infor-
mation, DM-master decides that it has received this DDL statement of all upstream
sharded tables to be merged, and requests the owner of the DDL lock (DM-worker-1)
to migrate this DDL statement to the downstream.

6. DM-worker-1 verifies the DDL statement execution request based on the DDL lock
information received at Step #2, migrates this DDL statement to the downstream, and
sends the results to DM-master. If this operation is successful, DM-worker-1 continues
migrating the subsequent (starting from the binlog at t2) DML statements.

7. DM-master receives the response from the lock owner that the DDL is successfully
executed, and requests all other DM-workers (DM-worker-2) that are waiting for the
DDL lock to ignore this DDL statement and then continue to migrate the subsequent
(starting from the binlog at t4) DML statements.

The characteristics of DM handling the sharding DDL migration among multiple DM-
workers can be concluded as follows:

• Based on the task configuration and DM cluster deployment topology information, a
logical sharding group is built in DM-master to coordinate DDL migration. The group
members are DM-workers that handle each sub-task divided from the migration task).

• After receiving the DDL statement from the binlog event, each DM-worker sends the
DDL information to DM-master.

• DM-master creates or updates the DDL lock based on the DDL information received
from each DM-worker and the sharding group information.

• If all members of the sharding group receive a same specific DDL statement, this
indicates that all DML statements before the DDL execution on the upstream sharded
tables have been completely migrated, and this DDL statement can be executed. Then
DM can continue to migrate the subsequent DML statements.

• After being converted by the table router, the DDL statement of the upstream sharded
tables must be consistent with the DDL statement to be executed in the downstream.
Therefore, this DDL statement only needs to be executed once by the DDL owner and
all other DM-workers can ignore this DDL statement.

In the above example, only one sharded table needs to be merged in the upstreamMySQL
instance corresponding to each DM-worker. But in actual scenarios, there might be multiple
sharded tables in multiple sharded schemas to be merged in one MySQL instance. And when
this happens, it becomes more complex to coordinate the sharding DDL migration.

Assume that there are two sharded tables, namely table_1 and table_2, to be merged
in one MySQL instance:

47

Figure 4: shard-ddl-example-2

Because data comes from the same MySQL instance, all the data is obtained from the
same binlog stream. In this case, the time sequence is as follows:

1. The sync unit in DM-worker receives the DML statements of schema V1 from both
sharded tables when the migration begins.

2. At t1, the sync unit in DM-worker receives the DDL statements of table_1.
3. From t2 to t3, the received data includes the DML statements of schema V2 from

table_1 and the DML statements of schema V1 from table_2.
4. At t3, the sync unit in DM-worker receives the DDL statements of table_2.
5. From t4 on, the sync unit in DM-worker receives the DML statements of schema V2

from both tables.

If the DDL statements are not processed particularly during the data migration, when the
DDL statement of table_1 is migrated to the downstream and changes the downstream table
schema, the DML statement of schema V1 from table_2 cannot be migrated successfully.
Therefore, within a single DM-worker, a logical sharding group similar to that within DM-
↪→ master is created, except that members of this group are different sharded tables in the
same upstream MySQL instance.

But when a DM-worker coordinates the migration of the sharding group within itself, it
is not totally the same as that performed by DM-master. The reasons are as follows:

• When the DM-worker receives the DDL statement of table_1, it cannot pause the mi-
gration and needs to continue parsing the binlog to get the subsequent DDL statements
of table_2. This means it needs to continue parsing between t2 and t3.

• During the binlog parsing process between t2 and t3, the DML statements of schema
↪→ V2 from table_1 cannot be migrated to the downstream until the sharding DDL
statement is migrated and successfully executed.

In DM, the simplified migration process of sharding DDL statements within the DM
worker is as follows:

1. When receiving the DDL statement of table_1 at t1, the DM-worker records the DDL
information and the current position of the binlog.

48

2. DM-worker continues parsing the binlog between t2 and t3.
3. DM-worker ignores the DML statement with the schema V2 schema that belongs to

table_1, and migrates the DML statement with the schema V1 schema that belongs
to table_2 to the downstream.

4. When receiving the DDL statement of table_2 at t3, the DM-worker records the DDL
information and the current position of the binlog.

5. Based on the information of the migration task configuration and the upstream schemas
and tables, the DM-worker decides that the DDL statements of all sharded tables in the
MySQL instance have been received and migrates them to the downstream to modify
the downstream table schema.

6. DM-worker sets the starting point of parsing the new binlog stream to be the position
saved at Step #1.

7. DM-worker resumes parsing the binlog between t2 and t3.
8. DM-worker migrates the DML statement with the schema V2 schema that belongs

to table_1 to the downstream, and ignores the DML statement with the schema V1
schema that belongs to table_2.

9. After parsing the binlog position saved at Step #4, the DM-worker decides that all
DML statements that have been ignored in Step #3 have been migrated to the down-
stream again.

10. DM-worker resumes the migration starting from the binlog position at t4.

You can conclude from the above analysis that DM mainly uses two-level sharding groups
for coordination and control when handling migration of the sharding DDL. Here is the
simplified process:

1. Each DM-worker independently coordinates the DDL statements migration for the
corresponding sharding group composed of multiple sharded tables within the upstream
MySQL instance.

2. After the DM-worker receives the DDL statements of all sharded tables, it sends the
DDL information to DM-master.

3. DM-master coordinates the DDL migration of the sharding group composed of the
DM-workers based on the received DDL information.

4. After receiving the DDL information from all DM-workers, DM-master requests the
DDL lock owner (a specific DM-worker) to execute the DDL statement.

5. The DDL lock owner executes the DDL statement and returns the result to DM-master
↪→ . Then the owner restarts the migration of the previously ignored DML statements
during the internal coordination of DDL migration.

6. After DM-master confirms that the owner has successfully executed the DDL statement,
it asks all other DM-workers to continue the migration.

7. All other DM-workers separately restart the migration of the previously ignored DML
statements during the internal coordination of DDL migration.

8. After finishing migrating the ignored DML statements again, all DM-workers resume
the normal migration process.

49

2.3.2 Handle Sharding DDL Locks Manually in DM

DM uses the sharding DDL lock to ensure operations are performed in the correct order.
This locking mechanism resolves sharding DDL locks automatically in most cases, but you
need to use the unlock-ddl-lock or break-ddl-lock command to manually handle the
abnormal DDL locks in some abnormal scenarios.

Warning:

• Do not use unlock-ddl-lock or break-ddl-lock unless you are totally
aware of the possible impacts brought by the command and you can
accept them.

• Before manually handling the abnormal DDL locks, make sure that you
have already read the DM shard merge principles.

2.3.2.1 Command

2.3.2.1.1 show-ddl-locks

This command queries the current DDL lock information on DM-master.
Command usage

show-ddl-locks [--worker=127.0.0.1:8262] [task-name]

Arguments description

• worker:

– Flag; string; --worker; optional
– It can be specified repeatedly multiple times.
– If it is not specified, this command queries the lock information related to all

DM-workers; if it is specified, this command queries the lock information related
only to the specified DM-worker.

• task-name:

– Non-flag; string; optional
– If it is not specified, this command queries the lock information related to all

tasks; if it is specified, this command queries the lock information related only to
the specified task.

Example of results

50

» show-ddl-locks test
{

"result": true, # The result of the
↪→ query for the lock information.

"msg": "", # The additional
↪→ message for the failure to query the lock information or other
↪→ descriptive information (for example, the lock task does not
↪→ exist).

"locks": [# The lock information
↪→ list on DM-master.
{

"ID": "test-`shard_db`.`shard_table`", # The lock ID, which is
↪→ made up of the current task name and the schema/table
↪→ information corresponding to the DDL.

"task": "test", # The name of the task
↪→ to which the lock belongs.

"owner": "127.0.0.1:8262", # The owner of the lock
↪→ .

"DDLs": [# The DDL list
↪→ corresponding to the lock.
"USE `shard_db`; ALTER TABLE `shard_db`.`shard_table` DROP

↪→ COLUMN `c2`;"
],
"synced": [# The list of DM-

↪→ workers that have received all sharding DDL events in the
↪→ corresponding MySQL instance.
"127.0.0.1:8262"

],
"unsynced": [# The list of DM-

↪→ workers that have not yet received all sharding DDL events
↪→ in the corresponding MySQL instance.
"127.0.0.1:8263"

]
}

]
}

2.3.2.1.2 unlock-ddl-lock

This command actively requests DM-master to unlock the specified DDL lock, including
requesting the owner to execute the DDL statement, requesting all other DM-workers that
are not the owner to skip the DDL statement, and removing the lock information on DM-
↪→ master.

51

Command usage
unlock-ddl-lock [--worker=127.0.0.1:8262] [--owner] [--force-remove] <lock-

↪→ ID>

Arguments description

• worker:

– Flag; string; --worker; optional
– It can be specified repeatedly multiple times.
– If it is not specified, this command sends requests for all DM-workers (except

for the owner) that are waiting for the lock to skip the DDL statement; if it is
specified, this command sends requests only for the specified DM-worker to skip
the DDL statement.

• owner:

– Flag; string; --owner; optional
– If it is not specified, this command requests for the default owner (the owner in

the result of show-ddl-locks) to execute the DDL statement; if it is specified,
this command requests for the DM-worker (the alternative of the default owner)
to execute the DDL statement.

• force-remove:

– Flag; boolean; --force-remove; optional
– If it is not specified, this command removes the lock information only when the

owner succeeds to execute the DDL statement; if it is specified, this command
forcefully removes the lock information even though the owner fails to execute the
DDL statement (after doing this you cannot query or operate on the lock again).

• lock-ID:

– Non-flag; string; required
– It specifies the ID of the DDL lock that needs to be unlocked (the ID in the result

of show-ddl-locks).

Example of results
» unlock-ddl-lock test-`shard_db`.`shard_table`
{

"result": true, # The result of the
↪→ unlocking operation.

"msg": "", # The additional
↪→ message for the failure to unlock the lock.

52

"workers": [# The result list of
↪→ the executing or skipping DDL operation of each DM-worker.
{

"result": true, # The result of the
↪→ executing or skipping DDL operation.

"worker": "127.0.0.1:8262", # The DM-worker ID.
"msg": "" # The reasons why the

↪→ DM-worker failed to execute or skip the DDL statement.
}

]
}

2.3.2.1.3 break-ddl-lock

This command actively asks the DM-worker to forcefully break the DDL lock that is to
be unlocked, including asking the DM-worker to execute/skip the DDL and removing the
DDL lock information on the DM-worker.

Command usage
break-ddl-lock <--worker=127.0.0.1:8262> [--remove-id] [--exec] [--skip] <

↪→ task-name>

Arguments description

• worker:

– Flag; string; --worker; required
– It specifies the DM-worker that needs to execute the breaking operation.

• remove-id: deprecated.

• exec:

– Flag; boolean; --exec; optional
– It cannot be specified simultaneously with the --skip parameter.
– If it is specified, this command asks the DM-worker to execute the corresponding

DDL statement of the lock.

• skip:

– flag; boolean; --skip; optional
– It cannot be specified simultaneously with the --exec parameter.
– If it is specified, this command asks the DM-worker to skip the corresponding

DDL statement of the lock.

53

• task-name:

– Non-flag; string; required
– It specifies the name of the task containing the lock that is going to execute the

breaking operation (you can check whether a task contains the lock via query-
status).

Example of results
» break-ddl-lock -w 127.0.0.1:8262 --exec test
{

"result": true, # The result of the
↪→ lock breaking operation.

"msg": "", # The reason why the
↪→ breaking lock operation failed.

"workers": [# The list of DM-
↪→ workers which break the lock (currently the lock can be broken
↪→ by only one DM-worker at a single operation).
{

"result": false, # The result of the
↪→ lock breaking operation by the DM-worker.

"worker": "127.0.0.1:8262", # The DM-worker ID.
"msg": "" # The reason why the DM

↪→ -worker failed to break the lock.
}

]
}

2.3.2.2 Supported scenarios
Currently, the unlock-ddl-lock or break-ddl-lock command only supports handling

sharding DDL locks in the following three abnormal scenarios.

2.3.2.2.1 Scenario 1: Some DM-workers go offline
The reason for the abnormal lock
Before DM-master tries to automatically unlock the sharding DDL lock, all the DM-

workers need to receive the sharding DDL events (for details, see shard merge principles).
If the sharding DDL event is already in the migration process, and some DM-workers have
gone offline and are not to be restarted (these DM-workers have been removed according
to the application demand), then the sharding DDL lock cannot be automatically migrated
and unlocked because not all the DM-workers can receive the DDL event.

54

Note:
If you need to make some DM-workers offline when not in the process of
migrating sharding DDL events, a better solution is to use stop-task to
stop the running tasks first, make the DM-workers go offline, remove the
corresponding configuration information from the task configuration file, and
finally use start-task and the new task configuration to restart the migration
task.

Manual solution
Suppose that there are two instances MySQL-1 and MySQL-2 in the upstream, and there

are two tables shard_db_1.shard_table_1 and shard_db_1.shard_table_2 in MySQL-1 and
two tables shard_db_2.shard_table_1 and shard_db_2.shard_table_2 in MySQL-2. Now
we need to merge the four tables and migrate them into the table shard_db.shard_table in
the downstream TiDB.

The initial table structure is:
mysql> SHOW CREATE TABLE shard_db_1.shard_table_1;
+---------------+--+
| Table | Create Table |
+---------------+--+
| shard_table_1 | CREATE TABLE `shard_table_1` (
`c1` int(11) NOT NULL,
PRIMARY KEY (`c1`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 |
+---------------+--+

The following DDL operation will be executed on the upstream sharded tables to alter
the table structure:
ALTER TABLE shard_db_*.shard_table_* ADD COLUMN c2 INT;

The operation processes of MySQL and DM are as follows:

1. The corresponding DDL operations are executed on the two sharded tables of DM-
↪→ worker-1 in MySQL-1 to alter the table structures.
ALTER TABLE shard_db_1.shard_table_1 ADD COLUMN c2 INT;

ALTER TABLE shard_db_1.shard_table_2 ADD COLUMN c2 INT;

2. DM-worker-1 sends the DDL information related to MySQL-1 to DM-master, and DM-
↪→ master creates the corresponding DDL lock.

55

3. Use show-ddl-lock to check the information of the current DDL lock.
» show-ddl-locks test
{

"result": true,
"msg": "",
"locks": [

{
"ID": "test-`shard_db`.`shard_table`",
"task": "test",
"owner": "127.0.0.1:8262",
"DDLs": [

"USE `shard_db`; ALTER TABLE `shard_db`.`shard_table` ADD
↪→ COLUMN `c2` int(11);"

],
"synced": [

"127.0.0.1:8262"
],
"unsynced": [

"127.0.0.1:8263"
]

}
]

}

4. Due to the application demand, the DM-worker-2 data in MySQL-2 is no longer needed
to be migrated to the downstream TiDB, and DM-worker-2 is made offline.

5. The lock whose ID is test-`shard_db`.`shard_table` on DM-master cannot receive
the DDL information of DM-worker-2.

• The returned result unsynced by show-ddl-locks has always included the infor-
mation of DM-worker-2 (127.0.0.1:8263).

6. Use unlock-ddl-lock to ask DM-master to actively unlock the DDL lock.

• If the owner of the DDL lock has gone offline, you can use the parameter --owner
to specify another DM-worker as the new owner to execute the DDL.

• If any DM-worker reports an error, result will be set to false, and at this point
you should check carefully if the errors of each DM-worker is acceptable and within
expectations.
– DM-workers that have gone offline will return the error rpc error: code =

↪→ Unavailable, which is within expectations and can be neglected; but if
other online DM-workers return errors, then you should deal with them based
on the scenario.

56

» unlock-ddl-lock test-`shard_db`.`shard_table`
{

"result": false,
"msg": "github.com/pingcap/tidb-enterprise-tools/dm/master/

↪→ server.go:1472: DDL lock test-`shard_db`.`shard_table`
↪→ owner ExecuteDDL successfully, so DDL lock removed. but
↪→ some dm-workers ExecuteDDL fail, you should to handle dm-
↪→ worker directly",

"workers": [
{

"result": true,
"worker": "127.0.0.1:8262",
"msg": ""

},
{

"result": false,
"worker": "127.0.0.1:8263",
"msg": "rpc error: code = Unavailable desc = all

↪→ SubConns are in TransientFailure, latest
↪→ connection error: connection error: desc = \"
↪→ transport: Error while dialing dial tcp
↪→ 127.0.0.1:8263: connect: connection refused\""

}
]

}

7. Use show-ddl-locks to confirm if the DDL lock is unlocked successfully.
» show-ddl-locks test
{

"result": true,
"msg": "no DDL lock exists",
"locks": [
]

}

8. Check whether the table structure is altered successfully in the downstream TiDB.
mysql> SHOW CREATE TABLE shard_db.shard_table;
+-------------+--+
| Table | Create Table |
+-------------+--+
| shard_table | CREATE TABLE `shard_table` (
`c1` int(11) NOT NULL,

57

`c2` int(11) DEFAULT NULL,
PRIMARY KEY (`c1`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 COLLATE=latin1_bin |
+-------------+--+

9. Use query-status to confirm if the migration task is normal.

Impact
After you have manually unlocked the lock by using unlock-ddl-lock, if you don’t deal

with the offline DM-workers included in the task configuration information, the lock might
still be unable to be migrated automatically when the next sharding DDL event is received.

Therefore, after you have manually unlocked the DDL lock, you should perform the
following operations:

1. Use stop-task to stop the running tasks.
2. Update the task configuration file, and remove the related information of the offline

DM-worker from the configuration file.
3. Use start-task and the new task configuration file to restart the task.

Note:
After you run unlock-ddl-lock, if the DM-worker that went offline becomes
online again and tries to migrate the data of the sharded tables, a match error
between the data and the downstream table structure might occur.

2.3.2.2.2 Scenario 2: Some DM-workers restart during the DDL unlocking
process

The reason for the abnormal lock
After DM-master receives the DDL events of all DM-workers, automatically running

unlock DDL lock mainly include the following steps:

1. Ask the owner of the lock to execute the DDL and update the checkpoints of corre-
sponding sharded tables.

2. Remove the DDL lock information stored on DM-master after the owner successfully
executes the DDL.

3. Ask all other DM-workers to skip the DDL and update the checkpoints of corresponding
sharded tables after the owner successfully executes the DDL.

58

Currently, the above unlocking process is not atomic. Therefore, after the owner suc-
cessfully executes the DDL, if a DM-worker restarts during the period of asking other DM-
workers to skip the DDL, then the DM-worker might fail to skip the DDL.

At this point, the lock information on DM-master has been removed and the restarted
DM-worker will continue to migrate the DDL, but as other DM-workers (including the pre-
vious owner) has migrated the DDL and continued the migration process, this DM-worker
will never see the DDL lock be unlocked automatically.

Manual solution
Suppose that now we have the same upstream and downstream table structures and

the same demand for merging tables and migration as in the manual solution of Some DM-
workers go offline.

When DM-master automatically executes the unlocking process, the owner (DM-worker-1
↪→) successfully executes the DDL and continues the migration process, and the DDL lock
information has been removed from DM-master. But at this point, if DM-worker-2 restarts
during the period of asking DM-worker-2 to skip the DDL, then the skipping process might
fail.

After DM-worker-2 restarts, it will try to migrate the waiting DDL lock before it
restarted. At this point, a new lock will be created on DM-master, and the DM-worker
will become the owner of the lock (other DM-workers have executed/skipped the DDL by
now and are continuing the migration process).

The operation processes are:

1. Use show-ddl-locks to confirm if the corresponding lock of the DDL exists on DM-
↪→ master.
Only the restarted DM-worker (127.0.0.1:8263) is at the synced state.
» show-ddl-locks
{

"result": true,
"msg": "",
"locks": [

{
"ID": "test-`shard_db`.`shard_table`",
"task": "test",
"owner": "127.0.0.1:8263",
"DDLs": [

"USE `shard_db`; ALTER TABLE `shard_db`.`shard_table` ADD
↪→ COLUMN `c2` int(11);"

],
"synced": [

"127.0.0.1:8263"
],

59

"unsynced": [
"127.0.0.1:8262"

]
}

]
}

2. Use unlock-ddl-lock to ask DM-master to unlock the lock.

• Use the parameter --worker to limit the operation to only target at the restarted
DM-worker (127.0.0.1:8263).

• The DM-worker will try to execute the DDL to the downstream again during
the unlocking process (the owner before restarting has executed the DDL to the
downstream), so as to make sure that the DDL can be executed multiple times.
» unlock-ddl-lock --worker=127.0.0.1:8263 test-`shard_db`.`

↪→ shard_table`
{

"result": true,
"msg": "",
"workers": [

{
"result": true,
"worker": "127.0.0.1:8263",
"msg": ""

}
]

}

3. Use show-ddl-locks to confirm if the DDL lock has been successfully unlocked.

4. Use query-status to confirm if the migration task is normal.

Impact
After manually unlocking the lock, the following sharding DDL can be migrated auto-

matically and normally.

2.3.2.2.3 Scenario 3: Some DM-workers are temporarily unreachable during
the DDL unlocking process

The reason for the abnormal lock
This scenario has the similar reason for the abnormal lock in Scenario 2: Some DM-

workers restart during the DDL unlocking process. If the DM-worker is temporarily unreach-
able when you request the DM-worker to skip the DDL statement, this DM-worker might fail

60

to skip the DDL statement. At this point, the lock information is removed from DM-master,
but the DM-worker will continue to be waiting for a DDL lock which is no longer existing.

The difference between Scenario 3 and Scenario 2: Some DM-workers restart during the
DDL unlocking process is that the DM-master does not have a lock in Scenario 3, but the
DM-master has a new lock in Scenario 2.

Manual solution
Suppose that now we have the same upstream and downstream table structures and

the same demand for merging tables and migration as in the manual solution of Some DM-
workers go offline.

When DM-master automatically executes the unlocking operation, the owner (DM-worker
↪→ -1) successfully executes the DDL and continues the migration process, and the DDL
lock information has been removed from DM-master. But at this point, if DM-worker-2 is
temporarily unreachable due to the Internet failure during the period of asking DM-worker-2
to skip the DDL, then the skipping process might fail.

The operation processes are:

1. Use show-ddl-locks to confirm if the corresponding lock of the DDL no longer exists
on DM-master.

2. Use query-status to confirm if the DM-worker is still waiting for the lock to migrate.
» query-status test
{

"result": true,
"msg": "",
"workers": [

...
{

...
"worker": "127.0.0.1:8263",
"subTaskStatus": [

{
...
"unresolvedDDLLockID": "test-`shard_db`.`shard_table`

↪→ ",
"sync": {

...
"blockingDDLs": [

"USE `shard_db`; ALTER TABLE `shard_db`.`
↪→ shard_table` ADD COLUMN `c2` int(11);"

],
"unresolvedGroups": [

{

61

"target": "`shard_db`.`shard_table`",
"DDLs": [

"USE `shard_db`; ALTER TABLE `shard_db
↪→ `.`shard_table` ADD COLUMN `c2`
↪→ int(11);"

],
"firstPos": "(mysql-bin|000001.000003,

↪→ 1752)",
"synced": [

"`shard_db_2`.`shard_table_1`",
"`shard_db_2`.`shard_table_2`"

],
"unsynced": [
]

}
],
"synced": false

}
}

]
...

}
]

}

3. Use break-ddl-lock to compulsorily break the DDL lock which the DM-worker is
waiting for.
As the owner has executed the DDL to the downstream, you should use the parameter
--skip to break the lock.
» break-ddl-lock --worker=127.0.0.1:8263 --skip test
{

"result": true,
"msg": "",
"workers": [

{
"result": true,
"worker": "127.0.0.1:8263",
"msg": ""

}
]

}

4. Use query-status to confirm if the migration task is normal and no longer at the
state of waiting for the lock.

62

Impact
After manually breaking the lock, the following sharding DDL can be migrated automat-

ically and normally.

3 Benchmark

3.1 DM 1.0-GA Benchmark Report

This benchmark report describes the test purpose, environment, scenario, and result for
DM 1.0-GA.

3.1.1 Test purpose

The purpose of this test is to test the performance of DM full import and incremental
replication.

3.1.2 Test environment

3.1.2.1 Machine information
System information:

Machine IP Operation system Kernel version File system type
172.16.4.39 CentOS Linux release 7.6.1810 3.10.0-957.1.3.el7.x86_64 ext4
172.16.4.40 CentOS Linux release 7.6.1810 3.10.0-957.1.3.el7.x86_64 ext4
172.16.4.41 CentOS Linux release 7.6.1810 3.10.0-957.1.3.el7.x86_64 ext4
172.16.4.42 CentOS Linux release 7.6.1810 3.10.0-957.1.3.el7.x86_64 ext4
172.16.4.43 CentOS Linux release 7.6.1810 3.10.0-957.1.3.el7.x86_64 ext4
172.16.4.44 CentOS Linux release 7.6.1810 3.10.0-957.1.3.el7.x86_64 ext4

Hardware information:

Type Specification
CPU 40 CPUs, Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz

Memory 192GB, 12 * 16GB DIMM DDR4 2133 MHz
Disk Intel DC P4510 4TB NVMe PCIe 3.0

Network card 10 Gigabit Ethernet

Others:

• Network rtt between servers: rtt min/avg/max/mdev = 0.074/0.088/0.121/0.019 ms

63

3.1.2.2 Cluster topology

Machine IP Deployment instance
172.16.4.39 PD1, DM-worker1, DM-master
172.16.4.40 PD2, MySQL1
172.16.4.41 PD3, TiDB
172.16.4.42 TiKV1
172.16.4.43 TiKV2
172.16.4.44 TiKV3

3.1.2.3 Version information

• MySQL version: 5.7.27-log
• TiDB version: v4.0.0-alpha-198-gbde7f440e
• DM version: v1.0.1
• Sysbench version: 1.0.17

3.1.3 Test scenario

3.1.3.1 Data flow
MySQL1 (172.16.4.40) -> DM-worker1 (172.16.4.39) -> TiDB (172.16.4.41)

3.1.3.2 Public configuration or data

3.1.3.2.1 Database table structure used for the test
CREATE TABLE `sbtest` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`k` int(11) NOT NULL DEFAULT '0',
`c` char(120) CHARSET utf8mb4 COLLATE utf8mb4_bin NOT NULL DEFAULT '',
`pad` char(60) CHARSET utf8mb4 COLLATE utf8mb4_bin NOT NULL DEFAULT '',
PRIMARY KEY (`id`),
KEY `k_1` (`k`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin

3.1.3.2.2 Database configuration
We use TiDB Ansible to deploy the TiDB cluster, and use default configuration provided

in TiDB Ansible.

3.1.3.3 Full import benchmark case

64

3.1.3.3.1 Test procedure

• Set up environment
• Use sysbench to create the table and generate the initial data in upstream MySQL
• Start DM-task in the full mode

Sysbench test script used for preparing initial data:
sysbench --test=oltp_insert --tables=4 --mysql-host=172.16.4.40 --mysql-

↪→ port=3306 --mysql-user=root --mysql-db=dm_benchmark --db-driver=mysql
↪→ --table-size=50000000 prepare

3.1.3.3.2 Full import benchmark result

item dump thread mydumpers extra-args dump speed (MB/s)
enable single table concurrent 32 “-r 320000 –regex ’ˆsbtest.*’“ 191.03
disable single table concurrent 32 “–regex ’ˆsbtest.*’“ 72.22

item
latency of execute
transaction (s)

statement per
transaction

data size
(GB)

time
(s)

import
speed
(MB/s)

load
data

1.737 4878 38.14 2346.9 16.64

3.1.3.3.3 Benchmark result with different pool size in load unit
Full import data size in benchmark case is 3.78 GB, which is generated from sysbench

by the following script:
sysbench --test=oltp_insert --tables=4 --mysql-host=172.16.4.40 --mysql-

↪→ port=3306 --mysql-user=root --mysql-db=dm_benchmark --db-driver=mysql
↪→ --table-size=5000000 prepare

load pool
size

latency of execution
txn (s)

import time
(s)

import speed
(MB/s)

TiDB 99
duration (s)

2 0.250 425.9 9.1 0.23
4 0.523 360.1 10.7 0.41
8 0.986 267.0 14.5 0.93
16 2.022 265.9 14.5 2.68
32 3.778 262.3 14.7 6.39
64 7.452 281.9 13.7 8.00

65

3.1.3.3.4 Benchmark result with different row count in per statement
Full import data size in this benchmark case is 3.78 GB, load unit pool size uses 32. The

statement count is controlled by parameters of the dump unit.

row count in
per statement

mydumpers
extra-args

latency of
execution txn

(s)
import
time (s)

import
speed
(MB/s)

TiDB 99
duration (s)

7426 -s 1500000
-r 320000

6.982 258.3 15.0 10.34

4903 -s 1000000
-r 320000

3.778 262.3 14.7 6.39

2470 -s 500000 -r
320000

1.962 271.36 14.3 2.00

1236 -s 250000 -r
320000

1.911 283.3 13.7 1.50

618 -s 125000 -r
320000

0.683 299.9 12.9 0.73

310 -s 62500 -r
320000

0.413 322.6 12.0 0.49

3.1.3.4 Increase migration benchmark case

3.1.3.4.1 Test procedure

• Set up environment
• Use sysbench to create the table and generate the initial data in upstream MySQL
• Start DM-task in the all mode, and wait until the task enters sync unit
• Use sysbench to generate incremental data in upstream MySQL, use query-status to

watch the DM migration status, and observe the monitoring metrics of DM and TiDB
on Grafana

3.1.3.4.2 Benchmark result for incremental replication
Upstream sysbench test script:

sysbench --test=oltp_insert --tables=4 --num-threads=32 --mysql-host
↪→ =172.17.4.40 --mysql-port=3306 --mysql-user=root --mysql-db=
↪→ dm_benchmark --db-driver=mysql --report-interval=10 --time=1800 run

DM sync unit worker-count is 32, and batch size is 100 in this benchmark case.

66

items qps tps
95%

Latency
MySQL 42.79k 42.79k 1.18ms
DM relay
log unit

- 11.3MB/s 45us (read
duration)

DM binlog
replication

unit

22.97k (binlog event
received qps, not including

skipped events)

- 20ms (txn
execution
latency)

TiDB 31.30k (Begin/Commit
3.93k Insert 22.76k)

4.16k 95%: 6.4ms
99%: 9ms

3.1.3.4.3 Benchmark result with different sync unit concurrency

sync unit
worker-count

DM
tps

DM execution latency
(ms)

TiDB
qps

TiDB 99 duration
(ms)

4 7074 63 7.1k 3
8 14684 64 14.9k 4
16 23486 56 24.9k 6
32 23345 28 29.2k 10
64 23302 30 31.2k 16

1024 22225 70 56.9k 70

3.1.3.4.4 Benchmark result with different SQL distribution

sysbench
type

relay log flush speed
(MB/s)

DM
tps

DM execution
latency (ms)

TiDB
qps

TiDB 99
duration (ms)

insert_only 11.3 23345 28 29.2k 10
write_only 18.7 33470 129 34.6k 11

3.1.4 Recommended parameters

3.1.4.1 dump unit
We recommend that the statement size be 200 KB~1 MB, and row count in each state-

ment be approximately 1000~5000, which is based on the actual row size in your scenario.

3.1.4.2 load unit
We recommend that you set pool-size to 16.

3.1.4.3 sync unit

67

We recommend that you set batch size to 100 and worker-count to 16~32.

3.2 DM 1.0-alpha Benchmark Report

This DM benchmark report describes the test purpose, environment, scenario, and result.

3.2.1 Test purpose

The purpose of this test is to test the performance of DM incremental replication.

Note:
The results of the testing might vary based on different environmental depen-
dencies.

3.2.2 Test environment

3.2.2.1 Machine information
System information:

Machine IP Operation system Kernel version File system type
192.168.0.6 CentOS Linux release 7.6.1810 3.10.0-957.1.3.el7.x86_64 ext4
192.168.0.7 CentOS Linux release 7.6.1810 3.10.0-957.1.3.el7.x86_64 ext4
192.168.0.8 CentOS Linux release 7.6.1810 3.10.0-957.1.3.el7.x86_64 ext4
192.168.0.9 CentOS Linux release 7.6.1810 3.10.0-957.1.3.el7.x86_64 ext4
192.168.0.10 CentOS Linux release 7.6.1810 3.10.0-957.1.3.el7.x86_64 ext4
192.168.0.11 CentOS Linux release 7.6.1810 3.10.0-957.1.3.el7.x86_64 ext4

Hardware information:

Type
192.168.0.9, 192.168.0.10,
192.168.0.11 192.168.0.6, 192.168.0.7, 192.168.0.8

CPU 8 vCPUs, Intel(R) Xeon(R)
Platinum 8163 CPU @ 2.50GHz

4 vCPUs, Intel(R) Xeon(R)
Platinum 8163 CPU @ 2.50GHz

Memory 16G 8G
Disk 1T Aliyun ESSD 256G Aliyun ESSD
Network
card

1 Gigabit Ethernet, 1000Mb/s 1 Gigabit Ethernet, 1000Mb/s

68

3.2.2.2 Cluster topology

Machine IP Deployment instance
192.168.0.9 TiKV * 1, TiDB * 1
192.168.0.10 TiKV * 1
192.168.0.11 TiKV * 1
192.168.0.6 PD * 1, MySQL * 1, DM-worker * 1
192.168.0.8 PD * 1, MySQL * 1, DM-worker * 1
192.168.0.7 PD * 1, DM-master * 1

3.2.2.3 Version information

• MySQL version: 5.7.25-log

• TiDB version: v3.0.0-beta-27-g6398788

• DM version: v1.0.0-alpha-10-g4d01d79

• Sysbench version: 1.0.9

3.2.3 Test scenario

3.2.3.1 Data flow
MySQL1 (192.168.0.8) -> DM-worker1 (192.168.0.6) -> TiDB (192.168.0.9)

3.2.3.2 Test procedure

• Set up environment
• Use sysbench to create the table and generate the initial data in upstream MySQL
• Start DM-task in the all mode
• Use sysbench to generate incremental data in upstream MySQL

3.2.3.3 Use sysbench to generate data load in upstream MySQL
Upstream sysbench test script:

sysbench --test=oltp_insert --tables=2 --num-threads=1024 --mysql-host
↪→ =192.168.0.8 --mysql-port=3306 --mysql-user=root --mysql-db=dm_poc --
↪→ db-driver=mysql --report-interval=10 --time=900 run

The structure of the table used for the test:

69

CREATE TABLE `sbtest` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`k` int(11) NOT NULL DEFAULT '0',
`c` char(120) CHARSET utf8mb4 COLLATE utf8mb4_bin NOT NULL DEFAULT '',
`pad` char(60) CHARSET utf8mb4 COLLATE utf8mb4_bin NOT NULL DEFAULT '',
PRIMARY KEY (`id`),
KEY `k_1` (`k`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin

3.2.3.4 The deployment and configuration details
// TiKV configuration
sync-log = false
[defaultcf]
block-cache-size = "4GB"
[writecf]
block-cache-size = "4GB"
[raftdb.defaultcf]
block-cache-size = "4GB"

// DM task sync processing unit configuration
syncer:

worker-count: 256
batch: 100
max-retry: 20

3.2.4 Test result

items threads qps tps 95% Latency (ms)
MySQL 1024 15.10k 15.10k 121.08
DM 256 13.89k 13.89k 210 (txn execution latency)
TiDB - 18.53k (Begin/Commit 2.4k Replace 13.80k) 2.27k 29

3.2.4.1 Monitor screenshots

3.2.4.1.1 DM key indicator monitor

70

Figure 5: DM benchmark

3.2.4.1.2 TiDB key indicator monitor

4 Usage Scenarios

4.1 Data Migration Simple Usage Scenario

This document shows how to use Data Migration (DM) in a simple data migration
scenario where the data of three upstream MySQL instances needs to be migrated to a
downstream TiDB cluster (no sharding data).

4.1.1 Upstream instances

Assume that the upstream schemas are as follows:

71

• Instance 1

Schema Tables
user information, log
store store_bj, store_tj
log messages

• Instance 2

Schema Tables
user information, log
store store_sh, store_sz
log messages

• Instance 3

Schema Tables
user information, log
store store_gz, store_sz
log messages

4.1.2 Migration requirements

1. Do not merge the user schema.

1. Migrate the user schema of instance 1 to the user_north of TiDB.
2. Migrate the user schema of instance 2 to the user_east of TiDB.
3. Migrate the user schema of instance 3 to the user_south of TiDB.
4. Never delete the table log.

2. Migrate the upstream store schema to the downstream store schema without merging
tables.

1. store_sz exists in both instances 2 and 3, which is migrated to store_suzhou
and store_shenzhen respectively.

2. Never delete store.

3. The log schema needs to be filtered out.

4.1.3 Downstream instances

Assume that the schemas migrated to the downstream are as follows:

72

Schema Tables
user_north information, log
user_east information, log
user_south information, log
store store_bj, store_tj, store_sh, store_suzhou, store_gz, store_shenzhen

4.1.4 Migration solution

• To satisfy migration Requirements #1-i, #1-ii and #1-iii, configure the table routing
rules as follows:
routes:
...
instance-1-user-rule:
schema-pattern: "user"
target-schema: "user_north"

instance-2-user-rule:
schema-pattern: "user"
target-schema: "user_east"

instance-3-user-rule:
schema-pattern: "user"
target-schema: "user_south"

• To satisfy the migration Requirement #2-i, configure the table routing rules as follows:
routes:
...
instance-2-store-rule:
schema-pattern: "store"
table-pattern: "store_sz"
target-schema: "store"
target-table: "store_suzhou"

instance-3-store-rule:
schema-pattern: "store"
table-pattern: "store_sz"
target-schema: "store"
target-table: "store_shenzhen"

• To satisfy the migration Requirement #1-iv, configure the binlog filtering rules as
follows:
filters:
...
log-filter-rule:
schema-pattern: "user"

73

table-pattern: "log"
events: ["truncate table", "drop table", "delete"]
action: Ignore

user-filter-rule:
schema-pattern: "user"
events: ["drop database"]
action: Ignore

• To satisfy the migration Requirement #2-ii, configure the binlog filtering rule as follows:
filters:
...
store-filter-rule:
schema-pattern: "store"
events: ["drop database", "truncate table", "drop table", "delete"]
action: Ignore

Note:
store-filter-rule is different from log-filter-rule & user-filter
↪→ -rule. store-filter-rule is a rule for the whole store schema,
while log-filter-rule and user-filter-rule are rules for the log
table in the user schema.

• To satisfy the migration Requirement #3, configure the block and allow lists as follows:
block-allow-list: # Use black-white-list if the DM's version <= v1.0.6.
log-ignored:
ignore-dbs: ["log"]

4.1.5 Migration task configuration

The complete migration task configuration is shown below. For more details, see config-
uration explanations.
name: "one-tidb-secondary"
task-mode: all
meta-schema: "dm_meta"
remove-meta: false

target-database:
host: "192.168.0.1"
port: 4000
user: "root"

74

password: ""

mysql-instances:
-
source-id: "instance-1"
route-rules: ["instance-1-user-rule"]
filter-rules: ["log-filter-rule", "user-filter-rule", "store-filter-rule

↪→ "]
block-allow-list: "log-ignored" # Use black-white-list if the DM's

↪→ version <= v1.0.6.
mydumper-config-name: "global"
loader-config-name: "global"
syncer-config-name: "global"

-
source-id: "instance-2"
route-rules: ["instance-2-user-rule", instance-2-store-rule]
filter-rules: ["log-filter-rule", "user-filter-rule", "store-filter-rule

↪→ "]
block-allow-list: "log-ignored" # Use black-white-list if the DM's

↪→ version <= v1.0.6.
mydumper-config-name: "global"
loader-config-name: "global"
syncer-config-name: "global"

-
source-id: "instance-3"
route-rules: ["instance-3-user-rule", instance-3-store-rule]
filter-rules: ["log-filter-rule", "user-filter-rule", "store-filter-rule

↪→ "]
block-allow-list: "log-ignored" # Use black-white-list if the DM's

↪→ version <= v1.0.6.
mydumper-config-name: "global"
loader-config-name: "global"
syncer-config-name: "global"

other common configs shared by all instances

routes:
instance-1-user-rule:
schema-pattern: "user"
target-schema: "user_north"

instance-2-user-rule:
schema-pattern: "user"
target-schema: "user_east"

instance-3-user-rule:
schema-pattern: "user"

75

target-schema: "user_south"
instance-2-store-rule:
schema-pattern: "store"
table-pattern: "store_sz"
target-schema: "store"
target-table: "store_suzhou"

instance-3-store-rule:
schema-pattern: "store"
table-pattern: "store_sz"
target-schema: "store"
target-table: "store_shenzhen"

filters:
log-filter-rule:
schema-pattern: "user"
table-pattern: "log"
events: ["truncate table", "drop table", "delete"]
action: Ignore

user-filter-rule:
schema-pattern: "user"
events: ["drop database"]
action: Ignore

store-filter-rule:
schema-pattern: "store"
events: ["drop database", "truncate table", "drop table", "delete"]
action: Ignore

block-allow-list: # Use black-white-list if the DM's version <= v1.0.6.
log-ignored:
ignore-dbs: ["log"]

mydumpers:
global:
threads: 4
chunk-filesize: 64
skip-tz-utc: true

loaders:
global:
pool-size: 16
dir: "./dumped_data"

syncers:
global:
worker-count: 16

76

batch: 100
max-retry: 100

4.2 Data Migration Shard Merge Scenario

This document shows how to use Data Migration (DM) in the shard merge scenario
where the sharded schemas and sharded tables of three upstream MySQL instances need to
be migrated to a downstream TiDB cluster.

4.2.1 Upstream instances

Assume that the upstream schemas are as follows:

• Instance 1

Schema Tables
user information, log_north, log_bak
store_01 sale_01, sale_02
store_02 sale_01, sale_02

• Instance 2

Schema Tables
user information, log_east, log_bak
store_01 sale_01, sale_02
store_02 sale_01, sale_02

• Instance 3

Schema Tables
user information, log_south, log_bak
store_01 sale_01, sale_02
store_02 sale_01, sale_02

4.2.2 Migration requirements

1. Merge tables with the same name. For example, merge the user.information tables
of three upstream instances to the downstream user.information table in TiDB.

2. Merge tables with different names. For example, merge the user.log_{north|south
↪→ |east} tables of three upstream instances to the downstream user.log_{north|
↪→ south|east} table in TiDB.

77

3. Merge sharded tables. For example, merge the store_{01|02}.sale_{01|02} tables
of three upstream instances to the downstream store.sale table in TiDB.

4. Filter delete operations. For example, filter out all the delete operations in the user
↪→ .log_{north|south|east} table of three upstream instances.

5. Filter delete operations. For example, filter out all the delete operations in the user
↪→ .information table of three upstream instances.

6. Filter delete operations. For example, filter out all the delete operations in the store_
↪→ {01|02}.sale_{01|02} table of three upstream instances.

7. Use wildcards to filter specific tables. For example, filter out the user.log_bak tables
of three upstream instances using wildcard user.log_*.

8. Troubleshoot primary key conflicts. Because the store_{01|02}.sale_{01|02} tables
have auto-increment primary keys of the bigint type, the conflict occurs when these
tables are merged into TiDB. The following text will show you solutions to resolve and
avoid the conflict.

4.2.3 Downstream instances

Assume that the downstream schema after migration is as follows:

Schema Tables
user information, log_north, log_east, log_south
store sale

4.2.4 Migration solution

• To satisfy the migration Requirements #1 and #2, configure the table routing rule as
follows:
routes:
...
user-route-rule:
schema-pattern: "user"
target-schema: "user"

• To satisfy the migration Requirement #3, configure the table routing rule as follows:
routes:
...
store-route-rule:
schema-pattern: "store_*"
target-schema: "store"

sale-route-rule:
schema-pattern: "store_*"
table-pattern: "sale_*"

78

target-schema: "store"
target-table: "sale"

• To satisfy the migration Requirements #4 and #5, configure the binlog event filtering
rule as follows:
filters:
...
user-filter-rule:
schema-pattern: "user"
events: ["truncate table", "drop table", "delete", "drop database"]
action: Ignore

Note:
The migration Requirements #4 and #5 indicate that all the deletion
operations in the user schema are filtered out, so a schema level filtering
rule is configured here. And the deletion operations of tables in the user
schema participating in the future migration will also be filtered out.

• To satisfy the migration Requirement #6, configure the binlog event filter rule as
follows:
filters:
...
sale-filter-rule:
schema-pattern: "store_*"
table-pattern: "sale_*"
events: ["truncate table", "drop table", "delete"]
action: Ignore

store-filter-rule:
schema-pattern: "store_*"
events: ["drop database"]
action: Ignore

• To satisfy the migration Requirement #7, configure the block and allow table lists as
follows:
block-allow-list: # Use black-white-list if the DM's version <= v1.0.6.
log-bak-ignored:
ignore-tales:
- db-name: "user"
tbl-name: "log_bak"

79

• To satisfy the migration Requirement #8, first refer to handling conflicts of auto-
increment primary key to solve conflicts. This guarantees that data is successfully
migrated to the downstream when the primary key value of one sharded table is dupli-
cate with that of another sharded table. Then, configure ignore-checking-items to
skip checking the conflict of auto-increment primary key:
ignore-checking-items: ["auto_increment_ID"]

4.2.5 Migration task configuration

The complete configuration of the migration task is shown as below. For more details,
see Data Migration Task Configuration File.
name: "shard_merge"
task-mode: all
meta-schema: "dm_meta"
remove-meta: false
ignore-checking-items: ["auto_increment_ID"]

target-database:
host: "192.168.0.1"
port: 4000
user: "root"
password: ""

mysql-instances:
-
source-id: "instance-1"
route-rules: ["user-route-rule", "store-route-rule", "sale-route-rule"]
filter-rules: ["user-filter-rule", "store-filter-rule" , "sale-filter-

↪→ rule"]
block-allow-list: "log-bak-ignored" # Use black-white-list if the DM's

↪→ version <= v1.0.6.
mydumper-config-name: "global"
loader-config-name: "global"
syncer-config-name: "global"

-
source-id: "instance-2"
route-rules: ["user-route-rule", "store-route-rule", "sale-route-rule"]
filter-rules: ["user-filter-rule", "store-filter-rule" , "sale-filter-

↪→ rule"]
block-allow-list: "log-bak-ignored" # Use black-white-list if the DM's

↪→ version <= v1.0.6.
mydumper-config-name: "global"

80

loader-config-name: "global"
syncer-config-name: "global"

-
source-id: "instance-3"
route-rules: ["user-route-rule", "store-route-rule", "sale-route-rule"]
filter-rules: ["user-filter-rule", "store-filter-rule" , "sale-filter-

↪→ rule"]
block-allow-list: "log-bak-ignored" # Use black-white-list if the DM's

↪→ version <= v1.0.6.
mydumper-config-name: "global"
loader-config-name: "global"
syncer-config-name: "global"

Other common configs shared by all instances.

routes:
user-route-rule:
schema-pattern: "user"
target-schema: "user"

store-route-rule:
schema-pattern: "store_*"
target-schema: "store"

sale-route-rule:
schema-pattern: "store_*"
table-pattern: "sale_*"
target-schema: "store"
target-table: "sale"

filters:
user-filter-rule:
schema-pattern: "user"
events: ["truncate table", "drop table", "delete", "drop database"]
action: Ignore

sale-filter-rule:
schema-pattern: "store_*"
table-pattern: "sale_*"
events: ["truncate table", "drop table", "delete"]
action: Ignore

store-filter-rule:
schema-pattern: "store_*"
events: ["drop database"]
action: Ignore

block-allow-list: # Use black-white-list if the DM's version <= v1.0.6.
log-bak-ignored:

81

ignore-tales:
- db-name: "user"
tbl-name: "log_bak"

mydumpers:
global:
threads: 4
chunk-filesize: 64
skip-tz-utc: true

loaders:
global:
pool-size: 16
dir: "./dumped_data"

syncers:
global:
worker-count: 16
batch: 100
max-retry: 100

4.3 Best Practices of Data Migration in the Shard Merge Scenario

This document describes the features and limitations of TiDB Data Migration (DM)
in the shard merge scenario and provides a data migration best practice guide for your
application.

4.3.1 Use a separate data migration task

In the Merge and migrate Data from Sharded Tables document, the definition of “shard-
ing group” is given: A sharding group consists of all upstream tables that need to be merged
and migrated into the same downstream table.

The current sharding DDL mechanism has some usage restrictions to coordinate the
schema changes brought by DDL operations in different sharded tables. If these restrictions
are violated due to unexpected reasons, you need to handle sharding DDL locks manually
in DM, or even redo the entire data migration task.

To mitigate the impact on data migration when an exception occurs, it is recommended
to merge and migrate each sharding group as a separate data migration task. This might
enable that only a small number of data migration tasks need to be handled
manually while others remain unaffected.

82

https://github.com/pingcap/dm

4.3.2 Handle sharding DDL locks manually

You can easily conclude from Merge and migrate Data from Sharded Tables that DM’s
sharding DDL lock is a mechanism for coordinating the execution of DDL operations to the
downstream from multiple upstream sharded tables.

Therefore, when you find any sharding DDL lock on DM-master through show-ddl-locks
↪→ command, or any unresolvedGroups or blockingDDLs on some DM-workers through
query-status command, do not rush to manually release the sharding DDL lock through
unlock-ddl-lock or break-ddl-lock commands.

Instead, you can:

• Follow the corresponding manual solution to handle the scenario if the failure of auto-
matically releasing the sharding DDL lock is one of the listed abnormal scenarios.

• Redo the entire data migration task if it is an unsupported scenario: First, empty the
data in the downstream database and the dm_meta information associated with the
migration task; then, re-execute the full and incremental data migration.

4.3.3 Handle conflicts of auto-increment primary key

DM offers the column mapping feature to handle conflicts that might occur in merging
the bigint type of auto-increment primary key. However, it is strongly discouraged to
choose this approach. If it is acceptable in the production environment, the following two
alternatives are recommended.

4.3.3.1 Remove the PRIMARY KEY attribute from the column
Assume that the upstream schemas are as follows:

CREATE TABLE `tbl_no_pk` (
`auto_pk_c1` bigint(20) NOT NULL,
`uk_c2` bigint(20) NOT NULL,
`content_c3` text,
PRIMARY KEY (`auto_pk_c1`),
UNIQUE KEY `uk_c2` (`uk_c2`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

If the following requirements are satisfied:

• The auto_pk_c1 column has no impact on the application and does not depend on the
column’s PRIMARY KEY attribute.

• The uk_c2 column has the UNIQUE KEY attribute, and it is globally unique in all
upstream sharded tables.

83

Then you can perform the following steps to fix the ERROR 1062 (23000): Duplicate
↪→ entry '***' for key 'PRIMARY' error that is possibly caused by the auto_pk_c1
column when you merge sharded tables.

1. Before the full data migration, create a table in the downstream database for merging
and migrating data, and modify the PRIMARY KEY attribute of the auto_pk_c1 column
to normal index.
CREATE TABLE `tbl_no_pk_2` (
`auto_pk_c1` bigint(20) NOT NULL,
`uk_c2` bigint(20) NOT NULL,
`content_c3` text,
INDEX (`auto_pk_c1`),
UNIQUE KEY `uk_c2` (`uk_c2`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

2. Add the following configuration in task.yaml to skip the check of auto-increment
primary key conflict:
ignore-checking-items: ["auto_increment_ID"]

3. Start the full and incremental data migration task.

4. Run query-status to verify whether the data migration task is successfully processed
and whether the data from the upstream has already been merged and migrated to the
downstream database.

4.3.3.2 Use a composite primary key
Assume that the upstream schemas are as follows:

CREATE TABLE `tbl_multi_pk` (
`auto_pk_c1` bigint(20) NOT NULL,
`uuid_c2` bigint(20) NOT NULL,
`content_c3` text,
PRIMARY KEY (`auto_pk_c1`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

If the following requirements are satisfied:

• The application does not depend on the PRIMARY KEY attribute of the auto_pk_c1
column.

• The composite primary key that consists of the auto_pk_c1 and uuid_c2 columns is
globally unique.

• It is acceptable to use a composite primary key in the application.

84

Then you can perform the following steps to fix the ERROR 1062 (23000): Duplicate
↪→ entry '***' for key 'PRIMARY' error that is possibly caused by the auto_pk_c1
column when you merge sharded tables.

1. Before the full data migration, create a table in the downstream database for merging
and migrating data. Do not specify the PRIMARY KEY attribute for the auto_pk_c1
↪→ column, but use the auto_pk_c1 and uuid_c2 columns to make up a composite
primary key.
CREATE TABLE `tbl_multi_pk_c2` (
`auto_pk_c1` bigint(20) NOT NULL,
`uuid_c2` bigint(20) NOT NULL,
`content_c3` text,
PRIMARY KEY (`auto_pk_c1`,`uuid_c2`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

2. Start the full and incremental data migration task.

3. Run query-status to verify whether the data migration task is successfully processed
and whether the data from upstream has already been merged and migrated to the
downstream database.

4.3.4 Create/drop tables in the upstream

In Merge and migrate Data from Sharded Tables, it is clear that the coordination of shard-
ing DDL lock depends on whether the downstream database receives the DDL statements
of all upstream sharded tables. In addition, DM currently does not support dynamically
creating or dropping sharded tables in the upstream. Therefore, to create or drop sharded
tables in the upstream, it is recommended to perform the following steps.

4.3.4.1 Create sharded tables in the upstream
If you need to create a new sharded table in the upstream, perform the following steps:

1. Wait for the coordination of all executed sharding DDL in the upstream sharded tables
to finish.

2. Run stop-task to stop the data migration task.

3. Create a new sharded table in the upstream.

4. Make sure that the configuration in the task.yaml file allows the newly added sharded
table to be merged in one downstream table with other existing sharded tables.

5. Run start-task to start the task.

6. Run query-status to verify whether the data migration task is successfully processed
and whether the data from upstream has already been merged and migrated to the
downstream database.

85

4.3.4.2 Drop sharded tables in the upstream
If you need to drop a sharded table in the upstream, perform the following steps:

1. Drop the sharded table, run SHOW BINLOG EVENTS to fetch the End_log_pos corre-
sponding to the DROP TABLE statement in the binlog events, and mark it as Pos-M.

2. Run query-status to fetch the position (syncerBinlog) corresponding to the binlog
event that has been processed by DM, and mark it as Pos-S.

3. When Pos-S is greater than Pos-M, it means that DM has processed all of the DROP
↪→ TABLE statements, and the data of the table before dropping has been migrated to
the downstream, so the subsequent operation can be performed. Otherwise, wait for
DM to finish migrating the data.

4. Run stop-task to stop the task.

5. Make sure that the configuration in the task.yaml file ignores the dropped sharded
table in the upstream.

6. Run start-task to start the task.

7. Run query-status to verify whether the data migration task is successfully processed.

4.3.5 Speed limits and traffic flow control

When data from multiple upstream MySQL or MariaDB instances is merged and mi-
grated to the same TiDB cluster in the downstream, every DM-worker corresponding to each
upstream instance executes full and incremental data migration concurrently. This means
that the default degree of concurrency (pool-size in full data migration and worker-count
in incremental data replication) accumulates as the number of DM-workers increases, which
might overload the downstream database. In this case, you need to conduct a preliminary
performance analysis based on TiDB and DM monitoring metrics and adjust the value of
each concurrency parameter. In the future, DM is expected to support partially automated
traffic flow control.

4.4 Switch DM-worker Connection between UpstreamMySQL In-
stances

When the upstream MySQL instance that DM-worker connects to needs downtime main-
tenance or when the instance crashes unexpectedly, you need to switch the DM-worker
connection to another MySQL instance within the same migration group.

Note:

86

https://dev.mysql.com/doc/refman/5.7/en/show-binlog-events.html

• You can switch the DM-worker connection to only an instance within
the same primary-secondary migration cluster.

• The MySQL instance to be newly connected to must have the binlog
required by DM-worker.

• DM-worker must operate in the GTID sets mode, which means you must
specify enable_gtid=true when you deploy DM using DM-Ansible.

• The connection switch only supports the following two scenarios. Strictly
follow the procedures for each scenario. Otherwise, you might have
to re-deploy the DM cluster according to the newly connected MySQL
instance and perform the data migration task all over again.

For more details on GTID set, refer to MySQL documentation.

4.4.1 Switch DM-worker connection via virtual IP

When DM-worker connects the upstream MySQL instance via a virtual IP (VIP), switch-
ing the VIP connection to another MySQL instance means switching the MySQL instance
connected to DM-worker, without the upstream connection address changed.

Note:
Make necessary changes to DM in this scenario. Otherwise, when you switch
the VIP connection to another MySQL instance, DM might connect to the
new and old MySQL instances at the same time in different connections.
In this situation, the binlog replicated to DM is not consistent with other
upstream status that DM receives, causing unpredictable anomalies and even
data damage.

To switch one upstream MySQL instance (when DM-worker connects to it via a VIP)
to another, perform the following steps:

1. Use the query-status command to get the GTID sets (relayBinlogGtid) correspond-
ing to the binlog that relay log has replicated from the old MySQL instance. Mark the
sets as gtid-W.

2. Use the SELECT @@GLOBAL.gtid_purged; command on the new MySQL instance to
get the GTID sets corresponding to the purged binlogs. Mark the sets as gtid-P.

3. Use the SELECT @@GLOBAL.gtid_executed; command on the new MySQL instance to
get the GTID sets corresponding to all successfully executed transactions. Mark the
sets as gtid-E.

87

https://dev.mysql.com/doc/refman/5.7/en/replication-gtids-concepts.html#replication-gtids-concepts-gtid-sets

4. Make sure that the following conditions are met. Otherwise, you cannot switch the
DM-work connection to the new MySQL instance:

• gtid-W contains gtid-P. gtid-P can be empty.
• gtid-E contains gtid-W.

5. Use pause-relay to pause relay.
6. Use pause-task to pause all running tasks of data migration.
7. Change the VIP for it to direct at the new MySQL instance.
8. Use switch-relay-master to tell relay to execute the primary-secondary switch.
9. Use resume-relay to make relay resume to read binlog from the new MySQL instance.

10. Use resume-task to resume the previous migration task.

4.4.2 Change the address of the upstream MySQL instance that DM-worker
connects to

To make DM-worker connect to a new MySQL instance in the upstream by modifying
the DM-worker configuration, perform the following steps:

1. Use the query-status command to get the GTID sets (relayBinlogGtid) correspond-
ing to the binlog that relay log has replicated from the old MySQL instance. Mark
this sets as gtid-W.

2. Use the SELECT @@GLOBAL.gtid_purged; command on the new MySQL instance to
get the GTID sets corresponding to the purged binlogs. Mark this sets as gtid-P.

3. Use the SELECT @@GLOBAL.gtid_executed; command on the new MySQL instance to
get the GTID sets corresponding to all successfully executed transactions. Mark this
sets as gtid-E.

4. Make sure that the following conditions are met. Otherwise, you cannot switch the
DM-work connection to the new MySQL instance:

• gtid-W contains gtid-P. gtid-P can be empty.
• gtid-E contains gtid-W.

5. Use stop-task to stop all running tasks of data migration.
6. Update the DM-worker configuration in the inventory.ini file and use DM-Ansible

to perform a rolling upgrade on DM-worker.
7. Use start-task to restart the migration task.

5 TiDB DM (Data Migration) Tutorial

TiDB DM (Data Migration) is a platform that supports migrating large, complex, pro-
duction data sets from MySQL or MariaDB to TiDB.

DM supports creating and importing an initial dump of data, as well as keeping data
migrated during migration by reading and applying binary logs from the source data store.
DM can migrate sharded topologies from in-production databases by merging tables from

88

multiple separate upstream MySQL/MariaDB instances/clusters. In addition to its use for
migrations, DM is often used on an ongoing basis by existing MySQL or MariaDB users
who deploy a TiDB cluster as a secondary library, to either provide improved horizontal
scalability or run real-time analytical workloads on TiDB without needing to manage an
ETL pipeline.

In this tutorial, we’ll see how to migrate a sharded table from multiple upstream MySQL
instances. We’ll do this a couple of different ways. First, we’ll merge several tables/shards
that do not conflict; that is, they’re partitioned using a scheme that does not result in
conflicting unique key values. Then, we’ll merge several tables that do have conflicting
unique key values.

This tutorial assumes you’re using a new, clean CentOS 7 instance. You can virtualize
locally (using VMware, VirtualBox, etc.), or deploy a small cloud VM on your favorite
provider. You’ll have the best luck if you have at least 1GB of memory, since we’re going to
run quite a few services.

Warning:
The methodology used to deploy TiDB in this tutorial should not be used to
deploy TiDB in a production or development setting.

89

5.1 Architecture

Figure 6: TiDB DM architecture

The TiDB DM (Data Migration) platform consists of 3 components: DM-master, DM-
worker, and dmctl.

• DM-master manages and schedules the operation of data migration tasks.
• DM-worker executes specific data migration tasks.
• dmctl is the command line tool used to control the DM cluster.

Individual tasks are defined in .yaml files that are read by dmctl and submitted to DM-
master. DM-master then informs each instance of DM-worker of its responsibilities for a
given task.

For additional information about DM, please consult Data Migration Overview in the
TiDB documentation.

5.2 Setup

We’re going to deploy 3 instances of MySQL Server, and 1 instance each of pd-server,
tikv-server, and tidb-server. Then we’ll start a single DM-master and 3 instances of DM-
worker.

1. Install MySQL 5.7, download and extract the TiDB v3.0 and DM v1.0.2 packages we’ll
use:

90

sudo yum install -y http://repo.mysql.com/yum/mysql-5.7-community/el/7/
↪→ x86_64/mysql57-community-release-el7-10.noarch.rpm

sudo yum install -y mysql-community-server
curl https://download.pingcap.org/tidb-v3.0-linux-amd64.tar.gz | tar

↪→ xzf -
curl https://download.pingcap.org/dm-v1.0.2-linux-amd64.tar.gz | tar

↪→ xzf -
curl -L https://github.com/pingcap/docs/raw/

↪→ a164f19957e4cd2126961fad2fc8d96965b1651c/dev/how-to/get-started/
↪→ dm-cnf/dm-cnf.tgz | tar xvzf -

2. Create some directories and symlinks:
mkdir -p bin data logs
ln -sf -t bin/ "$HOME"/*/bin/*
[[:$PATH: = *:$HOME/bin:*]] || echo 'export PATH=$PATH:$HOME/bin' >>

↪→ ~/.bash_profile && . ~/.bash_profile

3. Set up configuration for the 3 instances of MySQL Server we’ll start:
tee -a "$HOME/.my.cnf" <<EoCNF
[server]
socket=mysql.sock
pid-file=mysql.pid
log-error=mysql.err
log-bin
auto-increment-increment=5
[server1]
datadir=$HOME/data/mysql1
server-id=1
port=3307
auto-increment-offset=1
[server2]
datadir=$HOME/data/mysql2
server-id=2
port=3308
auto-increment-offset=2
[server3]
datadir=$HOME/data/mysql3
server-id=3
port=3309
auto-increment-offset=3
EoCNF

91

4. Initialize and start our MySQL instances:
for i in 1 2 3
do

echo "mysql$i"
mysqld --defaults-group-suffix="$i" --initialize-insecure
mysqld --defaults-group-suffix="$i" &

done

5. To make sure your MySQL server instances are all running, you can execute jobs
and/or pgrep -a mysqld:
jobs

[1] Running mysqld --defaults-group-suffix="$i" &
[2]- Running mysqld --defaults-group-suffix="$i" &
[3]+ Running mysqld --defaults-group-suffix="$i" &

pgrep -a mysqld

17672 mysqld --defaults-group-suffix=1
17727 mysqld --defaults-group-suffix=2
17782 mysqld --defaults-group-suffix=3

5.3 Migrating shards

Our first scenario consists of 3 “shards” with the same schema, but non-overlapping
auto-increment primary keys.

We achieve that by having set auto-increment-increment=5 and auto-increment-
↪→ offset in our .my.cnf file. auto-increment-increment tells each instance to increment
by 5 for each new auto-increment ID it generates, and auto-increment-offset, set differ-
ently for each instance, tells that instance the offset from 0 to start counting. For example, an
instance with auto-increment-increment=5 and auto-increment-offset=2 will generate
the auto-increment ID sequence {2,7,12,17,22,…}.

1. Create our MySQL database and table in each of the 3 MySQL Server instances:
for i in 1 2 3
do

mysql -h 127.0.0.1 -P "$((3306+i))" -u root <<EoSQL
create database dmtest1;
create table dmtest1.t1 (id bigint unsigned not null

↪→ AUTO_INCREMENT primary key, c char(32), port int);
EoSQL
done

92

2. Insert a few hundred rows into each of the MySQL instances:
for i in 1 2 3; do

mysql -h 127.0.0.1 -P "$((3306+i))" -u root dmtest1 <<EoSQL
insert into t1 values (),(),(),(),(),(),(),();
insert into t1 (id) select null from t1;
insert into t1 (id) select null from t1;
insert into t1 (id) select null from t1;
insert into t1 (id) select null from t1;
insert into t1 (id) select null from t1;
update t1 set c=md5(id), port=@@port;

EoSQL
done

3. Select the rows back from the MySQL instances to make sure things look right:
for i in 1 2 3; do

mysql -N -h 127.0.0.1 -P "$((3306+i))" -u root -e 'select * from
↪→ dmtest1.t1'

done | sort -n

Note that we have incrementing, non-overlapping IDs in the left-hand column. The port
number in the right-hand column shows which instance the rows were inserted into and are
being selected from:
...
1841 e8dfff4676a47048d6f0c4ef899593dd 3307
1842 57c0531e13f40b91b3b0f1a30b529a1d 3308
1843 4888241374e8c62ddd9b4c3cfd091f96 3309
1846 f45a1078feb35de77d26b3f7a52ef502 3307
1847 82cadb0649a3af4968404c9f6031b233 3308
1848 7385db9a3f11415bc0e9e2625fae3734 3309
1851 ff1418e8cc993fe8abcfe3ce2003e5c5 3307
1852 eb1e78328c46506b46a4ac4a1e378b91 3308
1853 7503cfacd12053d309b6bed5c89de212 3309
1856 3c947bc2f7ff007b86a9428b74654de5 3307
1857 a3545bd79d31f9a72d3a78690adf73fc 3308
1858 d7fd118e6f226a71b5f1ffe10efd0a78 3309

5.4 Starting DM master and workers

Our goal in this exercise is to use DM to combine the data from these distinct MySQL
instances into a single table in TiDB.

93

The package of configuration files we unpacked earlier (dm-cnf.tgz) contains the configu-
ration for the components of the TiDB cluster, the DM components, and for the 2 DM tasks
we’ll explore in this tutorial.

We’ll start a single tidb-server instance, one DM-worker process for each of the MySQL
server instances (3 total), and a single DM-master process:
tidb-server --log-file=logs/tidb-server.log &
for i in 1 2 3; do dm-worker --config=dm-cnf/dm-worker$i.toml & done
dm-master --config=dm-cnf/dm-master.toml &

You can execute jobs and/or ps -a to make sure these processes are all running:
jobs

[1] Running mysqld --defaults-group-suffix="$i" &
[2] Running mysqld --defaults-group-suffix="$i" &
[3] Running mysqld --defaults-group-suffix="$i" &
[4] Running tidb-server --log-file=logs/tidb-server.log &
[5] Running dm-worker --config=dm-cnf/dm-worker$i.toml &
[6] Running dm-worker --config=dm-cnf/dm-worker$i.toml &
[7]- Running dm-worker --config=dm-cnf/dm-worker$i.toml &
[8]+ Running dm-master --config=dm-cnf/dm-master.toml &

ps -a

PID TTY TIME CMD
17317 pts/0 00:00:00 screen
17672 pts/1 00:00:04 mysqld
17727 pts/1 00:00:04 mysqld
17782 pts/1 00:00:04 mysqld
18586 pts/1 00:00:02 tidb-server
18587 pts/1 00:00:00 dm-worker
18588 pts/1 00:00:00 dm-worker
18589 pts/1 00:00:00 dm-worker
18590 pts/1 00:00:00 dm-master
18892 pts/1 00:00:00 ps

Each of the upstream MySQL Server instances corresponds to a separate DM-worker
instance, each of which has its own configuration file. These files describe the details of the
connection to the upstream MySQL Server as well as where to store the relay log files (the
local copy of the upstream server’s binary log) and the output of Mydumper. Each DM-
worker should listen on a different port (defined by worker-addr). Here’s dm-worker1.toml,
for example:
Worker Configuration.

94

server-id = 1
source-id = "mysql1"
flavor = "mysql"
worker-addr = ":8262"
log-file = "logs/worker1.log"
relay-dir = "data/relay1"
meta-dir = "data/meta1"

[from]
host = "127.0.0.1"
user = "root"
password = ""
port = 3307

• If you migrate data from MySQL Server, Percona Server, Percona XtraDB Cluster,
Amazon Aurora or RDS, set the flavor option to "mysql", which is the default value.
This value is valid only when you are using a MySQL version between 5.5 (not included)
and 8.0 (not included).

• If you migrate data from MariaDB Server or MariaDB (Galera) Cluster, set flavor
↪→ = "mariadb". You can set this value only when you are using a MariaDB version
later than 10.1.2.

• Starting with DM 1.0.2, DM automatically generates the values of the flavor and
server-id options. You do not need to manually configure these options in normal
situations.

• If password in the [from] configuration is not an empty string, you need to use dmctl
to encrypt the password. Refer to Encrypt the upstream MySQL user password using
dmctl for detailed steps.

Tasks are defined in YAML files. First, let’s look at dmtask1.yaml:
name: dmtask1
task-mode: all
is-sharding: true
enable-heartbeat: true
ignore-checking-items: ["auto_increment_ID"]

target-database:
host: "127.0.0.1"
port: 4000
user: "root"
password: ""

mysql-instances:
- source-id: "mysql1"

95

server-id: 1
block-allow-list: "dmtest1" # Use black-white-list if the DM's version

↪→ <= v1.0.6.
loader-config-name: "loader1"

- source-id: "mysql2"
server-id: 2
block-allow-list: "dmtest1" # Use black-white-list if the DM's version

↪→ <= v1.0.6.
loader-config-name: "loader2"

- source-id: "mysql3"
server-id: 3
block-allow-list: "dmtest1" # Use black-white-list if the DM's version

↪→ <= v1.0.6.
loader-config-name: "loader3"

block-allow-list: # Use black-white-list if the DM's version <= v1.0.6.
dmtest1:
do-dbs: ["dmtest1"]

loaders:
loader1:
dir: "data/dump1"

loader2:
dir: "data/dump2"

loader3:
dir: "data/dump3"

There are a number of global options, and several groups of options that define various
behaviors.

• task-mode: all tells DM to both import a full backup of the upstream instances as
well as replicate incremental updates using the upstream MySQL server’s binary log.

– Alternatively, you can give task-mode the full or incremental value, respec-
tively, to get only one of those two behaviors.

• is-sharding: true tells DM that we want multiple DM-worker instances to work on
a single task to merge several upstream shards into a single downstream table.

• ignore-checking-items: ["auto_increment_ID"] disables DM’s detection of poten-
tial auto-increment conflicts among the upstream instances. DM can detect that all
3 upstream MySQL servers have an auto-increment column for a table with the same
name in the same schema, and that this situation would be expected to lead to conflicts
among the several tables. We’ve avoided that by setting auto-increment-increment
and auto-increment-offset so that each of the MySQL servers gives non-overlapping
IDs. So, we tell DM to ignore checking for overlapping auto-increment IDs in this task.

96

• The target-database section defines the information of the connected target
database. If password is not an empty string, you need to use dmctl to encrypt the
password. Refer to Encrypt the upstream MySQL user password using dmctl for
detailed steps.

• We use block-allow-list to limit the scope of this task to database dmtest.

• The loaders section defines where to find the output of each instance of Mydumper
that was executed by the respective instance of DM-worker.

The dmctl tool is an interactive client that facilitates interaction with the DM cluster.
You use it to start tasks, query task status, et cetera. Start the tool by executing dmctl -
↪→ master-addr :8261 to get the interactive prompt:
dmctl -master-addr :8261

Welcome to dmctl
Release Version: v1.0.0-alpha-69-g5134ad1
Git Commit Hash: 5134ad19fbf6c57da0c7af548f5ca2a890bddbe4
Git Branch: master
UTC Build Time: 2019-04-29 09:36:42
Go Version: go version go1.12 linux/amd64

»

To start dmtask1, execute start-task dm-cnf/dmtask1.yaml:
» start-task dm-cnf/dmtask1.yaml
{

"result": true,
"msg": "",
"workers": [

{
"result": true,
"worker": "127.0.0.1:8262",
"msg": ""

},
{

"result": true,
"worker": "127.0.0.1:8263",
"msg": ""

},
{

"result": true,
"worker": "127.0.0.1:8264",
"msg": ""

97

}
]

}

Starting the task will kick off the actions defined in the task configuration file. That
includes executing instances of Mydumper and loader, and connecting the workers to the
upstream MySQL servers as migration secondaries after the initial data dump has been
loaded.

We can see that all rows have been migrated to the TiDB server:
mysql -h 127.0.0.1 -P 4000 -u root -e 'select * from t1' dmtest1 | tail

Expect this output:
...
1843 4888241374e8c62ddd9b4c3cfd091f96 3309
1846 f45a1078feb35de77d26b3f7a52ef502 3307
1847 82cadb0649a3af4968404c9f6031b233 3308
1848 7385db9a3f11415bc0e9e2625fae3734 3309
1851 ff1418e8cc993fe8abcfe3ce2003e5c5 3307
1852 eb1e78328c46506b46a4ac4a1e378b91 3308
1853 7503cfacd12053d309b6bed5c89de212 3309
1856 3c947bc2f7ff007b86a9428b74654de5 3307
1857 a3545bd79d31f9a72d3a78690adf73fc 3308
1858 d7fd118e6f226a71b5f1ffe10efd0a78 3309

DM is now acting as a secondary library to each of the MySQL servers, reading their
binary logs to apply updates in realtime to the downstream TiDB server:
for i in 1 2 3
do

mysql -h 127.0.0.1 -P "$((3306+i))" -u root -e 'select host, command,
↪→ state from information_schema.processlist where command="Binlog
↪→ Dump"'

done

Expect this output:
+-----------------+-------------+---+

↪→
| host | command | state

↪→ |
+-----------------+-------------+---+

↪→
| localhost:42168 | Binlog Dump | Master has sent all binlog to slave;

↪→ waiting for more updates |

98

+-----------------+-------------+---+
↪→

+-----------------+-------------+---+
↪→

| host | command | state
↪→ |

+-----------------+-------------+---+
↪→

| localhost:42922 | Binlog Dump | Master has sent all binlog to slave;
↪→ waiting for more updates |

+-----------------+-------------+---+
↪→

+-----------------+-------------+---+
↪→

| host | command | state
↪→ |

+-----------------+-------------+---+
↪→

| localhost:56798 | Binlog Dump | Master has sent all binlog to slave;
↪→ waiting for more updates |

+-----------------+-------------+---+
↪→

We can see that this is the case by inserting some rows into the upstream MySQL servers,
selecting those rows from TiDB, updating those same rows in MySQL, and selecting them
again:
for i in 1 2 3; do

mysql -N -h 127.0.0.1 -P "$((3306+i))" -u root -e 'insert into t1 (id)
↪→ select null from t1' dmtest1

done
mysql -h 127.0.0.1 -P 4000 -u root -e 'select * from t1' dmtest1 | tail

Expect this output:
6313 NULL NULL
6316 NULL NULL
6317 NULL NULL
6318 NULL NULL
6321 NULL NULL
6322 NULL NULL
6323 NULL NULL
6326 NULL NULL
6327 NULL NULL
6328 NULL NULL

99

Now update those rows, so we can see that changes to data are correctly propagated to
TiDB:
for i in 1 2 3; do

mysql -N -h 127.0.0.1 -P "$((3306+i))" -u root -e 'update t1 set c=md5(
↪→ id), port=@@port' dmtest1

done | sort -n
mysql -h 127.0.0.1 -P 4000 -u root -e 'select * from t1' dmtest1 | tail

Expect this output:
6313 2118d8a1b7004ed5baf5347a4f99f502 3309
6316 6107d91fc9a0b04bc044aa7d8c1443bd 3307
6317 0e9b734aa25ca8096cb7b56dc0dd8929 3308
6318 b0eb9a95e8b085e4025eae2f0d76a6a6 3309
6321 7cb36e23529e4de4c41460940cc85e6e 3307
6322 fe1f9c70bdf347497e1a01b6c486bdb9 3308
6323 14eac0d254a6ccaf9b67584c7830a5c0 3309
6326 17b65afe58c49edc1bdd812c554ee3bb 3307
6327 c54bc2ded4480856dc9f39bdcf35a3e7 3308
6328 b294504229c668e750dfcc4ea9617f0a 3309

As long as the DM master and workers are running the “dmtest1” task, they’ll continue
to keep the downstream TiDB server migrated with the upstream MySQL server instances.

5.5 Conclusion

In this tutorial, a shard migration has been performed from three upstream MySQL
server instances. You can see how DM imports an initial dump of data in the cluster, reads
binlogs from MySQL to replicate incremental data, and keeps the downstream TiDB cluster
in sync with the upstream instances.

For additional information about DM, consult Data Migration Overview in the TiDB
documentation or join the TiDB Community Slack channel!

6 Deploy

6.1 Deploy a DM Cluster

6.1.1 Deploy Data Migration Using DM-Ansible

DM-Ansible is a cluster deployment tool developed by PingCAP based on the Playbooks
feature of Ansible (an IT automation tool). This guide shows how to quickly deploy a Data
Migration (DM) cluster using DM-Ansible.

100

https://pingcap.com/tidbslack/
https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html#about-playbooks
https://docs.ansible.com/ansible/latest/index.html

6.1.1.1 Prepare
Before you start, make sure you have the following machines as required.

1. Several target machines that meet the following requirements:

• CentOS 7.3 (64-bit) or later, x86_64 architecture (AMD64)
• Network between machines
• Closing the firewall, or opening the service port

2. A Control Machine that meets the following requirements:

Note:
The Control Machine can be one of the target machines.

• CentOS 7.3 (64-bit) or later, with Python 2.7 installed
• Ansible 2.5 or later installed
• Access to the Internet

6.1.1.2 Step 1: Install system dependencies on the Control Machine
Log in to the Control Machine using the root user account, and run the corresponding

command according to your operating system.

• If you use a Control Machine installed with CentOS 7, run the following command:
yum -y install epel-release git curl sshpass &&
um -y install python-pip

• If you use a Control Machine installed with Ubuntu, run the following command:
apt-get -y install git curl sshpass python-pip

6.1.1.3 Step 2: Create the tidb user on the Control Machine and generate the
SSH key

Make sure you have logged in to the Control Machine using the root user account, and
then perform the following steps.

1. Create the tidb user.
useradd -m -d /home/tidb tidb

2. Set a password for the tidb user account.

101

passwd tidb

3. Configure sudo without password for the tidb user account by adding tidb ALL=(ALL
↪→)NOPASSWD: ALL to the end of the sudo file:
visudo

tidb ALL=(ALL) NOPASSWD: ALL

4. Generate the SSH key.
Execute the su command to switch the user from root to tidb.
su - tidb

Create the SSH key for the tidb user account and hit the Enter key when Enter
↪→ passphrase is prompted. After successful execution, the SSH private key file is
/home/tidb/.ssh/id_rsa, and the SSH public key file is /home/tidb/.ssh/id_rsa.
↪→ pub.
ssh-keygen -t rsa

Generating public/private rsa key pair.
Enter file in which to save the key (/home/tidb/.ssh/id_rsa):
Created directory '/home/tidb/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/tidb/.ssh/id_rsa.
Your public key has been saved in /home/tidb/.ssh/id_rsa.pub.
The key fingerprint is:
SHA256:eIBykszR1KyECA/h0d7PRKz4fhAeli7IrVphhte7/So tidb@172.16.10.49
The key's randomart image is:
+---[RSA 2048]----+
|=+o+.o. |
|o=o+o.oo |
| .O.=.= |
| . B.B + |
|o B * B S |
| * + * + |
| o + . |
| o E+ . |
|o ..+o. |
+----[SHA256]-----+

102

6.1.1.4 Step 3: Download DM-Ansible to the Control Machine
Make sure you have logged in to the Control Machine using the tidb user account.

1. Go to the /home/tidb directory.

2. Run the following command to download DM-Ansible.
wget http://download.pingcap.org/dm-ansible-{version}.tar.gz

{version} is the DM version that you expect to download, like v1.0.1 and v1.0.2.
You can check out DM’s published versions on DM Release page. You can also replace
{version} with latest to download the latest development version that has not been
published.

6.1.1.5 Step 4: Install DM-Ansible and its dependencies on the Control Ma-
chine

Make sure you have logged in to the Control Machine using the tidb user account.
It is required to use pip to install DM-Ansible and its dependencies, otherwise a com-

patibility issue occurs. Currently, DM-Ansible is compatible with Ansible 2.5 or later.

1. Install DM-Ansible and the dependencies on the Control Machine:
tar -xzvf dm-ansible-{version}.tar.gz &&
mv dm-ansible-{version} dm-ansible &&
cd /home/tidb/dm-ansible &&
sudo pip install -r ./requirements.txt

DM-Ansible and the related dependencies are in the dm-ansible/requirements.txt
file.

2. View the version of Ansible:
ansible --version

ansible 2.5.0

6.1.1.6 Step 5: Configure the SSH mutual trust and sudo rules on the Control
Machine

Make sure you have logged in to the Control Machine using the tidb user account.

1. Add the IPs of your deployment target machines to the [servers] section of the
hosts.ini file.

103

https://github.com/pingcap/dm/releases

cd /home/tidb/dm-ansible &&
vi hosts.ini

[servers]
172.16.10.71
172.16.10.72
172.16.10.73

[all:vars]
username = tidb

2. Run the following command and input the password of the root user account of your
deployment target machines.
ansible-playbook -i hosts.ini create_users.yml -u root -k

This step creates the tidb user account on the deployment target machines, config-
ures the sudo rules and the SSH mutual trust between the Control Machine and the
deployment target machines.

6.1.1.7 Step 6: Download DM and the monitoring component installation pack-
age to the Control Machine

Make sure the Control Machine is connected to the Internet and run the following com-
mand:
ansible-playbook local_prepare.yml

6.1.1.8 Step 7: Edit the inventory.ini file to orchestrate the DM cluster
Log in to the Control Machine using the tidb user account, and edit the /home/tidb/

↪→ dm-ansible/inventory.ini file to orchestrate the DM cluster.

Note:
It is required to use the internal IP address to deploy. If the SSH port of the
target machines is not the default 22 port, you need to add the ansible_port
variable, as shown in the following example:

dm-worker1 ansible_host=172.16.10.72 ansible_port=5555 server_id=101
↪→ mysql_host=172.16.10.72 mysql_user=root mysql_password='VjX8cEeTX+
↪→ qcvZ3bPaO4h0C80pe/1aU=' mysql_port=3306

104

You can choose one of the following two types of cluster topology according to your
scenario:

• The cluster topology of a single DM-worker instance on each node

• The cluster topology of multiple DM-worker instances on each node
Generally, it is recommended to deploy one DM-worker instance on each node. How-
ever, if the CPU and memory of your machine are much better than the required in
Hardware and Software Requirements, and you have more than 2 disks in one node or
the capacity of one SSD is larger than 2 TB, you can deploy no more than 2 DM-worker
instances on a single node.

6.1.1.8.1 Option 1: Use the cluster topology of a single DM-worker instance
on each node

Name Host IP Services
node1 172.16.10.71 DM-master, Prometheus, Grafana, Alertmanager, DM Portal
node2 172.16.10.72 DM-worker1
node3 172.16.10.73 DM-worker2
mysql-replica-01 172.16.10.81 MySQL
mysql-replica-02 172.16.10.82 MySQL

DM modules.
[dm_master_servers]
dm_master ansible_host=172.16.10.71

[dm_worker_servers]
dm_worker1 ansible_host=172.16.10.72 server_id=101 source_id="mysql-replica

↪→ -01" mysql_host=172.16.10.81 mysql_user=root mysql_password='
↪→ VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=' mysql_port=3306

dm_worker2 ansible_host=172.16.10.73 server_id=102 source_id="mysql-replica
↪→ -02" mysql_host=172.16.10.82 mysql_user=root mysql_password='
↪→ VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=' mysql_port=3306

[dm_portal_servers]
dm_portal ansible_host=172.16.10.71

Monitoring modules.
[prometheus_servers]
prometheus ansible_host=172.16.10.71

[grafana_servers]

105

https://pingcap.com/docs/stable/how-to/deploy/hardware-recommendations/

grafana ansible_host=172.16.10.71

[alertmanager_servers]
alertmanager ansible_host=172.16.10.71

Global variables.
[all:vars]
cluster_name = test-cluster

ansible_user = tidb

dm_version = {version}

deploy_dir = /data1/dm

grafana_admin_user = "admin"
grafana_admin_password = "admin"

{version} is the version number of the DM-Ansible you use. For details about DM-
worker parameters, see DM-worker configuration parameters description.

6.1.1.8.2 Option 2: Use the cluster topology of multiple DM-worker in-
stances on each node

Name Host IP Services
node1 172.16.10.71 DM-master, Prometheus, Grafana, Alertmanager, DM Portal
node2 172.16.10.72 DM-worker1-1, DM-worker1-2
node3 172.16.10.73 DM-worker2-1, DM-worker2-2

When you edit the inventory.ini file, pay attention to distinguish between the following
variables: server_id, deploy_dir, and dm_worker_port.
DM modules.
[dm_master_servers]
dm_master ansible_host=172.16.10.71

[dm_worker_servers]
dm_worker1_1 ansible_host=172.16.10.72 server_id=101 deploy_dir=/data1/

↪→ dm_worker dm_worker_port=8262 mysql_host=172.16.10.81 mysql_user=root
↪→ mysql_password='VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=' mysql_port=3306

dm_worker1_2 ansible_host=172.16.10.72 server_id=102 deploy_dir=/data2/
↪→ dm_worker dm_worker_port=8263 mysql_host=172.16.10.82 mysql_user=root
↪→ mysql_password='VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=' mysql_port=3306

106

dm_worker2_1 ansible_host=172.16.10.73 server_id=103 deploy_dir=/data1/
↪→ dm_worker dm_worker_port=8262 mysql_host=172.16.10.83 mysql_user=root
↪→ mysql_password='VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=' mysql_port=3306

dm_worker2_2 ansible_host=172.16.10.73 server_id=104 deploy_dir=/data2/
↪→ dm_worker dm_worker_port=8263 mysql_host=172.16.10.84 mysql_user=root
↪→ mysql_password='VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=' mysql_port=3306

[dm_portal_servers]
dm_portal ansible_host=172.16.10.71

Monitoring modules.
[prometheus_servers]
prometheus ansible_host=172.16.10.71

[grafana_servers]
grafana ansible_host=172.16.10.71

[alertmanager_servers]
alertmanager ansible_host=172.16.10.71

Global variables.
[all:vars]
cluster_name = test-cluster

ansible_user = tidb

dm_version = {version}

deploy_dir = /data1/dm

grafana_admin_user = "admin"
grafana_admin_password = "admin"

{version} is the version number of the DM-Ansible you use.

6.1.1.8.3 DM-worker configuration parameters description

107

Variable name Description
source_id DM-

worker
binds to a
unique
database
instance
or a repli-
cation
group
with the
primary-
secondary
architec-
ture.
When the
primary
and
secondary
switch,
you only
need to
update
mysql_host
↪→ or
mysql_port
↪→ and
do not
need to
update
the
source_id
↪→ .

108

Variable name Description
server_id DM-

worker
connects
to
MySQL
as a
secondary
database.
This
variable is
the server
ID of the
secondary
database.
Keep it
globally
unique in
the
MySQL
cluster,
where the
value
range is 0
~
4294967295.
In v1.0.2
and later
versions,
the server
ID is
automati-
cally
generated
by DM.

mysql_host The
upstream
MySQL
host.

109

Variable name Description
mysql_user The

upstream
MySQL
username
("root"
by
default).

mysql_password The
upstream
MySQL
user
password.
You need
to
encrypt
the
upstream
MySQL
user
password
using
dmctl.

mysql_port The
upstream
MySQL
port
(3306 by
default).

110

Variable name Description
enable_gtid Whether

DM-
worker
uses
GTID to
pull the
binlog.
The pre-
requisite
is that
the
upstream
MySQL
has
enabled
the GTID
mode.

relay_binlog_nameSpecifies
the file
name
from
which
DM-
worker
starts to
pull the
binlog.
Only used
when the
local has
no valid
relay log.
In v1.0.2
and later
versions,
DM pulls
the binlog
starting
from the
latest file
by
default.

111

Variable name Description
relay_binlog_gtid Specifies

the GTID
from
which
DM-
worker
starts to
pull the
binlog.
Only used
when the
local has
no valid
relay log
and
enable_gtid
↪→ is
true. In
v1.0.2
and later
versions,
DM pulls
the binlog
from the
latest file
by
default.

112

Variable name Description
flavor Indicates

the
release
type of
MySQL
("mysql"
by
default).
For the
official
version,
Percona,
and cloud
MySQL,
fill in
"mysql";
for
MariaDB,
fill in
"mariadb
↪→ ". In
v1.0.2
and later
versions,
DM auto-
matically
detects
the
upstream
version
and fills
in the
release
type.

For details about the deploy_dir configuration, see Configure the deployment directory.

6.1.1.8.4 Encrypt the upstream MySQL user password using dmctl
Assuming that the upstream MySQL user password is 123456, configure the generated

string to the mysql_password variable of DM-worker.
cd /home/tidb/dm-ansible/resources/bin &&
./dmctl -encrypt 'abc!@#123'

113

MKxn0Qo3m3XOyjCnhEMtsUCm83EhGQDZ/T4=

Note:

• If the database has no password, you can skip this step.
• DM v1.0.6 and later versions can configure the plaintext database pass-

word.

6.1.1.9 Step 8: Edit variables in the inventory.ini file
This step shows how to make configuration changes to the inventory.ini file.

6.1.1.9.1 Configure the deployment directory
Edit the deploy_dir variable to configure the deployment directory.

• The global variable is set to /home/tidb/deploy by default, and it applies to all
services. If the data disk is mounted on the /data1 directory, you can set it to /data1
↪→ /dm. For example:
Global variables.
[all:vars]
deploy_dir = /data1/dm

• If you need to set a separate deployment directory for a service, you can configure the
host variable while configuring the service host list in the inventory.ini file. It is
required to add the first column alias, to avoid confusion in scenarios of mixed services
deployment.
dm-master ansible_host=172.16.10.71 deploy_dir=/data1/deploy

6.1.1.9.2 Configure the relay log position
When you start DM-worker for the first time, you need to configure relay_binlog_name

to specify the position where DM-worker starts to pull the corresponding upstream MySQL
or MariaDB binlog.
[dm_worker_servers]

114

dm-worker1 ansible_host=172.16.10.72 source_id="mysql-replica-01" server_id
↪→ =101 relay_binlog_name="binlog.000011" mysql_host=172.16.10.81
↪→ mysql_user=root mysql_password='VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU='
↪→ mysql_port=3306

dm-worker2 ansible_host=172.16.10.73 source_id="mysql-replica-02" server_id
↪→ =102 relay_binlog_name="binlog.000002" mysql_host=172.16.10.82
↪→ mysql_user=root mysql_password='VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU='
↪→ mysql_port=3306

Note:
If relay_binlog_name is not specified, DM-worker pulls the binlog starting
from the earliest existing binlog file of the upstream MySQL or MariaDB by
default. In this event, it may take a significant amount of time to retrieve all
of the binlog files. In v1.0.2 and later versions, DM defaults to pulling the
binlog starting from the latest file.

6.1.1.9.3 Enable the relay log GTID migration mode
In a DM cluster, the relay log processing unit of DM-worker communicates with the

upstream MySQL or MariaDB to pull its binlog to the local file system.
You can enable the relay log GTID migration mode by configuring the following items.

Currently, DM supports MySQL GTID and MariaDB GTID.

• enable_gtid: to enable the GTID mode. This helps improve the handling of migration
topology changes, such as a switch between primary and secondary

• relay_binlog_gtid: to specify the position where DM-worker starts to pull the cor-
responding upstream MySQL or MariaDB binlog

[dm_worker_servers]
dm-worker1 ansible_host=172.16.10.72 source_id="mysql-replica-01" server_id

↪→ =101 enable_gtid=true relay_binlog_gtid="aae3683d-f77b-11e7-9e3b-02
↪→ a495f8993c:1-282967971,cc97fa93-f5cf-11e7-ae19-02915c68ee2e
↪→ :1-284361339" mysql_host=172.16.10.81 mysql_user=root mysql_password
↪→ ='VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=' mysql_port=3306

dm-worker2 ansible_host=172.16.10.73 source_id="mysql-replica-02" server_id
↪→ =102 relay_binlog_name=binlog.000002 mysql_host=172.16.10.82
↪→ mysql_user=root mysql_password='VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU='
↪→ mysql_port=3306

115

6.1.1.9.4 Global variables description

Variable name Description
cluster_name The name of a cluster, adjustable.
dm_version The version of DM, configured by default.
grafana_admin_userThe username of the Grafana administrator (admin by default).
grafana_admin_passwordThe password of the Grafana administrator account, used to

import Dashboard by Ansible (admin by default). Update this
variable if you have modified it through the Grafana web.

6.1.1.10 Step 9: Deploy the DM cluster
When ansible-playbook runs Playbook, the default concurrent number is 5. If many

deployment target machines are deployed, you can add the -f parameter to specify the
concurrency, such as ansible-playbook deploy.yml -f 10.

The following example uses tidb as the user who runs the service.

1. Edit the dm-ansible/inventory.ini file to make sure ansible_user = tidb.
ansible_user = tidb

Note:
Do not configure ansible_user to root, because tidb-ansible limits
the user that runs the service to the normal user.

Run the following command and if all servers return tidb, then the SSH mutual trust
is successfully configured:
ansible -i inventory.ini all -m shell -a 'whoami'

Run the following command and if all servers return root, then sudo without password
of the tidb user is successfully configured:
ansible -i inventory.ini all -m shell -a 'whoami' -b

2. Modify kernel parameters, and deploy the DM cluster components and monitoring
components.
ansible-playbook deploy.yml

116

Note:
Currently, both DM and TiDB overwrite the original running config-
uration of the monitoring components during deployment and rolling
upgrade. Therefore, it is highly recommended to deploy independent
monitoring components for DM and TiDB.

3. Start the DM cluster.
ansible-playbook start.yml

This operation starts all the components in the entire DM cluster in order, which
include DM-master, DM-worker, and the monitoring components. You can use this
command to start a DM cluster after it is stopped.

6.1.1.11 Step 10: Stop the DM cluster
If you need to stop the DM cluster, run the following command:

ansible-playbook stop.yml

This operation stops all the components in the entire DM cluster in order, which include
DM-master, DM-worker, and the monitoring components.

6.1.1.12 Common deployment issues

6.1.1.12.1 Service default ports

Component

Port
vari-
able

Default
port Description

DM-
master

dm_master_port
↪→

8261 DM-
master
ser-
vice
com-
mu-
ni-
ca-
tion
port

117

Component

Port
vari-
able

Default
port Description

DM-
worker

dm_worker_port
↪→

8262 DM-
worker
ser-
vice
com-
mu-
ni-
ca-
tion
port

Prometheusprometheus_port
↪→

9090 Prometheus
ser-
vice
com-
mu-
ni-
ca-
tion
port

Grafanagrafana_port
↪→

3000 The
port
for
the
ex-
ter-
nal
ser-
vice
of
web
mon-
i-
tor-
ing
ser-
vice
and
client
(browser)
ac-
cess

118

Component

Port
vari-
able

Default
port Description

Alertmanageralertmanager_port
↪→

9093 Alertmanager
ser-
vice
com-
mu-
ni-
ca-
tion
port

6.1.1.12.2 Customize ports
Edit the inventory.ini file and add the related host variable of the corresponding

service port after the service IP:
dm_master ansible_host=172.16.10.71 dm_master_port=18261

6.1.1.12.3 Update DM-Ansible

1. Log in to the Control Machine using the tidb account, enter the /home/tidb directory,
and back up the dm-ansible folder.
cd /home/tidb &&
mv dm-ansible dm-ansible-bak

2. Download the specified version of DM-Ansible and extract it.
cd /home/tidb &&
wget http://download.pingcap.org/dm-ansible-{version}.tar.gz &&
tar -xzvf dm-ansible-{version}.tar.gz &&
mv dm-ansible-{version} dm-ansible

3. Migrate the inventory.ini configuration file.
cd /home/tidb &&
cp dm-ansible-bak/inventory.ini dm-ansible/inventory.ini

4. Migrate the dmctl configuration.
cd /home/tidb/dm-ansible-bak/dmctl &&
cp * /home/tidb/dm-ansible/dmctl/

119

5. Use Playbook to download the latest DM binary file, which substitutes for the binary
file in the /home/tidb/dm-ansible/resource/bin/ directory automatically.
ansible-playbook local_prepare.yml

6.1.2 Deploy Data Migration Cluster Using DM Binary

This document introduces how to quickly deploy the Data Migration (DM) cluster using
DM binary.

6.1.2.1 Preparations
Download the official binary using the download link in the following table:

Package
name OS Architecture

SHA256
check-
sum

https
↪→ ://
↪→ download
↪→ .
↪→ pingcap
↪→ .
↪→ org
↪→ /
↪→ dm
↪→ -{
↪→ version
↪→ }-
↪→ linux
↪→ -
↪→ amd64
↪→ .
↪→ tar
↪→ .
↪→ gz
↪→

Linux amd64 https
↪→ ://
↪→ download
↪→ .
↪→ pingcap
↪→ .
↪→ org
↪→ /
↪→ dm
↪→ -{
↪→ version
↪→ }-
↪→ linux
↪→ -
↪→ amd64
↪→ .
↪→ sha256
↪→

Note:
{version} in the above download link indicates the version number of TiDB.
For example, the download link for v1.0.1 is https://download.pingcap.

120

↪→ org/dm-v1.0.1-linux-amd64.tar.gz. You can check the published DM
versions in the DM Release page.

The downloaded files have two subdirectories, bin and conf. The bin directory contains
the binary files of DM-master, DM-worker, dmctl and Mydumper. The conf directory
contains the sample configuration files.

6.1.2.2 Sample scenario
Suppose that you are going to deploy a DM cluster based on this sample scenario:

• Two MySQL instances are deployed on two servers.
• One TiDB instance is deployed on one server (in the mocktikv mode).
• Two DM-worker nodes and one DM-master node are deployed on three servers.

Here is the address of each node:

Instance or node Server address
MySQL1 192.168.0.1
MySQL2 192.168.0.2
TiDB 192.168.0.3
DM-master 192.168.0.4
DM-worker1 192.168.0.5
DM-worker2 192.168.0.6

Enable the binlog on MySQL1 and on MySQL2. DM-worker1 migrates the data from
MySQL1 and DM-worker2 migrates the data from MySQL2.

Based on this scenario, the following sections describe how to deploy the DM cluster.

6.1.2.2.1 Deploy DM-worker
Establish the connection between DM-worker and the upstream MySQL instances, and

for safety reasons, you must configure the encrypted password.
Encrypt the MySQL password by executing the following command. Suppose the pass-

word is “123456”.
./bin/dmctl --encrypt "123456"

Then, you get the encrypted password as shown below. Record this encrypted value,
which is used for deploying DM-worker in the following steps.

121

https://github.com/pingcap/dm/releases

fCxfQ9XKCezSzuCD0Wf5dUD+LsKegSg=

You can configure DM-worker by using command-line parameters or the configuration
file.

Deployment method 1: DM-worker command-line parameters
Below is the description of the DM-worker command-line parameters:

./bin/dm-worker --help

Usage of worker:
-L string

Log level. Available values: "debug", "info" (default value), "warn",
↪→ "error" or "fatal"

-V The output version number
-checker-backoff-max duration

The longest waiting time for the automatic recovery after errors are
↪→ found in the task check module. The default value is "5m0s"
↪→ which generally needs no change. It is not recommended to
↪→ change this default value unless you have an in-depth
↪→ understanding of this parameter.

-checker-backoff-rollback duration
The time interval for adjusting the waiting time of the automatic

↪→ recovery in the task check module. The default value is "5m0s"
↪→ which generally needs no change. It is not recommended to
↪→ change this default value unless you have an in-depth
↪→ understanding of this parameter.

-checker-check-enable
Enables or disables the task status check. When it is enabled, DM

↪→ automatically tries to resume the data migration tasks
↪→ interrupted by errors. Default value: "true".

-config string
The path of the configuration file

-log-file string
The path of log files

-print-sample-config
Prints the sample configuration

-purge-expires int
The expiration time of relay logs. DM-worker tries to delete the

↪→ relay logs whose last modified time exceeds this value. Unit:
↪→ hour.

-purge-interval int
The time interval at which relay logs are regularly checked for

↪→ expiration. Default value: "3600". Unit: second.
-purge-remain-space int

122

Sets the minimum available disk space. When the disk space is smaller
↪→ than this value, DM-worker tries to delete relay logs.
↪→ Default value: "15". Unit: GB.

-relay-dir string
The path in which relay logs are stored. Default value: "./relay_log

↪→ ".
-worker-addr string

DM-worker address

Note:
In some situations, you cannot use the above method to configure DM-worker
because some configurations are not exposed to the command line. Then use
the configuration file instead.

Deployment method 2: configuration file
Below is the DM-worker configuration file. It is recommended that you use this method

and write the following configuration to conf/dm-worker1.toml.
Worker Configuration.

Log configuration
log-level = "info"
log-file = "dm-worker.log"

DM-worker address
worker-addr = ":8262"

The server ID of MySQL secondary, used when pulling binlog from MySQL
In a migration group, each instance (primary and secondary) must have a

↪→ unique server ID
server-id = 101
In v1.0.2 and later versions, the server ID is automatically generated

↪→ by DM

Used to mark a migration group or MySQL/MariaDB instance
source-id = "mysql-replica-01"

The type of the upstream instance
Available values: "mysql", "mariadb"
In v1.0.2 and later versions, DM automatically detects and fills in the

↪→ type of the upstream instance

123

flavor = "mysql"

MySQL connection address
[from]
host = "192.168.0.1"
user = "root"
password = "fCxfQ9XKCezSzuCD0Wf5dUD+LsKegSg="
port = 3306

Then, execute the following command in the terminal to run DM-worker:
bin/dm-worker -config conf/dm-worker1.toml

In DM-worker2, change source-id in the configuration file to mysql-replica-02 and
change the from configuration to the address of MySQL2. If you deploy Dm-worker2 and
Dm-worker1 on one machine, you need to deploy two dm-worker instances in different paths,
otherwise the default path for saving meta-information and relay log will conflict.

6.1.2.2.2 Deploy DM-master
You can configure DM-master by using command-line parameters or the configuration

file.
Deployment method 1: DM-master command-line parameters
Below is the description of DM-master command-line parameters:

./bin/dm-master --help

Usage of dm-master:
-L string

Log level. Available values: "debug", "info" (default value), "warn",
↪→ "error" or "fatal"

-V Outputs the version information
-config string

The path of the configuration file
-log-file string

The path of log files
-master-addr string

DM-master address
-print-sample-config

Prints the sample configuration of DM-master

Note:

124

In some situations, you cannot use the above method to configure DM-master
because some configurations are not exposed to the command line. Then use
the configuration file instead.

Deployment method 2: configuration file
Below is the configuration file of DM-master. It is recommended that you use this

method and write the following configuration to conf/dm-master.toml.
Master Configuration.

Log configurations
log-level = "info"
log-file = "dm-master.log"

The listening address of DM-master
master-addr = ":8261"

DM-worker configuration
[[deploy]]
Corresponding to the source-id in the DM-worker1 configuration file
source-id = "mysql-replica-01"
The service address of DM-worker1
dm-worker = "192.168.0.5:8262"

[[deploy]]
Corresponding to the source-id in the DM-worker2 configuration file
source-id = "mysql-replica-02"
The service address of DM-worker1
dm-worker = "192.168.0.6:8262"

Then, execute the following command in the terminal to run DM-master:
bin/dm-master -config conf/dm-master.toml

Now, a DM cluster is successfully deployed.

6.1.2.2.3 Create a data migration task
Suppose that there are several sharded tables on both MySQL1 and MySQL2 instances.

These tables have the same structure and the same prefix “t” in their table names. The
databases where they are located are named with the same prefix “sharding”. In each sharded
table, the primary key and unique key are different from those of all other tables.

Now you need to migrate these sharded tables to the db_target.t_target table in
TiDB.

125

1. Create the configuration file of the task:

name: test
task-mode: all
is-sharding: true

target-database:
host: "192.168.0.3"
port: 4000
user: "root"
password: "" # if the password is not empty, you also need to

↪→ configure the encrypted password using dmctl.

mysql-instances:
- source-id: "mysql-replica-01"
block-allow-list: "instance" # Use black-white-list if the DM's

↪→ version <= v1.0.6.
route-rules: ["sharding-route-rules-table", "sharding-route-rules-

↪→ schema"]
mydumper-thread: 4 # The number of threads that the dump

↪→ unit uses for dumping data, new in v1.0.2 and later versions.
loader-thread: 16 # The number of threads that the load

↪→ unit uses for loading data, new in v1.0.2 and later versions.
syncer-thread: 16 # The number of threads that the sync

↪→ unit uses for replicating incremental data, new in v1.0.2 and
↪→ later versions.

- source-id: "mysql-replica-02"
block-allow-list: "instance" # Use black-white-list if the DM's

↪→ version <= v1.0.6.
route-rules: ["sharding-route-rules-table", "sharding-route-rules-

↪→ schema"]
mydumper-thread: 4
loader-thread: 16
syncer-thread: 16

block-allow-list: # Use black-white-list if the DM's version <= v1.0.6.
instance:
do-dbs: ["~^sharding[\\d]+"]
do-tables:
- db-name: "~^sharding[\\d]+"

tbl-name: "~^t[\\d]+"

routes:

126

sharding-route-rules-table:
schema-pattern: sharding*
table-pattern: t*
target-schema: db_target
target-table: t_target

sharding-route-rules-schema:
schema-pattern: sharding*
target-schema: db_target

2. Write the above configuration to the conf/task.yaml file and create the task using
dmctl:
bin/dmctl -master-addr 192.168.0.4:8261

Welcome to dmctl
Release Version: v1.0.0-69-g5134ad1
Git Commit Hash: 5134ad19fbf6c57da0c7af548f5ca2a890bddbe4
Git Branch: master
UTC Build Time: 2019-04-29 09:36:42
Go Version: go version go1.12 linux/amd64
»

» start-task conf/task.yaml

{
"result": true,
"msg": "",
"workers": [

{
"result": true,
"worker": "192.168.0.5:8262",
"msg": ""

},
{

"result": true,
"worker": "192.168.0.6:8262",
"msg": ""

}
]

}

Now, you have successfully created a task to migrate the sharded tables from the MySQL1
and MySQL2 instances to TiDB.

127

6.1.3 Use Kubernetes (Experimental)

6.2 Migrate Data Using Data Migration

This guide shows how to migrate data using the Data Migration (DM) tool.

6.2.1 Step 1: Deploy the DM cluster

It is recommended to deploy the DM cluster using DM-Ansible. For detailed deployment,
see Deploy Data Migration Using DM-Ansible.

You can also deploy the DM cluster using binary for trial or test. For detailed deploy-
ment, see Deploy Data Migration Cluster Using DM Binary.

Note:

• For database passwords in all the DM configuration files, use the pass-
words encrypted by dmctl. If a database password is empty, it is unnec-
essary to encrypt it. See Encrypt the upstream MySQL user password
using dmctl.

• The user of the upstream and downstream databases must have the
corresponding read and write privileges.

6.2.2 Step 2: Check the cluster information

After the DM cluster is deployed using DM-Ansible, the configuration information is like
what is listed below.

• The configuration information of related components in the DM cluster:

Component Host Port
dm_worker1 172.16.10.72 8262
dm_worker2 172.16.10.73 8262
dm_master 172.16.10.71 8261

• The information of upstream and downstream database instances:

Database instance Host Port Username Encrypted password
Upstream MySQL-1 172.16.10.81 3306 root VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=
Upstream MySQL-2 172.16.10.82 3306 root VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=

128

https://docs.pingcap.com/tidb-in-kubernetes/dev/deploy-tidb-dm

Database instance Host Port Username Encrypted password
Downstream TiDB 172.16.10.83 4000 root

• The configuration in the DM-master process configuration file {ansible deploy}/
↪→ conf/dm-master.toml:
Master configuration.

This indicates that whether DM-worker uses Global Transaction
↪→ Identifier (GTID) to pull binlog. Before you use this
↪→ configuration item, make sure that the GTID mode is enabled in
↪→ the upstream MySQL.

enable-gtid = false

[[deploy]]
source-id = "mysql-replica-01"
dm-worker = "172.16.10.72:8262"

[[deploy]]
source-id = "mysql-replica-02"
dm-worker = "172.16.10.73:8262"

Note:
The {ansible deploy} in {ansible deploy}/conf/dm-master.toml
indicates the directory where DM-Ansible is deployed. It is the direc-
tory configured in the deploy_dir parameter.

6.2.3 Step 3: Configure the data migration task

The following example assumes that you need to migrate all the test_table table data
in the test_db database of both the upstream MySQL-1 and MySQL-2 instances, to the
downstream test_table table in the test_db database of TiDB, in the full data plus incre-
mental data mode.

Copy the {ansible deploy}/conf/task.yaml.example file and edit it to generate the
task.yaml task configuration file as below:
The task name. You need to use a different name for each of the multiple

↪→ tasks that
run simultaneously.
name: "test"
The full data plus incremental data (all) migration mode.
task-mode: "all"

129

The downstream TiDB configuration information.
target-database:
host: "172.16.10.83"
port: 4000
user: "root"
password: ""

Configuration of all the upstream MySQL instances required by the current
↪→ data migration task.

mysql-instances:
-
The ID of upstream instances or the migration group. You can refer to

↪→ the configuration of `source_id` in the "inventory.ini" file or in
↪→ the "dm-master.toml" file.

source-id: "mysql-replica-01"
The configuration item name of the block and allow lists of the name of

↪→ the
database/table to be migrated, used to quote the global block and allow
lists configuration that is set in the global block-allow-list below.
block-allow-list: "global" # Use black-white-list if the DM's version <=

↪→ v1.0.6.
The configuration item name of the dump unit, used to quote the global

↪→ dump unit configuration.
mydumper-config-name: "global"

-
source-id: "mysql-replica-02"
block-allow-list: "global" # Use black-white-list if the DM's version <=

↪→ v1.0.6.
mydumper-config-name: "global"

The global configuration of block and allow lists. Each instance can
↪→ quote it by the

configuration item name.
block-allow-list: # Use black-white-list if the DM's version

↪→ <= v1.0.6.
global:
do-tables: # The allow list of upstream tables to be

↪→ migrated.
- db-name: "test_db" # The database name of the table to be

↪→ migrated.
tbl-name: "test_table" # The name of the table to be migrated.

The global configuration of the dump unit. Each instance can quote it by
↪→ the configuration item name.

130

mydumpers:
global:
mydumper-path: "./bin/mydumper" # The file path of the dump unit binary.
extra-args: "-B test_db -T test_table" # Extra arguments of the dump

↪→ unit. Since DM 1.0.2, DM automatically generates the "--tables-
↪→ list" configuration. For versions earlier than 1.0.2, you need to
↪→ configure this option manually.

6.2.4 Step 4: Start the data migration task

To detect possible errors of data migration configuration in advance, DM provides the
precheck feature:

• DM automatically checks the corresponding privileges and configuration while starting
the data migration task.

• You can also use the check-task command to manually precheck whether the upstream
MySQL instance configuration satisfies the DM requirements.

For details about the precheck feature, see Precheck the upstream MySQL instance
configuration.

Note:
Before starting the data migration task for the first time, you should have
got the upstream configured. Otherwise, an error is reported while you start
the task.

1. Come to the dmctl directory /home/tidb/dm-ansible/resources/bin/.

2. Run the following command to start dmctl.
./dmctl --master-addr 172.16.10.71:8261

3. Run the following command to start the data migration tasks.
`task.yaml` is the configuration file that is edited above.
start-task ./task.yaml

• If the above command returns the following result, it indicates the task is success-
fully started.

131

{
"result": true,
"msg": "",
"workers": [

{
"result": true,
"worker": "172.16.10.72:8262",
"msg": ""

},
{

"result": true,
"worker": "172.16.10.73:8262",
"msg": ""

}
]

}

• If you fail to start the data migration task, modify the configuration according
to the returned prompt and then run the start-task task.yaml command to
restart the task.

6.2.5 Step 5: Check the data migration task

If you need to check the task state or whether a certain data migration task is running
in the DM cluster, run the following command in dmctl:
query-status

6.2.6 Step 6: Stop the data migration task

If you do not need to migrate data any more, run the following command in dmctl to
stop the task:
`test` is the task name that you set in the `name` configuration item

↪→ of
the `task.yaml` configuration file.
stop-task test

6.2.7 Step 7: Monitor the task and check logs

Assuming that Prometheus, Alertmanager, and Grafana are successfully deployed
along with the DM cluster deployment using DM-Ansible, and the Grafana ad-
dress is 172.16.10.71. To view the alert information related to DM, you can open

132

http://172.16.10.71:9093 in a browser and enter into Alertmanager; to check monitoring
metrics, go to http://172.16.10.71:3000, and choose the DM dashboard.

While the DM cluster is running, DM-master, DM-worker, and dmctl output the moni-
toring metrics information through logs. The log directory of each component is as follows:

• DM-master log directory: It is specified by the --log-file DM-master process param-
eter. If DM is deployed using DM-Ansible, the log directory is {ansible deploy}/
↪→ log/dm-master.log in the DM-master node.

• DM-worker log directory: It is specified by the --log-file DM-worker process param-
eter. If DM is deployed using DM-Ansible, the log directory is {ansible deploy}/
↪→ log/dm-worker.log in the DM-worker node.

• dmctl log directory: It is the same as the binary directory of dmctl.

7 Configure

7.1 Data Migration Configuration File Overview

This document gives an overview of configuration files of DM (Data Migration).

7.1.1 DM process configuration files

• inventory.ini: The configuration file of deploying DM using DM-Ansible. You need
to edit it based on your machine topology. For details, see Edit the inventory.ini
file to orchestrate the DM cluster.

• dm-master.toml: The configuration file of running the DM-master process, including
the topology information of the DM cluster and the corresponding relationship between
the MySQL instance and DM-worker (must be one-to-one relationship). When you use
DM-Ansible to deploy DM, dm-master.toml is generated automatically. Refer to DM-
master Configuration File to see more details.

• dm-worker.toml: The configuration file of running the DM-worker process, including
the upstream MySQL instance configuration and the relay log configuration. When
you use DM-Ansible to deploy DM, dm-worker.toml is generated automatically. Refer
to DM-worker Configuration File to see more details.

7.1.2 DM migration task configuration

7.1.2.1 DM task configuration file
When you use DM-Ansible to deploy DM, you can find the following task configuration

file template in <path-to-dm-ansible>/conf:

• task.yaml.exmaple: The standard configuration file of the data migration task (a
specific task corresponds to a task.yaml). For the introduction of the configuration
file, see Task Configuration File.

133

http://172.16.10.71:9093
http://172.16.10.71:3000

7.1.2.2 Data migration task creation
You can perform the following steps to create a data migration task based on task.yaml

↪→ .example:

1. Copy task.yaml.example as your_task.yaml.
2. Refer to the description in the Task Configuration File and modify the configuration

in your_task.yaml.
3. Create your data migration task using dmctl.

7.1.2.3 Important concepts
This section shows description of some important concepts.

Concept Description
Configuration
File

source
↪→ -id

Uniquely
identifies a
MySQL or
MariaDB
instance, or
a
replication
group with
the
primary-
secondary
structure.
The
maximum
length of
source-id
is 32.

source_id of
inventory.
↪→ ini;
source-id of
dm-master.
↪→ toml;
source-id of
task.yaml

DM-
worker
ID

Uniquely
identifies a
DM-worker
(by the
worker-
↪→ addr
parameter
of
dm-worker
↪→ .toml)

worker-addr
of dm-worker.
↪→ toml; the
-worker/-w
flag of the
dmctl
command line

134

7.2 DM-master Configuration File

This document introduces the configuration of DM-master, including the configuration
file template and configurable items.

7.2.1 Configuration file template

The following is a configuration file template of DM-master.
log configuration
log-file = "dm-master.log"

DM-master listening address
master-addr = ":8261"

DM-worker deployment. It will be refined when the new deployment function
↪→ is available.

[[deploy]]
source-id = "mysql-replica-01"
dm-worker = "172.16.10.72:8262"

[[deploy]]
source-id = "mysql-replica-02"
dm-worker = "172.16.10.73:8262"

7.2.2 Configurable items

7.2.2.1 Global configuration

Name Description
log-file The log file. If not specified, the log is

printed to the standard output.
master-addr The address of DM-master which provides

services. You can omit the IP address and
specify the port number only, such as
“:8261”.

7.2.2.2 DM-worker configuration
Each DM-worker must be configured in separate [deploy] sections.

135

Name Description
source-id Uniquely identifies a MySQL or MariaDB

instance, or a replication group with the
primary-secondary structure, which needs
to be consistent with the source-id of
DM-worker.

dm-worker The service address of DM-worker.

7.3 DM-worker Configuration File

This document introduces the basic configuration of DM worker, which provisions DM-
worker’s deployment in most scenarios. Refer to DM-worker Advanced Configuration File to
see more parameters in detail.

7.3.1 Configuration file template

Worker Configuration.

Log configuration.
log-file = "dm-worker.log"

DM-worker listen address.
worker-addr = ":8262"

Represents a MySQL/MariaDB instance or a migration group.
source-id = "mysql-replica-01"

Server ID of secondary library for binlog replication.
Each instance (primary and secondary) in migration groups should have a

↪→ different server ID.
server-id = 101

flavor: mysql/mariadb
flavor = "mysql"

The directory that used to store relay log.
relay-dir = "./relay_log"

[from]
host = "127.0.0.1"
user = "root"
password = "Up8156jArvIPymkVC+5LxkAT6rek"
port = 3306

136

7.3.2 Configuration parameters

7.3.2.1 Global

Parameter Description
Default
value

log-file Specifies the log file directory. If not
specified, the logs are printed onto the
standard output.

worker-addr Specifies the address of DM-worker which
provides services. You can omit the IP
address and specify the port number only,
such as “:8262”.

source-id Uniquely identifies a MySQL or MariaDB
instance, or a replication group

server-id Identifies the server ID of DM-worker as a
MySQL or MariaDB secondary library,
used when pulling binlogs from the
upstream. In a replication group, each
instance (primary and secondary included)
must have a unique server ID. In v1.0.2
and later versions, the server_id is
automatically generated by DM.

flavor Indicates the release type of MySQL:
"Percona", "mysql" or "mariadb". In
v1.0.2 and later versions, DM
automatically detects and fills in the
release type.

"mysql"

relay-dir Specifies the relay log directory. "./
↪→ relay_log
↪→ "

7.3.2.2 [from]

The [from] section contains parameters that affect the connection to the upstream
database.

Parameter Description
host The host name of the upstream database.
port The port number of the upstream database.
user The username used to connect to the

database.

137

Parameter Description
password The password used to connect to the

database. Note: Use the password
encrypted by dmctl.

7.4 DM-worker Advanced Configuration File

This document details the advanced configuration of DM-worker.

7.4.1 Configuration file template

Worker Configuration.

Log configuration.
log-level = "info"
log-file = "dm-worker.log"

DM-worker listening address.
worker-addr = ":8262"

Represents a MySQL/MariaDB instance or a replication group.
source-id = "mysql-replica-01"

Server ID of secondary library for binlog replication.
Each instance (primary and secondary) in the replication group should

↪→ have a different server ID.
server-id = 101

flavor: mysql/mariadb
flavor = "mysql"

The directory used to store relay log.
relay-dir = "./relay_log"

Enables gtid in the relay log unit.
enable-gtid = false

relay-binlog-name = ""
relay-binlog-gtid = ""

[from]
host = "127.0.0.1"
user = "root"

138

password = "Up8156jArvIPymkVC+5LxkAT6rek"
port = 3306

Relay log purge strategy.
[purge]
interval = 3600
expires = 24
remain-space = 15

Task status checker.
[checker]
check-enable = true
backoff-rollback = "5m"
backoff-max = "5m"

7.4.2 Configuration parameters

7.4.2.1 Global

Parameter Description
Default
value

log-level Controls the log level: "debug", "info",
"warn", "error" or "fatal". For
troubleshooting purposes, set it to
"debug".

"info"

log-file Specifies the log file. If not specified, the
logs are printed onto the standard output.

worker-addr Specifies the address of DM-worker which
provides services. You can omit the IP
address and specify the port number only,
such as “:8262”.

source-id Uniquely identifies a MySQL or MariaDB
instance, or a replication group

server-id Identifies the server ID of DM-worker as a
MySQL or MariaDB secondary library. In
a replication group, each instance
(primary and secondary included) must
have a unique server ID. In v1.0.2 and
later versions, the server_id is
automatically generated by DM.

139

Parameter Description
Default
value

flavor Indicates the release type of MySQL:
"Percona", "mysql" or "mariadb". In
v1.0.2 and later versions, DM
automatically detects and fills in the
release type.

"mysql"

relay-dir Specifies the relay log directory. "./
↪→ relay_log
↪→ "

enable-gtid Determines whether DM-worker uses
GTID to pull the binlog. If the upstream
database has enabled the GTID mode and
switching the DM-worker connection to
another MySQL instance is needed, set it
to true.

false

relay-binlog
↪→ -name

Specifies the file name from which
DM-worker starts to pull the binlog. For
example, "mysql-bin.000002". It only
works when enable_gtid is false. If this
parameter is not specified, DM-worker
defaults to pulling the binlogs starting
from the earliest one. But in v1.0.2 and
later versions, DM-worker defaults to
pulling the binlogs starting from the latest
one.

relay-binlog
↪→ -gtid

Specifies the GTID from which DM-worker
starts to pull the binlog. For example,
"e9a1fc22-ec08-11e9-b2ac-0242
↪→ ac110003:1-7849". It only works
when enable_gtid is true. If this
parameter is not specified, DM-worker
defaults to pulling the binlogs starting
from the earliest GTID. But in v1.0.2 and
later versions, DM-worker defaults to
pulling the binlogs starting from the latest
GTID.

7.4.2.2 [from]

The [from] section contains parameters that affect the connection to the upstream
database.

140

Parameter Description
host The host name of the upstream database.
port The port number of the upstream database.
user The username used to connect to the

database.
password The password used to connect to the

database. Note: Use the password
encrypted by dmctl.

7.4.2.3 [purge]

The [purge] section contains parameters that affect the purge strategy of relay log.
Generally, there is no need to manually configure these parameters unless there is a large

amount of relay logs and disk capacity is insufficient.

Parameter Description Default value
interval Sets the time interval at which relay logs

are regularly checked for expiration, in
seconds.

3600

expires Sets the expiration time for relay logs, in
hours. The relay log that is not written by
the relay processing unit, or does not need
to be read by the existing data migration
task will be deleted by DM if it exceeds
the expiration time. If this parameter is
not specified, the automatic purge is not
performed.

0

remain-space Sets the minimum amount of free disk
space, in gigabytes. When the available
disk space is smaller than this value,
DM-worker tries to delete relay logs.

15

Note:
DM does not perform automatic purge when either of the following is true:

• interval is set to 0
• Both expires and remain-space are set to 0

7.4.2.4 [checker]

141

The [checker] section contains parameters that affect the task status checker.

Parameter Description Default value
check-enable Determines whether to enable task status

checker. If it is set to “true”, DM tries to
resume data migration task that is
suspended due to errors.

true

backoff-
↪→ rollback

Sets the time interval for adjusting the
waiting time of the automatic recovery.

"5m0s"

backoff-max Sets the longest time interval for the
automatic recovery after errors are
detected.

"5m0s"

Note:
Generally, you only need to determine whether to enable the task status
checker through the check-enable parameter. It is not recommended to
change the default values of backoff-rollback and backoff-max unless you
have an in-depth understanding of these two parameters.

7.5 Data Migration Task Configuration File

This document introduces the basic task configuration file of Data Migration –
task_basic.yaml, including global configuration and instance configuration.

DM also implements an advanced task configuration file which provides greater flexibility
and more control over DM.

For the feature and configuration of each configuration item, see Data migration features.

7.5.1 Important concepts

For description of important concepts including source-id and the DM-worker ID, see
Important concepts.

7.5.2 Task configuration file template (basic)

The following is a task configuration file template which allows you to perform basic
data migration tasks.

142

https://github.com/pingcap/dm/blob/master/dm/master/task_advanced.yaml

7.6 “‘yaml

7.7 ———– Global configuration ———–

7.7.1 ********** Basic configuration ************

name: test # The name of the task. Should be globally
↪→ unique.

task-mode: all # The task mode. Can be set to `full`/`
↪→ incremental`/`all`.

target-database: # Configuration of the downstream database
↪→ instance.

host: "127.0.0.1"
port: 4000
user: "root"
password: "" # The dmctl encryption is needed when the

↪→ password is not empty.

******** Feature configuration set **********
The filter rule set of the block and allow list of the matched table of

↪→ the upstream database instance.
block-allow-list: # Use black-white-list if the DM's version <= v1.0.6.
bw-rule-1: # The name of the block and allow lists filtering rule

↪→ of the table matching the upstream database instance.
do-dbs: ["all_mode"] # Allow list of upstream tables needs to be

↪→ migrated
----------- Instance configuration -----------
mysql-instances:
The ID of the upstream instance or migration group. It can be configured

↪→ by referring to the `source-id` in the `dm-master.toml` file.
- source-id: "mysql-replica-01"
block-allow-list: "bw-rule-1" # Use black-white-list if the DM's

↪→ version <= v1.0.6.
mydumper-thread: 4 # The number of threads that the dump

↪→ unit uses for dumping data, new in v1.0.2 and later versions
loader-thread: 16 # The number of threads that the load

↪→ unit uses for loading data, new in v1.0.2 and later versions
syncer-thread: 16 # The number of threads that the sync

↪→ unit uses for replicating incremental data, new in v1.0.2 and
↪→ later versions

- source-id: "mysql-replica-02"
block-allow-list: "bw-rule-1" # Use black-white-list if the DM's

↪→ version <= v1.0.6.
mydumper-thread: 4

143

loader-thread: 16
syncer-thread: 16

7.7.2 Configuration order

1. Edit the global configuration.
2. Edit the instance configuration based on the global configuration.

7.7.3 Global configuration

7.7.3.1 Basic configuration
Refer to the comments in the template to see more details. Specific instruction about

task-mode are as follows:

• Description: the task mode that can be used to specify the data migration task to be
executed.

• Value: string (full, incremental, or all).

– full only makes a full backup of the upstream database and then imports the
full data to the downstream database.

– incremental: Only replicates the incremental data of the upstream database to
the downstream database using the binlog. You can set the meta configuration
item of the instance configuration to specify the starting position of incremental
replication.

– all: full + incremental. Makes a full backup of the upstream database, im-
ports the full data to the downstream database, and then uses the binlog to make
an incremental replication to the downstream database starting from the exported
position during the full backup process (binlog position).

7.7.3.2 Feature configuration set
For basic applications, you only need to modify the block and allow lists filtering rule.

Refer to the comments about block-allow-list in the template or Block & allow table
lists to see more details.

7.7.4 Instance configuration

This part defines the subtask of data migration. DM supports migrating data from one
or multiple MySQL instances to the same instance.

For more details, refer to the comments about mysql-instances in the template.

144

7.7.5 Modify the task configuration

In some cases, you might need to update the task configuration. For example, if you set
remove-meta to true and task-mode to all when resetting the data migration task, you
need to set remove-meta to false after the task is reset. This can prevent the task from
being migrated the next time the task is started.

It is recommended to update the modified configuration to the DM cluster by executing
the stop-task and start-task commands, since the DM cluster persists the task config-
uration. If the task configuration file is modified directly, without restarting the task, the
configuration changes does not take effect. In this case, the DM cluster still reads the
previous task configuration when the DM cluster is restarted.

To illustrate how to modify the task configuration, the following is an example of modi-
fying remove-meta:

1. Modify the task configuration file and set remove-meta to false.

2. Stop the task by executing the stop-task command:
stop-task <task-name | task-file>

3. Start the task by executing the start-task command:
start-task <config-file>

7.8 DM Advanced Task Configuration File

This document introduces the advanced task configuration file of Data Migration –
task_advanced.yaml, including global configuration and instance configuration.

For the feature and configuration of each configuration item, see Data migration features.

7.8.1 Important concepts

For description of important concepts including source-id and the DM-worker ID, see
Important concepts.

7.8.2 Disable checking items

DM checks items according to the task type, see Disable checking items. You can use
ignore-checking-items in the task configuration file to disable checking items.

145

https://github.com/pingcap/dm/blob/master/dm/master/task_advanced.yaml

7.8.3 Task configuration file template (advanced)

The following is the task configuration file template which allows you to perform ad-
vanced data migration tasks.

----------- Global setting -----------
********* Basic configuration *********
name: test # The name of the task. Should be globally

↪→ unique.
task-mode: all # The task mode. Can be set to `full`/`

↪→ incremental`/`all`.
is-sharding: true # Whether it is a task to merge shards.
meta-schema: "dm_meta" # The downstream database that stores the `meta`

↪→ information.
remove-meta: false # Whether to remove the `meta` information (`

↪→ checkpoint` and `onlineddl`) corresponding to the task name before
↪→ starting the migration task.

enable-heartbeat: false # Whether to enable the heartbeat feature.
online-ddl-scheme: "gh-ost" # Only "gh-ost" and "pt" are currently supported

↪→ .
case-sensitive: false # Whether schema/table is case-sensitive.
ignore-checking-items: [] # No element, which means not to disable any

↪→ checking items.
clean-dump-file: true # Whether to clean up the files generated during

↪→ data dump. Note that these include `metadata` files. New in v1.0.7.

target-database: # Configuration of the downstream database
↪→ instance.

host: "192.168.0.1"
port: 4000
user: "root"
password: "/Q7B9DizNLLTTfiZHv9WoEAKamfpIUs=" # It is recommended to use a

↪→ password encrypted with dmctl
session: # The session variables of TiDB,

↪→ supported since v1.0.6. For details, go to `https://pingcap.com/docs
↪→ /stable/system-variables`

sql_mode: "ANSI_QUOTES,NO_ZERO_IN_DATE,NO_ZERO_DATE"
tidb_skip_utf8_check: 1
tidb_constraint_check_in_place: 0

******** Feature configuration set **********
The routing mapping rule set between the upstream and downstream tables.

146

routes:
route-rule-1: # The name of the routing mapping rule
schema-pattern: "test_*" # The pattern of the upstream schema name,

↪→ wildcard characters (*?) are supported
table-pattern: "t_*" # The pattern of the upstream table name,

↪→ wildcard characters (*?) are supported
target-schema: "test" # The name of the downstream schema
target-table: "t" # The name of the downstream table

route-rule-2:
schema-pattern: "test_*"
target-schema: "test"

The binlog event filter rule set of the matched table of the upstream
↪→ database instance.

filters:
filter-rule-1: # The name of the filtering rule
schema-pattern: "test_*" # The pattern of the upstream

↪→ schema name, wildcard characters (*?) are supported
table-pattern: "t_*" # The pattern of the upstream

↪→ schema name, wildcard characters (*?) are supported
events: ["truncate table", "drop table"] # What event types to match
action: Ignore # Whether to replicate (Do) or

↪→ ignore (Ignore) the binlog that matches the filtering rule
filter-rule-2:
schema-pattern: "test_*"
events: ["all dml"]
action: Do

The filter rule set of the block and allow list of the matched table of
↪→ the upstream database instance.

block-allow-list: # Use black-white-list if the DM's version
↪→ <= v1.0.6.

bw-rule-1: # The name of the block and allow list rule
do-dbs: ["~^test.*", "user"] # The allow list of upstream schemas needs

↪→ to be migrated
ignore-dbs: ["mysql", "account"] # The block list of upstream schemas

↪→ needs to be migrated
do-tables: # The allow list of upstream tables needs

↪→ to be migrated
- db-name: "~^test.*"
tbl-name: "~^t.*"

- db-name: "user"
tbl-name: "information"

ignore-tables: # The block list of upstream tables needs
↪→ to be migrated

147

- db-name: "user"
tbl-name: "log"

Configuration arguments of the dump processing unit
mydumpers:
global: # The configuration name of the processing

↪→ unit.
The binary file path of the dump unit ("./bin/mydumper" by default).
mydumper-path: "./bin/mydumper"
threads: 4 # The number of the threads that the dump

↪→ unit dumps from the upstream database (4 by default).
chunk-filesize: 64 # The size of the file generated by the

↪→ dump unit (64 in MB by default).
skip-tz-utc: true # Ignore timezone conversion for time type

↪→ data (true by default).
extra-args: "--no-locks" # Other arguments of the dump unit. In v1

↪→ .0.2 and later versions, DM automatically generates the table-list
↪→ configurable items.

Configuration arguments of the load processing unit
loaders:
global: # The configuration name of the processing

↪→ unit.
pool-size: 16 # The number of threads that concurrently

↪→ execute dumped SQL files in the load unit (16 by default).
The directory that the load unit reads from and the dump unit outputs

↪→ SQL files to ("./dumped_data" by default). Directories for
↪→ different tasks of the same instance must be different.

dir: "./dumped_data"

Configuration arguments of the sync processing unit
syncers:
global: # The configuration name of the processing

↪→ unit.
worker-count: 16 # The number of threads that replicate

↪→ binlog events concurrently in the sync unit.
batch: 100 # The number of SQL statements in a

↪→ transaction batch that the sync unit replicates to the downstream
↪→ database (100 by default).

enable-ansi-quotes: true # Enable this argument if `sql-mode: "
↪→ ANSI_QUOTES"` is set in the `session`

safe-mode: false # If set to true, `INSERT` statements from
↪→ upstream are rewritten to `REPLACE` statements, and `UPDATE`
↪→ statements are rewritten to `DELETE` and `REPLACE` statements.
↪→ This ensures that DML statements can be imported repeatedly during

148

↪→ data migration when there is any primary key or unique index in
↪→ the table schema. TiDB DM automatically enables safe mode within
↪→ the first 5 minutes after starting or resuming migration tasks.

----------- Instance configuration -----------
mysql-instances:
-
source-id: "mysql-replica-01" # The ID of

↪→ the upstream instance or replication group. It can be configured
↪→ by referring to the `source_id` in the `inventory.ini` file or the
↪→ `source-id` in the `dm-master.toml` file.

meta: # The
↪→ position where the binlog replication starts when `task-mode` is `
↪→ incremental` and the downstream database checkpoint does not exist
↪→ . If the checkpoint exists, the checkpoint is used.

binlog-name: binlog.000001
binlog-pos: 4

route-rules: ["route-rule-1", "route-rule-2"] # The name of
↪→ the mapping rule between the table matching the upstream database
↪→ instance and the downstream database.

filter-rules: ["filter-rule-1"] # The name of
↪→ the binlog event filtering rule of the table matching the
↪→ upstream database instance.

block-allow-list: "bw-rule-1" # The name of
↪→ the block and allow lists filtering rule of the table matching
↪→ the upstream database instance. Use black-white-list if the DM's
↪→ version <= v1.0.6.

mydumper-config-name: "global" # The
↪→ configuration name of the dump processing unit.

loader-config-name: "global" # The
↪→ configuration name of the load processing unit.

syncer-config-name: "global" # The
↪→ configuration name of the sync processing unit.

-
source-id: "mysql-replica-02"
mydumper-config-name: "global"
loader-config-name: "global"
syncer-config-name: "global"

149

7.8.4 Configuration order

1. Edit the global configuration.
2. Edit the instance configuration based on the global configuration.

7.8.5 Global configuration

7.8.5.1 Basic configuration
Refer to the comments in the template to see more details. Detailed explanations about

task-mode are as follows:

• Description: the task mode that can be used to specify the data migration task to be
executed.

• Value: string (full, incremental, or all).

– full only makes a full backup of the upstream database and then imports the
full data to the downstream database.

– incremental: Only replicates the incremental data of the upstream database to
the downstream database using the binlog. You can set the meta configuration
item of the instance configuration to specify the starting position of incremental
replication.

– all: full + incremental. Makes a full backup of the upstream database, im-
ports the full data to the downstream database, and then uses the binlog to make
an incremental replication to the downstream database starting from the exported
position during the full backup process (binlog position).

7.8.5.2 Feature configuration set
Arguments in each feature configuration set are explained in the comments in the tem-

plate.

Parameter Description
routes The routing mapping rule set between the

upstream and downstream tables. If the
names of the upstream and downstream
schemas and tables are the same, this item
does not need to be configured. See Table
Routing for usage scenarios and sample
configurations.

filters The binlog event filter rule set of the
matched table of the upstream database
instance. If binlog filtering is not required,
this item does not need to be configured.
See Binlog Event Filter for usage scenarios
and sample configurations.

150

Parameter Description
block-allow-
↪→ list

The filter rule set of the block and allow
list of the matched table of the upstream
database instance. It is recommended to
specify the schemas and tables that need to
be migrated through this item, otherwise
all schemas and tables are migrated. See
Binlog Event FilterBlock & Allow Lists for
usage scenarios and sample configurations.

mydumpers Configuration arguments of the dump
processing unit. If the default configuration
is sufficient for your needs, this item does
not need to be configured. Or you can
configure thread only using
mydumper-thread.

loaders Configuration arguments of the load
processing unit. If the default configuration
is sufficient for your needs, this item does
not need to be configured. Or you can
configure pool-size only using
loader-thread.

syncers Configuration arguments of the sync
processing unit. If the default configuration
is sufficient for your needs, this item does
not need to be configured. Or you can
configure worker-count only using
syncer-thread.

7.8.6 Instance configuration

This part defines the subtask of data migration. DM supports migrating data from one
or multiple MySQL instances in the upstream to the same instance in the downstream.

For the configuration details of the above options, see the corresponding part in Feature
configuration set, as shown in the following table.

Option Corresponding part
route-rules routes
filter-rules filters
block-allow-list block-allow-list
mydumper-config-name mydumpers
loader-config-name loaders
syncer-config-name syncers

151

8 Manage the DM Cluster

8.1 Data Migration Cluster Operations

This document introduces the DM cluster operations and considerations when you ad-
minister a DM cluster using DM-Ansible.

8.1.1 Start a cluster

Run the following command to start all the components (including DM-master, DM-
worker and the monitoring component) of the whole DM cluster:
ansible-playbook start.yml

8.1.2 Stop a cluster

Run the following command to stop all the components (including DM-master, DM-
worker and the monitoring component) of the whole DM cluster:
ansible-playbook stop.yml

8.1.3 Restart cluster components

You need to update the DM cluster components in the following cases:

• You want to upgrade the component version.
• A serious bug occurs and you have to restart the component for temporary recovery.
• The machine that the DM cluster is located in is restarted for certain reasons.

8.1.3.1 Restarting considerations
This sections describes the considerations that you need to know when you restart DM

components.

8.1.3.1.1 Restarting DM-worker considerations
In the process of full data loading:
For the SQL files during full data import, DM uses the downstream database to record

the checkpoint information, and DM-worker records the subtask information in the local
meta file. When DM-worker is restarted, it checks the checkpoint information and the
subtask information in the local record, and the running task before restarting recovers the
data migration automatically.

In the process of incremental data replication:

152

For the binlog during incremental data import, DM uses the downstream database to
record the checkpoint information, and enables the safe mode within the first 5 minutes after
the replication task is started or recovered.

• Sharding DDL statements migration is not enabled
If the sharding DDL statements migration is not enabled in the task running on DM-
worker, when DM-worker is restarted, it checks the checkpoint information and the
subtask information in the local record, and the running task before restarting recovers
the data migration automatically.

• Sharding DDL statements migration is enabled

– When DM is migrating the sharding DDL statements, if DM-worker successfully
executes (or skips) the sharding DDL binlog event, then the checkpoints of all
tables related to sharding DDL in the DM-worker are updated to the position
after the binlog event corresponding to the DDL statement.

– When DM-worker is restarted before or after migrating sharding DDL statements,
it recovers the data migration automatically according to the checkpoint informa-
tion and the subtask information in the local record.

– When DM-worker is restarted during the process of migrating sharding DDL
statements, the issue might occur that the owner (one of DM-worker instances) has
executed the DDL statement and successfully changed the downstream database
table schema, while other DM-worker instances are restarted but fail to skip the
DDL statement and update the checkpoints.
At this time, DM tries again to migrate these DDL statements that are not
skipped. However, the restarted DM-worker instances will be blocked at the
position of the binlog event corresponding to the DDL binlog event, because the
DM-worker instance that is not restarted has executed to the place after this DDL
binlog event.
To resolve this issue, follow the steps described in Handle Sharding DDL Locks
Manually.

Conclusion: Try to avoid restarting DM-worker in the process of sharding DDL migra-
tion.

8.1.3.1.2 Restarting DM-master considerations
The information maintained by DM-master includes the following two major types, and

these data is not being persisted when you restart DM-master.

• The corresponding relationship between the task and DM-worker
• The sharding DDL lock related information

153

When DM-master is restarted, it automatically requests the task information from each
DM-worker instance, rebuilds the corresponding relationship between the task and DM-
worker, and also re-fetches the sharding DDL information from each DM-worker instance.
So the corresponding DDL lock can be correctly rebuilt and the sharding DDL lock can be
automatically resolved.

8.1.3.2 Restart DM-worker

Note:
Try to avoid restarting DM-worker during the process of migrating sharding
DDL statements.

To restart the DM-worker component, you can use either of the following two approaches:

• Perform a rolling update on DM-worker
ansible-playbook rolling_update.yml --tags=dm-worker

• Stop DM-worker first and then restart it
ansible-playbook stop.yml --tags=dm-worker &&
ansible-playbook start.yml --tags=dm-worker

8.1.3.3 Restart DM-master
To restart the DM-master component, you can use either of the following two approaches:

• Perform a rolling update on DM-master
ansible-playbook rolling_update.yml --tags=dm-master

• Stop DM-master first and then restart it
ansible-playbook stop.yml --tags=dm-master &&
ansible-playbook start.yml --tags=dm-master

154

8.1.4 Upgrade the component version

1. Download the DM binary file.

1. Delete the existing file in the downloads directory.
cd /home/tidb/dm-ansible &&
rm -rf downloads

2. Use Playbook to download the version of DM binary file as specified in
inventory.ini, and replace the existing binary in the /home/tidb/dm-ansible
↪→ /resource/bin/ directory with it automatically.
ansible-playbook local_prepare.yml

2. Use DM-Ansible to perform the rolling update.

1. Perform a rolling update on the DM-worker instance:
ansible-playbook rolling_update.yml --tags=dm-worker

2. Perform a rolling update on the DM-master instance:
ansible-playbook rolling_update.yml --tags=dm-master

3. Upgrade dmctl:
ansible-playbook rolling_update.yml --tags=dmctl

4. Perform a rolling update on DM-worker, DM-master and dmctl:
ansible-playbook rolling_update.yml

8.1.5 Add a DM-worker instance

Assuming that you want to add a DM-worker instance on the 172.16.10.74 machine
and the alias of the instance is dm_worker3, perform the following steps:

1. Configure the SSH mutual trust and sudo rules on the Control Machine.

1. Refer to Configure the SSH mutual trust and sudo rules on the Control Machine,
log in to the Control Machine using the tidb user account and add 172.16.10.74
to the [servers] section of the hosts.ini file.
cd /home/tidb/dm-ansible &&
vi hosts.ini

155

[servers]
172.16.10.74

[all:vars]
username = tidb

2. Run the following command and enter the root user password for deploying
172.16.10.74 according to the prompt.
ansible-playbook -i hosts.ini create_users.yml -u root -k

This step creates a tidb user on the 172.16.10.74 machine, and configures
sudo rules and the SSH mutual trust between the Control Machine and the
172.16.10.74 machine.

2. Edit the inventory.ini file and add the new DM-worker instance dm_worker3.
[dm_worker_servers]
dm_worker1 source_id="mysql-replica-01" ansible_host=172.16.10.72

↪→ server_id=101 mysql_host=172.16.10.81 mysql_user=root
↪→ mysql_password='VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=' mysql_port=3306

dm_worker2 source_id="mysql-replica-02" ansible_host=172.16.10.73
↪→ server_id=102 mysql_host=172.16.10.82 mysql_user=root
↪→ mysql_password='VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=' mysql_port=3306

dm_worker3 source_id="mysql-replica-03" ansible_host=172.16.10.74
↪→ server_id=103 mysql_host=172.16.10.83 mysql_user=root
↪→ mysql_password='VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=' mysql_port=3306

3. Deploy the new DM-worker instance.
ansible-playbook deploy.yml --tags=dm-worker -l dm_worker3

4. Start the new DM-worker instance.
ansible-playbook start.yml --tags=dm-worker -l dm_worker3

5. Configure and restart the DM-master service.
ansible-playbook rolling_update.yml --tags=dm-master

6. Configure and restart the Prometheus service.
ansible-playbook rolling_update_monitor.yml --tags=prometheus

156

8.1.6 Remove a DM-worker instance

Assuming that you want to remove the dm_worker3 instance, perform the following steps:

1. Stop the DM-worker instance that you need to remove.
ansible-playbook stop.yml --tags=dm-worker -l dm_worker3

2. Edit the inventory.ini file and comment or delete the line where the dm_worker3
instance exists.
[dm_worker_servers]
dm_worker1 source_id="mysql-replica-01" ansible_host=172.16.10.72

↪→ server_id=101 mysql_host=172.16.10.81 mysql_user=root
↪→ mysql_password='VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=' mysql_port=3306

dm_worker2 source_id="mysql-replica-02" ansible_host=172.16.10.73
↪→ server_id=102 mysql_host=172.16.10.82 mysql_user=root
↪→ mysql_password='VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=' mysql_port=3306

dm_worker3 source_id="mysql-replica-03" ansible_host=172.16.10.74
↪→ server_id=103 mysql_host=172.16.10.83 mysql_user=root
↪→ mysql_password='VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=' mysql_port=3306
↪→ # Comment or delete this line

3. Configure and restart the DM-master service.
ansible-playbook rolling_update.yml --tags=dm-master

4. Configure and restart the Prometheus service.
ansible-playbook rolling_update_monitor.yml --tags=prometheus

8.1.7 Replace/migrate a DM-master instance

Assuming that the 172.16.10.71 machine needs to be maintained or this machine
breaks down, and you need to migrate the DM-master instance from 172.16.10.71 to
172.16.10.80, perform the following steps:

1. Configure the SSH mutual trust and sudo rules on the Control machine.

1. Refer to Configure the SSH mutual trust and sudo rules on the Control Machine,
log in to the Control Machine using the tidb user account, and add 172.16.10.80
to the [servers] section of the hosts.ini file.

157

cd /home/tidb/dm-ansible &&
vi hosts.ini

[servers]
172.16.10.80

[all:vars]
username = tidb

2. Run the following command and enter the root user password for deploying
172.16.10.80 according to the prompt.
ansible-playbook -i hosts.ini create_users.yml -u root -k

This step creates the tidb user account on 172.16.10.80, configures the
sudo rules and the SSH mutual trust between the Control Machine and the
172.16.10.80 machine.

2. Stop the DM-master instance that you need to replace.

Note:
If the 172.16.10.71 machine breaks down and you cannot log in via
SSH, ignore this step.

ansible-playbook stop.yml --tags=dm-master

3. Edit the inventory.ini file, comment or delete the line where the DM-master in-
stance that you want to replace exists, and add the information of the new DM-master
instance.
[dm_master_servers]
dm_master ansible_host=172.16.10.71
dm_master ansible_host=172.16.10.80

4. Deploy the new DM-master instance.
ansible-playbook deploy.yml --tags=dm-master

5. Start the new DM-master instance.
ansible-playbook start.yml --tags=dm-master

6. Update the dmctl configuration file.
ansible-playbook rolling_update.yml --tags=dmctl

158

8.1.8 Replace/migrate a DM-worker instance

Assuming that the 172.16.10.72machine needs to be maintained or this machine breaks
down, and you need to migrate dm_worker1 from 172.16.10.72 to 172.16.10.75, perform
the following steps:

1. Configure the SSH mutual trust and sudo rules on the Control Machine.

1. Refer to Configure the SSH mutual trust and sudo rules on the Control Machine,
log in to the Control Machine using the tidb user account, and add 172.16.10.75
to the [servers] section of the hosts.ini file.
cd /home/tidb/dm-ansible &&
vi hosts.ini

[servers]
172.16.10.75

[all:vars]
username = tidb

2. Run the following command and enter the root user password for deploying
172.16.10.75 according to the prompt.
ansible-playbook -i hosts.ini create_users.yml -u root -k

This step creates the tidb user account on 172.16.10.75, and configures the
sudo rules and the SSH mutual trust between the Control Machine and the
172.16.10.75 machine.

2. Stop the DM-worker instance that you need to replace.

Note:
If the 172.16.10.72 machine breaks down and you cannot log in via
SSH, ignore this step.

ansible-playbook stop.yml --tags=dm-worker -l dm_worker1

3. Edit the inventory.ini file and add the new DM-worker instance.
Edit the inventory.ini file, comment or delete the line where the original dm_worker1
instance (172.16.10.72) that you want to replace exists, and add the information for
the new dm_worker1 instance (172.16.10.75).
To pull the relay log from a different binlog position or GTID Sets, you also need to
update corresponding {relay_binlog_name} or {relay_binlog_gtid}.

159

[dm_worker_servers]
dm_worker1 source_id="mysql-replica-01" ansible_host=172.16.10.75

↪→ server_id=101 mysql_host=172.16.10.81 mysql_user=root
↪→ mysql_password='VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=' mysql_port=3306

dm_worker1 source_id="mysql-replica-01" ansible_host=172.16.10.72
↪→ server_id=101 mysql_host=172.16.10.81 mysql_user=root
↪→ mysql_password='VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=' mysql_port=3306

dm_worker2 source_id="mysql-replica-02" ansible_host=172.16.10.73
↪→ server_id=102 mysql_host=172.16.10.82 mysql_user=root
↪→ mysql_password='VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=' mysql_port=3306

4. Deploy the new DM-worker instance.
ansible-playbook deploy.yml --tags=dm-worker -l dm_worker1

5. Migrate the relay log.

• If the 172.16.10.72machine is still accessible, you can directly copy all data from
the {dm_worker_relay_dir} directory to the corresponding directory of the new
DM-worker instance.

• If 172.16.10.72 machine is no longer accessible, you may need to manually re-
cover data such as the relay log directories in Step 9.

6. Start the new DM-worker instance.
ansible-playbook start.yml --tags=dm-worker -l dm_worker1

7. Configure and restart the DM-master service.
ansible-playbook rolling_update.yml --tags=dm-master

8. Configure and restart the Prometheus service.
ansible-playbook rolling_update_monitor.yml --tags=prometheus

9. Start and verify data migration task.
Execute start-task command to start data migration task. If no error is reported,
then DM-worker migration completes successfully. If the following error is reported,
you need to manually fix the relay log directory.
fail to initial unit Sync of subtask test-task : UUID suffix 000002

↪→ with UUIDs [1ddbf6d3-d3b2-11e9-a4e9-0242ac140003.000001] not
↪→ found

160

This error occurs because the upstream MySQL of the DM-worker instance to be
replaced has been switched. You can fix this by following these steps:

1. Use stop-task to stop data migration task.
2. Use ansible-playbook stop.yml --tags=dm-worker -l dm_worker1 to stop

the DM-worker instance.
3. Update the suffix of the subdirectory of the relay log, such as renaming

1ddbf6d3-d3b2-11e9-a4e9-0242ac140003.000001 to 1ddbf6d3-d3b2-11e9-
↪→ a4e9-0242ac140003.000002.

4. Update the index file server-uuid.index in the subdirectory of the relay
log, such as changing 1ddbf6d3-d3b2-11e9-a4e9-0242ac140003.000001 to
1ddbf6d3-d3b2-11e9-a4e9-0242ac140003.000002.

5. Use ansible-playbook start.yml --tags=dm-worker -l dm_worker1 to start
the DM-worker instance.

6. Restart and verify data migration task.

8.2 Upgrade Data Migration

This document introduces how to upgrade your Data Migration (DM) version to an
incompatible version.

Note:

• Unless otherwise stated, DM version upgrade means upgrading DM from
the previous version with an upgrade procedure to the current version.

• Unless otherwise stated, all the following upgrade examples assume that
you have downloaded the corresponding DM version and DM-Ansible
version, and the DM binary exists in the corresponding directory of
DM-Ansible. (For how to download the DM binary, see Upgrade the
component version).

• Unless otherwise stated, all the following upgrade examples assume that
all the data migration tasks have been stopped before the upgrade and all
the migration tasks are restarted manually after DM upgrade is finished.

• The following shows the upgrade procedure of DM versions in reverse
chronological order.

8.2.1 Upgrade to v1.0.3

8.2.1.1 Version information

161

Release Version: v1.0.3
Git Commit Hash: 41426af6cffcff9a325697a3bdebeadc9baa8aa6
Git Branch: release-1.0
UTC Build Time: 2019-12-13 07:04:53
Go Version: go version go1.13 linux/amd64

8.2.1.2 Main changes

• Add the command mode in dmctl
• Support migrating the ALTER DATABASE DDL statement
• Optimize the error message output
• Fix the panic-causing data race issue occurred when the full import unit pauses or

exits
• Fix the issue that stop-task and pause-task might not take effect when retrying

SQL operations to the downstream

8.2.1.3 Upgrade operation example

1. Download the new version of DM-Ansible, and confirm that there is dm_version =
↪→ v1.0.3 in the inventory.ini file.

2. Run ansible-playbook local_prepare.yml to download the new DM binary file to
the local disk.

3. Run ansible-playbook rolling_update.yml to perform a rolling update for the DM
cluster components.

4. Run ansible-playbook rolling_update_monitor.yml to perform a rolling update
for the DM monitoring components.

Note:
When you upgrade DM to the 1.0.3 version, you must make sure that all DM
cluster components (dmctl, DM-master, and DM-worker) are upgraded. Do
not upgrade only a part of the components. Otherwise, an error might occur.

8.2.2 Upgrade to v1.0.2

8.2.2.1 Version information
Release Version: v1.0.2
Git Commit Hash: affc6546c0d9810b0630e85502d60ed5c800bf25

162

Git Branch: release-1.0
UTC Build Time: 2019-10-30 05:08:50
Go Version: go version go1.12 linux/amd64

8.2.2.2 Main changes

• Support automatically generating some configuration items for DM-worker to reduce
manual configuration cost

• Support automatically generating the parameters of Mydumper database and tables
to reduce manual configuration cost

• Optimize the default output of query-status to highlight important information
• Directly manage the DB connection to the downstream instead of using the built-in

connection pool to optimize the handling of and retry for SQL errors
• Fix the panic that might occur when the DM-worker process is started or when the

DML statement is failed to execute
• Fix the bug that the timeout of executing the sharding DDL statements (for example,

ADD INDEX) might cause that the subsequent sharding DDL statements cannot be
correctly coordinated

• Fix the bug that the start-task command cannot be executed when some DM-workers
are inaccessible

• Improve the automatic retry policy for the 1105 error

8.2.2.3 Upgrade operation example

1. Download the new version of DM-Ansible, and confirm that there is dm_version =
↪→ v1.0.2 in the inventory.ini file.

2. Run ansible-playbook local_prepare.yml to download the new DM binary file to
the local disk.

3. Run ansible-playbook rolling_update.yml to perform a rolling update for the DM
cluster components.

4. Run ansible-playbook rolling_update_monitor.yml to perform a rolling update
for the DM monitoring components.

Note:
When you upgrade DM to the 1.0.2 version, you must make sure that all DM
cluster components (dmctl, DM-master, and DM-worker) are upgraded. Do
not upgrade only a part of the components. Otherwise, an error might occur.

163

8.2.3 Upgrade to v1.0.1

8.2.3.1 Version information
Release Version: v1.0.1
Git Commit Hash: e63c6cdebea0edcf2ef8c91d84cff4aaa5fc2df7
Git Branch: release-1.0
UTC Build Time: 2019-09-10 06:15:05
Go Version: go version go1.12 linux/amd64

8.2.3.2 Main changes

• Fix the issue that DM frequently re-establishes the database connection in some situ-
ations

• Fix the panic that might occur when using the query-status command

8.2.3.3 Upgrade operation example

1. Download the new version of DM-Ansible, and confirm that there is dm_version =
↪→ v1.0.1 in the inventory.ini file.

2. Run ansible-playbook local_prepare.yml to download the new DM binary file to
the local disk.

3. Run ansible-playbook rolling_update.yml to perform a rolling update for the DM
cluster components.

4. Run ansible-playbook rolling_update_monitor.yml to perform a rolling update
for the DM monitoring components.

Note:
When you upgrade DM to the 1.0.1 version, you must make sure that all DM
cluster components (dmctl, DM-master, and DM-worker) are upgraded. Do
not upgrade only a part of the components. Otherwise, an error might occur.

8.2.4 Upgrade to v1.0.0-10-geb2889c9 (1.0 GA)

8.2.4.1 Version information
Release Version: v1.0.0-10-geb2889c9
Git Commit Hash: eb2889c9dcfbff6653be9c8720a32998b4627db9
Git Branch: release-1.0
UTC Build Time: 2019-09-06 03:18:48
Go Version: go version go1.12 linux/amd64

164

8.2.4.2 Main changes

• Support automatically recovering migration tasks for some abnormal situations
• Improve compatibility with DDL syntaxes
• Fix the bug that the abnormal connection to the upstream database might cause data

loss

8.2.4.3 Upgrade operation example

1. Download the new version of DM-Ansible, and confirm that there is dm_version =
↪→ v1.0.0 in the inventory.ini file.

2. Run ansible-playbook local_prepare.yml to download the new DM binary file to
the local disk.

3. Run ansible-playbook rolling_update.yml to perform a rolling update for the DM
cluster components.

4. Run ansible-playbook rolling_update_monitor.yml to perform a rolling update
for the DM monitoring components.

Note:
When you upgrade DM to the 1.0 GA version, you must make sure that all
DM cluster components (dmctl, DM-master, and DM-worker) are upgraded.
Do not upgrade only a part of the components. Otherwise, an error might
occur.

8.2.5 Upgrade to v1.0.0-rc.1-12-gaa39ff9

8.2.5.1 Version information
Release Version: v1.0.0-rc.1-12-gaa39ff9
Git Commit Hash: aa39ff981dfb3e8c0fa4180127246b253604cc34
Git Branch: dm-master
UTC Build Time: 2019-07-24 02:26:08
Go Version: go version go1.11.2 linux/amd64

8.2.5.2 Main changes
Starting from this release, DM checks all configurations strictly. Unrecognized configura-

tion triggers an error. This is to ensure that users always know exactly what the configuration
is.

165

8.2.5.3 Upgrade notes
Before starting the DM-master or DM-worker, ensure that the obsolete configuration

information has been deleted and there are no redundant configuration items.
Otherwise, the starting might fail. In this situation, you can delete the deprecated config-

uration based on the failure information. These are two possible deprecated configurations:

• meta-file in dm-worker.toml
• server-id in mysql-instances in task.yaml

9 Manage Migration Tasks

9.1 Manage the Data Migration Task

This document describes how to manage and maintain the data migration task using the
dmctl component. For the Data Migration cluster deployed using DM-Ansible, the dmctl
binary file is in dm-ansible/dmctl.

The dmctl component supports the interactive mode for manual operations, and also
supports the command mode for the script.

9.1.1 dmctl interactive mode

This section describes the basic use of dmctl commands in the interactive mode.

Note:
The interactive mode does not support Bash features. For example, you need
to directly pass string flags instead of passing them in quotes.

9.1.1.1 dmctl help
$./dmctl --help
Usage of dmctl:
Prints the version information.
-V prints version and exit
-config string

path to config file
Encrypts the database password according to the encryption method

↪→ provided by DM; used in DM configuration files.
-encrypt string

166

encrypt plaintext to ciphertext
The DM-master access address. dmctl interacts with the DM-master to

↪→ complete task management operations.
-master-addr string

master API server addr
-rpc-timeout string

rpc timeout ("10m" by default)

9.1.1.2 Database password encryption
In DM configuration files, you need to use the password encrypted using dmctl, otherwise

an error occurs. For a same original password, the password is different after each encryption.
$./dmctl -encrypt 123456
VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=

9.1.1.3 Task management overview
Enter the interactive mode to interact with DM-master.

./dmctl -master-addr 172.16.30.14:8261

Welcome to dmctl
Release Version: v1.0.1
Git Commit Hash: e63c6cdebea0edcf2ef8c91d84cff4aaa5fc2df7
Git Branch: release-1.0
UTC Build Time: 2019-09-10 06:15:05
Go Version: go version go1.12 linux/amd64

» help
DM control

Usage:
dmctl [command]

Available Commands:
break-ddl-lock forcefully break DM-worker's DDL lock
check-task check the config file of the task
help help about any command
migrate-relay migrate DM-worker's relay unit
pause-relay pause DM-worker's relay unit
pause-task pause a specified running task
purge-relay purge relay log files of the DM-worker according to the

↪→ specified filename
query-error query task error

167

query-status query task status
refresh-worker-tasks refresh worker -> tasks mapper
resume-relay resume DM-worker's relay unit
resume-task resume a specified paused task
show-ddl-locks show un-resolved DDL locks
sql-inject inject (limited) SQLs into binlog replication unit as

↪→ binlog events
sql-replace replace SQLs matched by a specific binlog position (

↪→ binlog-pos) or a SQL pattern (sql-pattern); each SQL must end with a
↪→ semicolon

sql-skip skip the binlog event matched by a specific binlog
↪→ position (binlog-pos) or a SQL pattern (sql-pattern)

start-task start a task as defined in the config file
stop-task stop a specified task
switch-relay-master switch the master server of the DM-worker's relay unit
unlock-ddl-lock forcefully unlock DDL lock
update-master-config update the config of the DM-master
update-relay update the relay unit config of the DM-worker
update-task update a task's config for routes, filters, or block-

↪→ allow-list

Flags:
-h, --help help for dmctl
-w, --worker strings DM-worker ID

Use "dmctl [command] --help" for more information about a command.

9.1.2 Manage the data migration task

This section describes how to use the task management commands to execute corre-
sponding operations.

9.1.2.1 Create the data migration task
You can use the start-task command to create the data migration task. Data Migration

prechecks the corresponding privileges and configuration automatically while starting the
data migration.
help start-task

start a task as defined in the config file

Usage:
dmctl start-task [-w worker ...] <config-file> [flags]

168

Flags:
-h, --help help for start-task

Global Flags:
-w, --worker strings DM-worker ID

9.1.2.1.1 Command usage example
start-task [-w "172.16.30.15:8262"] ./task.yaml

9.1.2.1.2 Flags description

• -w: (Optional) Specifies the group of DM-workers to execute task.yaml. If it is set,
only subtasks of the specified task on these DM-workers are started.

• config-file: (Required) Specifies the file path of task.yaml.

9.1.2.1.3 Returned results
{
 "result": true,
 "msg": "",
 "workers": [
 {
 "result": true,
 "worker": "172.16.30.15:8262",
 "msg": ""
 },
 {
 "result": true,
 "worker": "172.16.30.16:8262",
 "msg": ""
 }
]
}

9.1.2.2 Check the data migration task status
You can use the query-status task management command to check the status of the

data migration task. For details about the query result and subtask status, see Query Status.
help query-status

169

query task status

Usage:
dmctl query-status [-w worker ...] [task-name] [flags]

Flags:
-h, --help help for query-status

Global Flags:
-w, --worker strings DM-worker ID

9.1.2.2.1 Command usage example
query-status

9.1.2.2.2 Flags description

• -w: (Optional) Specifies the group of DM-workers where the subtasks of the migration
task (that you want to query) run.

• task-name: (Optional) Specifies the task name. If it is not set, the results of all data
migration tasks are returned.

9.1.2.2.3 Returned results
For detailed description of query parameters and a complete list of returned result, refer

to Query status.

9.1.2.3 Check query errors
You can use query-error to check error information on migration tasks or relay units.

Compared to query-status, query-error only retrieves information related to the error
itself.

query-error is often used to obtain the binlog position information required by sql-
↪→ skip/sql-replace. For details on the flags and results of query-error, refer to query
↪→ -error in Skip or Replace Abnormal SQL Statements.

9.1.2.4 Pause the data migration task
You can use the pause-task command to pause a data migration task.

help pause-task

170

pause a specified running task

Usage:
dmctl pause-task [-w worker ...] <task-name | task-file> [flags]

Flags:
-h, --help help for pause-task

Global Flags:
-w, --worker strings DM-worker ID

Note:
The differences between pause-task and stop-task are:

• pause-task only pauses a migration task, and the task information is
retained in the memory, so that you can query using query-status.
stop-task terminates a migration task and removes all task related in-
formation from the memory. This means you cannot use query-status
to query. Data and the corresponding dm_meta like “checkpoint” that
have been migrated to the downstream are not affected.

• pause-task is generally used to pause the task for troubleshooting, while
stop-task is used to permanently end a migration task, or co-work with
start-task to update the configuration information.

9.1.2.4.1 Command usage example
pause-task [-w "127.0.0.1:8262"] task-name

9.1.2.4.2 Flags description

• -w: (Optional) Specifies the group of DM-workers where the subtasks of the migration
task (that you want to pause) run. If it is set, only subtasks on the specified DM-
workers are paused.

• task-name | task-file: (Required) Specifies the task name or task file path.

9.1.2.4.3 Returned results
pause-task test

171

{
 "op": "Pause",
 "result": true,
 "msg": "",
 "workers": [
 {

"meta": {
"result": true,
"worker": "172.16.30.15:8262",
"msg": ""

},
"op": "Pause",
"logID": "2"

 },
 {

"meta": {
"result": true,
"worker": "172.16.30.16:8262",
"msg": ""

},
"op": "Pause",
"logID": "2"

 }
]
}

9.1.2.5 Resume the data migration task
You can use the resume-task command to resume the data migration task in the Paused

↪→ state. This is generally used in scenarios where you want to manually resume a data
migration task after you handle the errors that cause the task to pause.
help resume-task

resume a specified paused task

Usage:
dmctl resume-task [-w worker ...] <task-name | task-file> [flags]

Flags:
-h, --help help for resume-task

Global Flags:
-w, --worker strings DM-worker ID

172

9.1.2.5.1 Command usage example
resume-task [-w "127.0.0.1:8262"] task-name

9.1.2.5.2 Flags description

• -w: (Optional) Specifies the group of DM-workers where the subtasks of the migration
task (that you want to restart) run. If it is set, only subtasks on the specified DM-
workers are restarted.

• task-name | task-file: (Required) Specifies the task name or task file path.

9.1.2.5.3 Returned results
resume-task test

{
"op": "Resume",
"result": true,
"msg": "",
"workers": [

{
"meta": {

"result": true,
"worker": "172.16.30.15:8262",
"msg": ""

},
"op": "Resume",
"logID": "3"

},
{

"meta": {
"result": true,
"worker": "172.16.30.16:8262",
"msg": ""

},
"op": "Resume",
"logID": "3"

}
]

}

9.1.2.6 Stop the data migration task
You can use the stop-task command to stop a data migration task. For differences

between stop-task and pause-task, refer to Pause the data migration task.

173

help stop-task

stop a specified task

Usage:
dmctl stop-task [-w worker ...] <task-name | task-file> [flags]

Flags:
-h, --help help for stop-task

Global Flags:
-w, --worker strings DM-worker ID

9.1.2.6.1 Command usage example
stop-task [-w "127.0.0.1:8262"] task-name

9.1.2.6.2 Flags description

• -w: (Optional) Specifies the group of DM-workers where the subtasks of the migration
task (that you want to stop) run. If it is set, only subtasks on the specified DM-workers
are stopped.

• task-name | task-file: (Required) Specifies the task name or task file path.

9.1.2.6.3 Returned results
stop-task test

{
"op": "Stop",
"result": true,
"msg": "",
"workers": [

{
"meta": {

"result": true,
"worker": "172.16.30.15:8262",
"msg": ""

},
"op": "Stop",
"logID": "4"

},

174

{
"meta": {

"result": true,
"worker": "172.16.30.16:8262",
"msg": ""

},
"op": "Stop",
"logID": "4"

}
]

}

9.1.2.7 Update the data migration task
You can use the update-task command to update the data migration task. The following

items support online update, while all other items do not support online update.

• table route rules
• block allow list
• binlog filter rules

Note:
If you can make sure that the relay log required by the migration task will not
be removed when the task is stopped, it is recommended that you use Update
items that do not support online update to update task configurations.

9.1.2.7.1 Update items that support online update

1. Check the status of the corresponding data migration task using query-status <task
↪→ -name>.
If stage is not Paused, use pause-task <task-name | task-file> to pause the task.

2. Edit the task.yaml file to update the custom configuration that you need to modify
and the incorrect configuration.

3. Update the task configuration using update-task task.yaml.

4. Resume the task using <task-name | task-file>.

175

9.1.2.7.2 Update items that do not support online update

1. Check the status of the corresponding data migration task using query-status <task
↪→ -name>.
If the task exists, use stop-task <task-name | task-file> to stop the task.

2. Edit the task.yaml file to update the custom configuration that you need to modify
and the incorrect configuration.

3. Restart the task using start-task <config-file>.

9.1.2.7.3 Command usage help
help update-task

update a task's config for routes, filters, block-allow-list

Usage:
dmctl update-task [-w worker ...] <config-file> [flags]

Flags:
-h, --help help for update-task

Global Flags:
-w, --worker strings DM-worker ID

9.1.2.7.4 Command usage example
update-task [-w "127.0.0.1:8262"] ./task.yaml

9.1.2.7.5 Flags description

• -w: (Optional) Specifies the group of DM-workers where the subtasks of the migration
task (that you want to update) run. If it is set, only subtasks on the specified DM-
workers are updated.

• config-file: (Required) Specifies the file path of task.yaml.

9.1.2.7.6 Returned results
update-task task.yaml

176

{
 "result": true,
 "msg": "",
 "workers": [
 {
 "result": true,
 "worker": "172.16.30.15:8262",
 "msg": ""
 },
 {
 "result": true,
 "worker": "172.16.30.16:8262",
 "msg": ""
 }
]
}

9.1.3 Manage DDL locks

Currently, DDL lock related commands mainly include show-ddl-locks, unlock-ddl
↪→ -lock, break-ddl-lock, etc. For more information on their functions, usages, and
applicable scenarios, refer to Handle Sharding DDL Locks Manually.

9.1.4 Other task and cluster management commands

In addition to the common task management commands above, DM also provides some
other commands to manage data migration tasks and DM clusters.

9.1.4.1 Check the task configuration file
You can use the check-task command to check whether a specified configuration file

(task.yaml) of the migration task is valid, or whether the configuration of upstream/down-
stream database, permission setting, and schema meet the migration requirements. For more
details, refer to Precheck the upstream MySQL instance configuration.

When you use start-task to start a migration task, DM also executes all checks done
by check-task.
help check-task

check the config file of the task

Usage:
dmctl check-task <config-file> [flags]

177

Flags:
-h, --help help for check-task

Global Flags:
-w, --worker strings DM-worker ID

9.1.4.1.1 Command usage example
check-task task.yaml

9.1.4.1.2 Flags description

• config-file: (Required) Specifies the path of the task.yaml file

9.1.4.1.3 Returned results
check-task task-test.yaml

{
"result": true,
"msg": "check pass!!!"

}

9.1.4.2 Pause a relay unit
Relay units automatically run after the DM-worker thread starts. You can use the

pause-relay command to pause the running relay units.
When you want to switch the DM-worker to connect to an upstream MySQL via a virtual

IP, use pause-relay to make corresponding changes on DM.
help pause-relay

pause DM-worker's relay unit

Usage:
dmctl pause-relay <-w worker ...> [flags]

Flags:
-h, --help help for pause-relay

Global Flags:
-w, --worker strings DM-worker ID

178

9.1.4.2.1 Command usage example
pause-relay -w "127.0.0.1:8262"

9.1.4.2.2 Flags description

• -w: (Required) Specifies the DM-worker for which to pause the relay unit

9.1.4.2.3 Returned results
pause-relay -w "172.16.30.15:8262"

{
"op": "InvalidRelayOp",
"result": true,
"msg": "",
"workers": [

{
"op": "PauseRelay",
"result": true,
"worker": "172.16.30.15:8262",
"msg": ""

}
]

}

9.1.4.3 Resume a relay unit
You can use the resume-relay command to resume a relay unit in Paused state.
When you want to switch the DM-worker to connect to an upstream MySQL via a virtual

IP, use resume-relay to make corresponding changes on DM.
help resume-relay

resume DM-worker's relay unit

Usage:
dmctl resume-relay <-w worker ...> [flags]

Flags:
-h, --help help for resume-relay

Global Flags:
-w, --worker strings DM-worker ID

179

9.1.4.3.1 Command usage example
resume-relay -w "127.0.0.1:8262"

9.1.4.3.2 Flags description

• -w: (Required) Specifies the DM-worker for which to resume the relay unit

9.1.4.3.3 Returned results
resume-relay -w "172.16.30.15:8262"

{
"op": "InvalidRelayOp",
"result": true,
"msg": "",
"workers": [

{
"op": "ResumeRelay",
"result": true,
"worker": "172.16.30.15:8262",
"msg": ""

}
]

}

9.1.4.4 Switch the sub-directory for relay logs
Relay units store the binlog data from upstream MySQL instances in sub-directories.

You can use the switch-relay-master command to swith the relay unit to use a new
sub-directory.

When you want to switch the DM-worker to connect to an upstream MySQL via a virtual
IP, use switch-relay-master to make corresponding changes on DM.
help switch-relay-master

switch the master server of the DM-worker's relay unit

Usage:
dmctl switch-relay-master <-w worker ...> [flags]

Flags:
-h, --help help for switch-relay-master

180

Global Flags:
-w, --worker strings DM-worker ID

9.1.4.4.1 Command usage example
switch-relay-master -w "127.0.0.1:8262"

9.1.4.4.2 Flags description

• -w: (Required) Specifies the DM-worker for which to switch the relay unit

9.1.4.4.3 Returned results
switch-relay-master -w "172.16.30.15:8262"

{
"result": true,
"msg": "",
"workers": [

{
"result": true,
"worker": "172.16.30.15:8262",
"msg": ""

}
]

}

9.1.4.5 Manually purge relay log
DM supports Automatic data purge. You can also use purge-relay to manually purge

data.
help purge-relay

purge relay log files of the DM-worker according to the specified filename

Usage:
dmctl purge-relay <-w worker> [--filename] [--sub-dir] [flags]

Flags:
-f, --filename string name of the terminal file before which to purge

↪→ relay log files. Sample format: "mysql-bin.000006"
-h, --help help for purge-relay

181

-s, --sub-dir string specify relay sub directory for --filename. If not
↪→ specified, the latest one will be used. Sample format: "2ae76434-
↪→ f79f-11e8-bde2-0242ac130008.000001"

Global Flags:
-w, --worker strings DM-worker ID

9.1.4.5.1 Command usage example
purge-relay -w "127.0.0.1:8262" --filename "mysql-bin.000003"

9.1.4.5.2 Flags description

• -w: (Required) Specifies the DM-worker for which to perform a clean operation
• --filename: (Required) Specifies the name of the terminal file before which to purge

relay log files. For example, if the value is mysql-bin.000100, the clean operation
stops at mysql-bin.000099.

• --sub-dir: (Optional) Specifies the relay log sub-directory corresponding to --
↪→ filename. If not specified, the latest one is used.

9.1.4.5.3 Returned results
purge-relay -w "127.0.0.1:8262" --filename "mysql-bin.000003"

[warn] no --sub-dir specified for --filename; the latest one will be used
{

"result": true,
"msg": "",
"workers": [

{
"result": true,
"worker": "127.0.0.1:8262",
"msg": ""

}
]

}

9.1.4.6 Preset skip operation
You can use sql-skip to preset a skip operation to be executed when the position or the

SQL statement of the binlog event matches with the specified binlog-pos or sql-pattern.
For descriptions of related parameters and results, refer to sql-skip.

182

9.1.4.7 Preset replace operation
You can use sql-replace to preset a replace operation to be executed when the position

or the SQL statement of the binlog event matches with the specified binlog-pos or sql-
↪→ pattern. For descriptions of related parameters and results, refer to sql-replace.

9.1.4.8 Forcefully refresh the task => DM-workers mapping
You can use the refresh-worker-tasks command to forcefully refresh the task => DM

↪→ -workers mapping cached in the memory of the DM-master.

Note:
Normally it is not necessary to use this command. Use it only when the task
↪→ => DM-workers already exists and you are prompted to refresh it when
executing other commands.

9.1.5 Refresh worker tasks

You can use the refresh-worker-tasks command to forcefully refresh the task => DM
↪→ -workers mapping maintained in the DM-master memory.

Note:
Normally, you do not need to use this command. Use it only when you are sure
that the task => DM-workers mapping exists, but you are still prompted to
refresh while you are executing other commands.

9.1.6 dmctl command mode

The command mode differs from the interactive mode in that you need to append the
task operation right after the dmctl command. The parameters of the task operation in the
command mode are the same as those in the interactive mode.

Note:

• A dmctl command must be followed by only one task operation.
• The task operation can be placed only at the end of the dmctl command.

183

./dmctl -master-addr 172.16.30.14:8261 start-task task.yaml

./dmctl -master-addr 172.16.30.14:8261 stop-task task

./dmctl -master-addr 172.16.30.14:8261 query-status

Available Commands:
break-ddl-lock break-ddl-lock <-w worker ...> <task-name> [--remove-id

↪→] [--exec] [--skip]
check-task check-task <config-file>
migrate-relay migrate-relay <worker> <binlogName> <binlogPos>
pause-relay pause-relay <-w worker ...>
pause-task pause-task [-w worker ...] <task-name>
purge-relay purge-relay <-w worker> [--filename] [--sub-dir]
query-error query-error [-w worker ...] [task-name]
query-status query-status [-w worker ...] [task-name]
refresh-worker-tasks refresh-worker-tasks
resume-relay resume-relay <-w worker ...>
resume-task resume-task [-w worker ...] <task-name>
show-ddl-locks show-ddl-locks [-w worker ...] [task-name]
sql-inject sql-inject <-w worker> <task-name> <sql1;sql2;>
sql-replace sql-replace <-w worker> [-b binlog-pos] [-s sql-pattern

↪→] [--sharding] <task-name> <sql1;sql2;>
sql-skip sql-skip <-w worker> [-b binlog-pos] [-s sql-pattern]

↪→ [--sharding] <task-name>
start-task start-task [-w worker ...] <config-file>
stop-task stop-task [-w worker ...] <task-name>
switch-relay-master switch-relay-master <-w worker ...>
unlock-ddl-lock unlock-ddl-lock [-w worker ...] <lock-ID>
update-master-config update-master-config <config-file>
update-relay update-relay [-w worker ...] <config-file>
update-task update-task [-w worker ...] <config-file>

9.1.7 Deprecated or unrecommended commands

The following commands are either deprecated or only used for debugging purposes.
They might be completely removed or their semantics might be changed in future versions.
Strongly Not Recommended.

• migrate-relay
• sql-inject
• update-master-config
• update-relay

184

9.2 Precheck the upstream MySQL instance configuration

This document introduces the precheck feature provided by DM. This feature is used
to detect possible errors in the upstream MySQL instance configuration when the data
migration task is started.

9.2.1 Command

check-task allows you to precheck whether the upstream MySQL instance configuration
satisfies the DM requirements.

9.2.2 Checking items

Upstream and downstream database users must have the corresponding read and write
privileges. DM checks the following privileges and configuration automatically while the
data migration task is started:

• Database version

– 5.5 < MySQL version < 8.0
– MariaDB version >= 10.1.2

• MySQL binlog configuration

– Whether the binlog is enabled (DM requires that the binlog must be enabled)
– Whether binlog_format=ROW (DM only supports migration of the binlog in the

ROW format)
– Whether binlog_row_image=FULL (DM only supports binlog_row_image=FULL)

• The privileges of the upstream MySQL instance users
MySQL users in DM configuration need to have the following privileges at least:

– REPLICATION SLAVE
– REPLICATION CLIENT
– RELOAD
– SELECT

• The compatibility of the upstream MySQL table schema
TiDB differs from MySQL in compatibility in the following aspects:

– TiDB does not support the foreign key.
– Character set compatibility differs.

DM will also check whether the primary key or unique key restriction exists in all
upstream tables. This check is introduced in v1.0.7.

185

https://pingcap.com/docs/stable/reference/sql/character-set/

• The consistency of the sharded tables in the multiple upstream MySQL instances

– The schema consistency of all sharded tables
* Column size
* Column name
* Column position
* Column type
* Primary key
* Unique index

– The conflict of the auto increment primary keys in the sharded tables
* The check fails in the following two conditions:

· The auto increment primary key exists in the sharded tables and its col-
umn type is not bigint.

· The auto increment primary key exists in the sharded tables and its col-
umn type is bigint, but column mapping is not configured.

* The check succeeds in other conditions except the two above.

9.2.2.1 Disable checking items
DM checks items according to the task type, and you can use ignore-checking-items

↪→ in the task configuration file to disable checking items. The list of element options for
ignore-checking-items is as follows:

Element Description
all Disables

all
checks

dump_privilegeDisables
check-
ing
dump-
related
privi-
leges of
the up-
stream
MySQL
in-
stance
user

186

Element Description
replication_privilegeDisables

check-
ing
replication-
related
privi-
leges of
the up-
stream
MySQL
in-
stance
user

version Disables
check-
ing the
up-
stream
database
version

binlog_enableDisables
check-
ing
whether
the up-
stream
database
has
binlog
en-
abled

187

Element Description
binlog_formatDisables

check-
ing
whether
the
binlog
format
of the
up-
stream
database
is
ROW

binlog_row_imageDisables
check-
ing
whether
the bin-
log_row_image
of the
up-
stream
database
is
FULL

table_schemaDisables
check-
ing the
com-
patibil-
ity of
the up-
stream
MySQL
table
schema

188

Element Description
schema_of_shard_tablesDisables

check-
ing
whether
the
schemas
of up-
stream
MySQL
sharded
tables
are
consis-
tent in
the
multi-
instance
shard-
ing
sce-
nario

auto_increment_IDDisables
check-
ing the
con-
flicts of
auto-
increment
pri-
mary
keys of
the up-
stream
MySQL
shared
tables
in the
multi-
instance
shard-
ing
sce-
nario

189

9.3 Data Migration Query Status

This document introduces the query result, task status, and subtask status of Data
Migration (DM).

9.3.1 Query result

» query-status

{
"result": true, # Whether the query is successful.
"msg": "", # Describes the cause of the unsuccessful query.
"tasks": [# Migration task list.

{
"taskName": "test-1", # The task name
"taskStatus": "Running", # The status of the task, including "

↪→ New", "Running", "Paused", "Stopped", "Finished", and "
↪→ Error".

"workers": [# The list of DM-workers that are
↪→ used by the task.
"127.0.0.1:8262"

]
},
{

"taskName": "test-2",
"taskStatus": "Error - Some error occurred in subtask", # A

↪→ subtask encounters an error and is paused.
"workers": [

"127.0.0.1:8262",
"127.0.0.1:8263"

]
},
{

"taskName": "test-3",
"taskStatus": "Error - Relay status is Error", # An error occurs

↪→ in the Relay processing unit corresponding to a subtask
↪→ that is in the Sync phase.

"workers": [
"127.0.0.1:8263",
"127.0.0.1:8264"

]
}

]
}

190

For detailed descriptions of taskStatus under the tasks section, refer to Task status.
It is recommended that you use query-status by the following steps:

1. Use query-status to check whether each on-going task is in the normal state.
2. If any error occurs in a task, use the query-status <taskName> command to see

detailed error information. <taskName> in this command indicates the name of the
task that encounters the error.

9.3.2 Task status

The status of a DM migration task depends on the status of each subtask assigned to
DM-worker. For detailed descriptions of subtask status, see Subtask status. The table below
shows how the subtask status is related to task status.

Subtask
sta-
tus
in a
task

Task
sta-
tus

One
sub-
task
is in
the
paused
↪→
state
and
error
infor-
ma-
tion
is re-
turned.

Error
↪→
↪→ -
↪→
↪→ Some
↪→
↪→ error
↪→
↪→ occurred
↪→
↪→ in
↪→
↪→ subtask
↪→

191

Subtask
sta-
tus
in a
task

Task
sta-
tus

One
sub-
task
in
the
Sync
phase
is in
the
Running
↪→
state
but
its
Re-
lay
pro-
cess-
ing
unit
is
not
run-
ning
(in
the
Error
↪→ /Paused
↪→ /Stopped
↪→
state).

Error
↪→
↪→ -
↪→
↪→ Relay
↪→
↪→ status
↪→
↪→ is
↪→
↪→ Error
↪→ /
↪→ Paused
↪→ /
↪→ Stopped
↪→

192

Subtask
sta-
tus
in a
task

Task
sta-
tus

One
sub-
task
is in
the
Paused
↪→
state
and
no
error
infor-
ma-
tion
is re-
turned.

Paused
↪→

All
sub-
tasks
are
in
the
New
state.

New

All
sub-
tasks
are
in
the
Finished
↪→
state.

Finished
↪→

193

Subtask
sta-
tus
in a
task

Task
sta-
tus

All
sub-
tasks
are
in
the
Stopped
↪→
state.

Stopped
↪→

Other
situa-
tions

Running
↪→

9.3.3 Detailed query result

» query-status test

» query-status
{

"result": true, # Whether the query is successful.
"msg": "", # Describes the cause for the unsuccessful query.
"workers": [# DM-worker list.

{
"result": true,
"worker": "172.17.0.2:8262", # The `host:port` information of the

↪→ DM-worker.
"msg": "",
"subTaskStatus": [# The information of all the subtasks

↪→ of the DM-worker.
{

"name": "test", # The name of the subtask.
"stage": "Running", # The running status of the subtask,

↪→ including "New", "Running", "Paused", "Stopped", and
↪→ "Finished".

"unit": "Sync", # The processing unit of DM,
↪→ including "Check", "Dump", "Load", and "Sync".

"result": null, # Displays the error information if a
↪→ subtask fails.

194

"unresolvedDDLLockID": "test-`test`.`t_target`", # The
↪→ sharding DDL lock ID, used for manually handling the
↪→ sharding DDL

lock in the
↪→
↪→ abnormal
↪→
↪→ condition
↪→ .

"sync": { # The replication information of
↪→ the `Sync` processing unit. This information is
↪→ about the

same component with the current
↪→ processing unit.

"totalEvents": "12", # The total number of binlog
↪→ events that are replicated in this subtask.

"totalTps": "1", # The number of binlog events that
↪→ are replicated in this subtask per second.

"recentTps": "1", # The number of binlog events that
↪→ are replicated in this subtask in the last one
↪→ second.

"masterBinlog": "(bin.000001, 3234)",
↪→ # The binlog position in
↪→ the upstream database.

"masterBinlogGtid": "c0149e17-dff1-11e8-b6a8-0242
↪→ ac110004:1-14", # The GTID information in the
↪→ upstream database.

"syncerBinlog": "(bin.000001, 2525)",
↪→ # The position of the
↪→ binlog that has been replicated

#
↪→
↪→ in
↪→
↪→ the
↪→
↪→ `
↪→ Sync
↪→ `
↪→
↪→ processing
↪→
↪→ unit
↪→ .
↪→

195

"syncerBinlogGtid": "",
↪→ # It is
↪→ always empty because `Sync` does not use GTID to

#
↪→
↪→ migrate
↪→
↪→ data
↪→ .
↪→

"blockingDDLs": [# The DDL list that is blocked
↪→ currently. It is not empty only when all the
↪→ upstream tables of this

DM-worker are in the "synced"
↪→ status. In this case, it
↪→ indicates the sharding DDL
↪→ statements to be executed
↪→ or that are skipped.

"USE `test`; ALTER TABLE `test`.`t_target` DROP
↪→ COLUMN `age`;"

],
"unresolvedGroups": [# The sharding group that is not

↪→ resolved.
{

"target": "`test`.`t_target`", # The
↪→ downstream database table to be
↪→ replicated.

"DDLs": [
"USE `test`; ALTER TABLE `test`.`t_target`

↪→ DROP COLUMN `age`;"
],
"firstPos": "(bin|000001.000001, 3130)", # The

↪→ starting position of the sharding DDL
↪→ statement.

"synced": [# The
↪→ upstream sharded table whose executed
↪→ sharding DDL statement has been read by
↪→ the `Sync` unit.
"`test`.`t2`"
"`test`.`t3`"
"`test`.`t1`"

],
"unsynced": [# The

↪→ upstream table that has not executed this
↪→ sharding DDL

196

#
↪→ statement
↪→ .
↪→
↪→ If
↪→
↪→ any
↪→
↪→ upstream
↪→
↪→ tables
↪→
↪→ have
↪→
↪→ not
↪→
↪→ finished
↪→
↪→ replication
↪→ ,
↪→

`
↪→ blockingDDLs
↪→ `
↪→
↪→ is
↪→
↪→ empty
↪→ .
↪→

]
}

],
"synced": false # Whether the incremental

↪→ replication catches up with the upstream and has
↪→ the same binlog position as that in the

upstream. The save point is not
↪→ refreshed in real time in
↪→ the `Sync` background, so "
↪→ false" of "synced"

does not always mean a
↪→ replication delay exits.

}
}

],

197

"relayStatus": { # The replication status of the relay log.
"masterBinlog": "(bin.000001, 3234)", #

↪→ The binlog position of the upstream database.
"masterBinlogGtid": "c0149e17-dff1-11e8-b6a8-0242ac110004

↪→ :1-14", # The binlog GTID information of the upstream
↪→ database.

"relaySubDir": "c0149e17-dff1-11e8-b6a8-0242ac110004.000001",
↪→ # The currently used subdirectory of the relay log.

"relayBinlog": "(bin.000001, 3234)", #
↪→ The position of the binlog that has been pulled to the
↪→ local storage.

"relayBinlogGtid": "c0149e17-dff1-11e8-b6a8-0242ac110004
↪→ :1-14", # The GTID information of the binlog that has
↪→ been pulled to the local

#
↪→ storage
↪→ .
↪→

"relayCatchUpMaster": true, # Whether the progress of
↪→ migrating the relay log in the local storage has been
↪→ the same as that in

the upstream.
"stage": "Running", # The status of the `Sync`

↪→ processing unit of the relay log.
"result": null

},
"sourceID": "172.17.0.2:3306" # ID of the upstream instance or

↪→ replication group
},
{

"result": true,
"worker": "172.17.0.3:8262",
"msg": "",
"subTaskStatus": [

{
"name": "test",
"stage": "Running",
"unit": "Load",
"result": null,
"unresolvedDDLLockID": "",
"load": { # The replication information of

↪→ the `Load` processing unit.
"finishedBytes": "115", # The number of bytes that have

↪→ been loaded.

198

"totalBytes": "452", # The total number of bytes that
↪→ need to be loaded.

"progress": "25.44 %" # The progress of the loading
↪→ process.

}
}

],
"relayStatus": {

"masterBinlog": "(bin.000001, 28507)",
"masterBinlogGtid": "c0149e17-dff1-11e8-b6a8-0242ac110004

↪→ :1-96",
"relaySubDir": "c0149e17-dff1-11e8-b6a8-0242ac110004.000001",
"relayBinlog": "(bin.000001, 28507)",
"relayBinlogGtid": "c0149e17-dff1-11e8-b6a8-0242ac110004

↪→ :1-96",
"relayCatchUpMaster": true,
"stage": "Running",
"result": null

},
"sourceID": "172.17.0.3:3306"

},
{

"result": true,
"worker": "172.17.0.6:8262",
"msg": "",
"subTaskStatus": [

{
"name": "test",
"stage": "Paused",
"unit": "Load",
"result": { # The error example.

"isCanceled": false,
"errors": [

{
"Type": "ExecSQL",
"msg": "Error 1062: Duplicate entry

↪→ '1155173304420532225' for key 'PRIMARY'\n
↪→ /home/jenkins/workspace/build_dm/go/src/
↪→ github.com/pingcap/tidb-enterprise-tools/
↪→ loader/db.go:160: \n/home/jenkins/
↪→ workspace/build_dm/go/src/github.com/
↪→ pingcap/tidb-enterprise-tools/loader/db.
↪→ go:105: \n/home/jenkins/workspace/
↪→ build_dm/go/src/github.com/pingcap/tidb-
↪→ enterprise-tools/loader/loader.go:138:

199

↪→ file test.t1.sql"
}

],
"detail": null

},
"unresolvedDDLLockID": "",
"load": {

"finishedBytes": "0",
"totalBytes": "156",
"progress": "0.00 %"

}
}

],
"relayStatus": {

"masterBinlog": "(bin.000001, 1691)",
"masterBinlogGtid": "97b5142f-e19c-11e8-808c-0242ac110005

↪→ :1-9",
"relaySubDir": "97b5142f-e19c-11e8-808c-0242ac110005.000001",
"relayBinlog": "(bin.000001, 1691)",
"relayBinlogGtid": "97b5142f-e19c-11e8-808c-0242ac110005:1-9",
"relayCatchUpMaster": true,
"stage": "Running",
"result": null,
"sourceID": "172.17.0.6:3306"

}
}

]
}

For the status description and status switch relationship of “stage” of “subTaskStatus”
of “workers”, see Subtask status.

For operation details of “unresolvedDDLLockID” of “subTaskStatus” of “workers”, see
Handle Sharding DDL Locks Manually.

9.3.4 Subtask status

9.3.4.1 Status description

• New:

– The initial status.
– If the subtask does not encounter an error, it is switched to Running; otherwise

it is switched to Paused.

200

• Running: The normal running status.

• Paused:

– The paused status.
– If the subtask encounters an error, it is switched to Paused.
– If you run pause-task when the subtask is in the Running status, the task is

switched to Paused.
– When the subtask is in this status, you can run the resume-task command to

resume the task.

• Stopped:

– The stopped status.
– If you run stop-task when the subtask is in the Running or Paused status, the

task is switched to Stopped.
– When the subtask is in this status, you cannot use resume-task to resume the

task.

• Finished:

– The finished subtask status.
– Only when the full replication subtask is finished normally, the task is switched

to this status.

9.3.4.2 Status switch diagram
error occurs

New --------------------------------|
| |
| resume-task |

v v error occurs | v

Finished <-------------- Running -----------------------> Paused
^ | or pause-task |
| | |

start task | | stop task |
| | |
| v stop task |

Stopped <-------------------------|

201

9.4 Skip or Replace Abnormal SQL Statements

This document introduces how to handle abnormal SQL statements using Data Migration
(DM).

Currently, TiDB is not completely compatible with all MySQL syntax (see the DDL
statements supported by TiDB). Therefore, when DM is migrating data from MySQL to
TiDB and TiDB does not support the corresponding SQL statement, an error might occur
and break the migration process. In this case, there are two ways to resume the migration:

• Use dmctl to manually skip the binlog event to which this SQL statement corresponds

• Use dmctl to manually replace the corresponding binlog event with other specified SQL
statements that should be executed to the downstream later

If you know in advance that an unsupported SQL statement is going to be migrated, you
can also use dmctl to manually preset the skip or replace operation, which is automatically
executed when DM migrates the corresponding binlog event into the downstream and thus
avoid breaking the migration.

9.4.1 Restrictions

• The skip or replace operation is a one-time operation that is only used to skip or
replace the SQL statement unsupported by the downstream TiDB. Do not handle
other migration errors with this approach.

– For other migration errors, try to handle them using Block and allow table lists
or Binlog event filtering.

• If it is unacceptable in the actual production environment that the abnormal DDL
statement is skipped in the downstream TiDB and it cannot be replaced with other
DDL statements, then do not use this approach.

– For example: DROP PRIMARY KEY
– In this scenario, you can only create a new table in the downstream with the new

table schema (after executing the DDL statement), and re-import all the data
into this new table.

• A single skip or replace operation targets at a single binlog event.

• --sharding is only used to preset the operation to the sharding group. You must
preset it before executing the DDL statement and presetting it after executing the
DDL is not allowed.

– --sharding only supports presetting operations, and in this mode, you can only
use --sql-pattern to match the binlog event.

– For the principles of migrating sharding DDL statements using DM, see Merge
and migrate data from sharded tables

202

https://pingcap.com/docs/dev/reference/mysql-compatibility/#ddl
https://pingcap.com/docs/dev/reference/mysql-compatibility/#ddl

9.4.2 Match the binlog event

When the migration task gets interrupted because of the SQL execution error, you can
obtain the position of the corresponding binlog event by using query-error. When you
execute sql-skip or sql-replace, you can specify the position to match the binlog event.

However, when you try to avoid breaking the migration by actively handling unsupported
SQL statements, you cannot know in advance the position of the binlog event, so you need
another approach to match the subsequent binlog events.

In DM, two modes of matching the binlog event are supported (you can only choose one
mode from below):

1. binlog position: the position information of the binlog event

• The binlog position is given by --binlog-pos in the command, and the format is
binlog-filename:binlog-pos, for example, mysql-bin|000001.000003:3270.

• The format of the binlog filename in DM is not completely consistent with that
in the upstream MySQL.

• When the migration error occurs, the position can be directly obtained from
failedBinlogPosition returned by query-error.

2. DDL pattern: the regular expression (only for the DDL statement) matching mode

• The DDL pattern is given by --sql-pattern in the command, for example,
to match ALTER TABLE `db2`.`tbl2` DROP COLUMN `c2`, the corresponding
regular expression should be ~(?i)ALTER\s+TABLE\s+`db2`.`tbl2`\s+DROP\s+
↪→ COLUMN\s+`c2`.

• The regular expression must be prefixed with ~ and cannot contain any common
space (you can replace the space with \s or \s+ in the string).

In the scenario of merging and migrating data from sharded tables, if you need DM to
automatically select a DDL lock owner to execute the skip or replace operation, then you
must use the DDL pattern matching mode because the binlog positions corresponding to
the DDL statements on different DM-workers have no logical connection and are hard to
confirm.

Note:

• You can only register one operator (specified by --binlog-pos) for one
binlog event. The previous one can be overwritten by the newly regis-
tered operator.

• Do not specify an operator for one binlog event by using --binlog-pos
and --sql-pattern at the same time.

203

• The operator is deleted once it successfully matches the binlog event
(not after the execution succeeds). If you need to match again (using
--sql-pattern) later, you have to register a new operator.

9.4.3 Supported scenarios

• Scenario 1: during the migration, the DDL statement unsupported by TiDB is executed
in the upstream and migrated to the downstream, and as a result, the migration task
gets interrupted.

– If it is acceptable that this DDL statement is skipped in the downstream TiDB,
then you can use sql-skip to resume the migration.

– If it is acceptable that this DDL statement is replaced with other DDL statements,
then you can use sql-replace to resume the migration.

• Scenario 2: during the migration, you know in advance that an unsupported SQL
statement is going to be migrated, so you can handle it beforehand to avoid breaking
the migration.

– If it is acceptable that this DDL statement is skipped in the downstream TiDB,
then you can use sql-skip to preset an operation to automatically skip this DDL
statement when it needs to be executed.

– If it is acceptable that this DDL statement is replaced with other DDL statements,
then you can use sql-replace to preset an operation to automatically replace
this DDL statement when it needs to be executed.

9.4.4 Implementation principles

In DM, simplified procedures of incremental data replication can be described as follows:

1. The relay unit is used as a secondary database of the upstream MySQL to fetch the
binlog that is persisted in the local storage as the relay log.

2. The binlog replication unit (sync) reads the local relay log to obtain the binlog event.

3. The binlog replication unit parses the binlog event and builds the DDL/DML state-
ments, and then replicates these statements to the downstream TiDB.

When the binlog replication unit is parsing the binlog event and replicating data to the
downstream, the replication process might get interrupted because the corresponding SQL
statement is not supported by TiDB.

204

In DM, you can register some skip or replace operators for the binlog event. Before
migrating the SQL statements to the downstream, DM compares the current binlog event
information(position, DDL statement) with registered operators. If the position or the DDL
matches with a registered operator, it executes the operation corresponding to the operator
and then remove this operator.

Use sql-skip / sql-replace to resume the migration

1. Use sql-skip or sql-replace to register an operator for the specified binlog position
or DDL pattern.

2. Use resume-task to resume the migration task.

3. Regain and re-parse the binlog event that causes the migration error.

4. The binlog event successfully matches with the registered operator in step 1.

5. Execute the skip or replace operation corresponding to the operator and then the
migration task continues.

Use sql-skip / sql-replace to preset operations to avoid breaking the mi-
gration

1. Use sql-skip or sql-replace to register an operator for the specified DDL pattern.

2. Parse the relay log to obtain the binlog event.

3. The binlog event (including the SQL statements unsupported by TiDB) successfully
matches with the registered operator in step 1.

4. Execute the skip or replace operation corresponding to the operator and then the
migration task continues and does not get interrupted.

Use sql-skip / sql-replace to preset operations to avoid breaking the mi-
gration in the scenario of merging and migrating data from sharded tables

1. Use sql-skip or sql-replace to register an operator (on DM-master) for the specified
DDL pattern.

2. Each DM-worker parses the relay log to obtain the binlog event.

3. DM-master coordinates the DDL lock migration among DM-workers.

4. DM-master checks if the DDL lock migration succeeds, and sends the registered oper-
ator in step 1 to the DDL lock owner.

5. DM-master requests the DDL lock owner to execute the DDL statement.

6. The DDL statement that is to be executed by the DDL lock owner successfully matches
with the received operator in step 4.

7. Execute the skip or replace operation corresponding to the operator and then the
migration task continues.

205

9.4.5 Command

When you use dmctl to manually handle the SQL statements unsupported by TiDB,
the commonly used commands include query-status, query-error, sql-skip and sql-
↪→ replace.

9.4.5.1 query-status
query-status allows you to query the current status of items such as the subtask and

the relay unit in each DM-worker. For details, see query status.

9.4.5.2 query-error
query-error allows you to query the existing errors of the running subtask and relay

unit in DM-workers.

9.4.5.2.1 Command usage
query-error [--worker=127.0.0.1:8262] [task-name]

9.4.5.2.2 Arguments description

• worker:

– Flag parameter, string, --worker, optional
– If it is not specified, this command queries the errors in all DM-workers; if it is

specified, this command queries the error of the specified DM-worker.

• task-name:

– Non-flag parameter, string, optional
– If it is not specified, this command queries the errors of all tasks; if it is specified,

this command queries the error of the specified task.

9.4.5.2.3 Example of results
» query-error test
{

"result": true, # The result of the error query.
"msg": "", # The additional message for the

↪→ failure to the error query.
"workers": [# The information list of DM-

↪→ workers.
{

"result": true, # The result of the error query
↪→ in this DM-worker.

206

"worker": "127.0.0.1:8262", # The IP:port (worker-id) of
↪→ this DM-worker.

"msg": "", # The additional message for the
↪→ failure to the error query in this DM-worker.

"subTaskError": [# The error information of the
↪→ running subtask in this DM-worker.
{

"name": "test", # The task name.
"stage": "Paused", # The status of the current task

↪→ .
"unit": "Sync", # The current processing unit of

↪→ the running task.
"sync": { # The error information of the

↪→ binlog replication unit (sync).
"errors": [# The error information list of

↪→ the current processing unit.
{

// The error information description.
"msg": "exec sqls[[USE `db1`; ALTER TABLE `db1

↪→ `.`tbl1` CHANGE COLUMN `c2` `c2` decimal
↪→ (10,3);]] failed, err:Error 1105:
↪→ unsupported modify column length 10 is
↪→ less than origin 11",

// The position of the failed binlog event.
"failedBinlogPosition": "mysql-bin

↪→ |000001.000003:34642",
// The SQL statement that raises an error.
"errorSQL": "[USE `db1`; ALTER TABLE `db1`.`tbl1

↪→ ` CHANGE COLUMN `c2` `c2` decimal(10,3);]
↪→ "

}
]

}
}

],
"RelayError": { # The error information of the

↪→ relay processing unit in this DM-worker.
"msg": "" # The error information

↪→ description.
}

}
]

}

207

9.4.5.3 sql-skip
sql-skip allows you to preset a skip operation that is to be executed when the position

or the SQL statement of the binlog event matches with the specified binlog-pos or sql-
↪→ pattern.

9.4.5.3.1 Command usage
sql-skip <--worker=127.0.0.1:8262> [--binlog-pos=mysql-bin

↪→ |000001.000003:3270] [--sql-pattern=~(?i)ALTER\s+TABLE\s+`db1`.`tbl1
↪→ `\s+ADD\s+COLUMN\s+col1\s+INT] [--sharding] <task-name>

9.4.5.3.2 Arguments description

• worker:

– Flag parameter, string, --worker
– If --sharding is not specified, worker is required; if --sharding is specified,

worker is forbidden to use.
– worker specifies the DM-worker in which the presetted operation is going to be

executed.

• binlog-pos:

– Flag parameter, string, --binlog-pos
– You must specify binlog-pos or --sql-pattern, and you must not specify both.
– If it is specified, the skip operation is executed when binlog-pos matches with

the position of the binlog event. The format is binlog-filename:binlog-pos,
for example, mysql-bin|000001.000003:3270.

– When the migration error occurs, the position can be obtained from failedBinlogPosition
↪→ returned by query-error.

• sql-pattern:

– Flag parameter, string, --sql-pattern
– You must specify --sql-pattern or binlog-pos, and you must not specify both.
– If it is specified, the skip operation is executed when sql-pattern matches with

the DDL statement (converted by the optional router-rule) of the binlog event.
The format is a regular expression prefixed with ~, for example, ~(?i)ALTER\s+
↪→ TABLE\s+`db1`.`tbl1`\s+ADD\s+COLUMN\s+col1\s+INT.
* Common spaces are not supported in the regular expression temporarily. You
can replace the space with \s or \s+ if it is needed.

* The regular expression must be prefixed with ~. For details, see regular
expression syntax.

208

https://golang.org/pkg/regexp/syntax/#hdr-syntax
https://golang.org/pkg/regexp/syntax/#hdr-syntax

* The schema/table name in the regular expression must be converted by
the optional router-rule, so the converted name is consistent with the
target schema/table name in the downstream. For example, if there
are `shard_db_1`.`shard_tbl_1` in the upstream and `shard_db`.`
↪→ shard_tbl` in the downstream, then you should match `shard_db`.`
↪→ shard_tbl`.

* The schema/table/column name in the regular expression should be marked
by `, for example, `db1`.`tbl1`.

• sharding:

– Flag parameter, boolean, --sharding
– If --worker is not specified, sharding is required; if --worker is specified,

sharding is forbidden to use.
– If sharding is specified, it indicates that the presetted operation is going to be

executed in the DDL lock owner during the sharding DDL migration.

• task-name:

– Non-flag parameter, string, required
– task-name specifies the name of the task in which the presetted operation is going

to be executed.

9.4.5.4 sql-replace
sql-replace allows you to preset a replace operation that is to be executed when the

position or the SQL statement of the binlog event matches with the specified binlog-pos
or sql-pattern.

9.4.5.4.1 Command usage
sql-replace <--worker=127.0.0.1:8262> [--binlog-pos=mysql-bin

↪→ |000001.000003:3270] [--sql-pattern=~(?i)ALTER\s+TABLE\s+`db1`.`tbl1
↪→ `\s+ADD\s+COLUMN\s+col1\s+INT] [--sharding] <task-name> <SQL-1;SQL-2>

9.4.5.4.2 Arguments description

• worker:

– same with --worker of sql-skip

• binlog-pos:

– same with --binlog-pos of sql-skip

• sql-pattern:

– same with --sql-pattern of sql-skip

209

• sharding:

– same with --sharding of sql-skip

• task-name:

– same with task-name of sql-skip

• SQLs:

– Non-flag parameter, string, required
– SQLs specifies the new SQL statements that are going to replace the original

binlog event. You should separate multiple SQL statements with ;, for exam-
ple, ALTER TABLE shard_db.shard_table drop index idx_c2;ALTER TABLE
↪→ shard_db.shard_table DROP COLUMN c2;.

9.4.6 Usage examples

9.4.6.1 Passively skip after the migration gets interrupted

9.4.6.1.1 Application scenario
Assume that you need to migrate the upstream table db1.tbl1 to the downstream TiDB

(not in the scenario of merging and migrating data from sharded tables). The initial table
schema is:
mysql> SHOW CREATE TABLE db1.tbl1;
+-------+--+
| Table | Create Table |
+-------+--+
| tbl1 | CREATE TABLE `tbl1` (
`c1` int(11) NOT NULL,
`c2` decimal(11,3) DEFAULT NULL,
PRIMARY KEY (`c1`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 |
+-------+--+

Now, the following DDL statement is executed in the upstream to alter the table schema
(namely, alter DECIMAL(11, 3) of c2 into DECIMAL(10, 3)):
ALTER TABLE db1.tbl1 CHANGE c2 c2 DECIMAL (10, 3);

Because this DDL statement is not supported by TiDB, the migration task of DM gets
interrupted and reports the following error:
exec sqls[[USE `db1`; ALTER TABLE `db1`.`tbl1` CHANGE COLUMN `c2` `c2`

↪→ decimal(10,3);]] failed,
err:Error 1105: unsupported modify column length 10 is less than origin 11

210

Now, if you query the status of the task using query-status, you can see that stage
has changed into Paused and there is some related error description information in errors.

To obtain the details about the error, you should use query-error. For exam-
ple, you can execute query-error test to get the position of the failed binlog event
(failedBinlogPosition), which is mysql-bin|000001.000003:34642.

9.4.6.1.2 Passively skip the SQL statement
Assume that it is acceptable in the actual production environment that this DDL state-

ment is not executed in the downstream TiDB (namely, the original table schema is re-
tained). Then you can use sql-skip to skip this DDL statement to resume the migration.
The procedures are as follows:

1. Use query-error to obtain the position of the failed binlog event.

• You can get the position from failedBinlogPosition returned by query-error.
• In this example, the position is mysql-bin|000001.000003:34642.

2. Use sql-skip to preset a skip operation that is to be executed when DM migrates this
binlog event to the downstream after using resume-task.
» sql-skip --worker=127.0.0.1:8262 --binlog-pos=mysql-bin

↪→ |000001.000003:34642 test
{

"result": true,
"msg": "",
"workers": [

{
"result": true,
"worker": "",
"msg": ""

}
]

}

You can also view the following log in the corresponding DM-worker node:
2018/12/28 11:17:51 operator.go:121: [info] [sql-operator] set a new

↪→ operator
uuid: 6bfcf30f-2841-4d70-9a34-28d7082bdbd7, pos: (mysql-bin

↪→ |000001.000003, 34642), op: SKIP, args:
on migration unit

3. Use resume-task to resume the migration task

211

» resume-task --worker=127.0.0.1:8262 test
{

"op": "Resume",
"result": true,
"msg": "",
"workers": [

{
"op": "Resume",
"result": true,
"worker": "127.0.0.1:8262",
"msg": ""

}
]

}

You can also view the following log in the corresponding DM-worker node:
2018/12/28 11:27:46 operator.go:158: [info] [sql-operator] binlog-pos (

↪→ mysql-bin|000001.000003, 34642) matched,
applying operator uuid: 6bfcf30f-2841-4d70-9a34-28d7082bdbd7, pos: (

↪→ mysql-bin|000001.000003, 34642), op: SKIP, args:

4. Use query-status to guarantee that the stage of the task has changed into Running.

5. Use query-error to guarantee that no DDL execution error exists.

9.4.6.2 Actively replace before the migration gets interrupted

9.4.6.2.1 Application scenario
Assume that you need to migrate the upstream table db2.tbl2 to the downstream TiDB

(not in the scenario of merging and migrating data from sharded tables). The initial table
schema is:
mysql> SHOW CREATE TABLE db2.tbl2;
+-------+--+
| Table | Create Table |
+-------+--+
| tbl2 | CREATE TABLE `tbl2` (
`c1` int(11) NOT NULL,
`c2` int(11) DEFAULT NULL,
PRIMARY KEY (`c1`),
KEY `idx_c2` (`c2`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 |
+-------+--+

212

Now, the following DDL statement is executed in the upstream to alter the table schema
(namely, DROP COLUMN c2):
ALTER TABLE db2.tbl2 DROP COLUMN c2;

Because this DDL statement is not supported by TiDB, the migration task of DM gets
interrupted and reports the following error:
exec sqls[[USE `db2`; ALTER TABLE `db2`.`tbl2` DROP COLUMN `c2`;]] failed,
err:Error 1105: can't drop column c2 with index covered now

Assume that you know in advance that this DDL statement is not supported
by TiDB before it is executed in the upstream. Then you can use sql-skip or
sql-replace to preset a skip or replace operation for this DDL statement.

For this particular DDL statement, because dropping columns with the index is not
temporarily supported by TiDB, you can use two new SQL statements to replace the original
DDL, namely, DROP the index first and then DROP the column c2.

9.4.6.2.2 Actively replace the SQL statement

1. Design a matchable regular expression for the DDL statement (converted by the op-
tional router-rule) to be executed in the upstream.

• The DDL statement to be executed in the upstream is ALTER TABLE db2.tbl2
↪→ DROP COLUMN c2;.

• Because its router-rule conversion does not exist, you can design the following
regular expression:
~(?i)ALTER\s+TABLE\s+`db2`.`tbl2`\s+DROP\s+COLUMN\s+`c2`

2. Build new DDL statements that are used to replace this original DDL statement.
ALTER TABLE `db2`.`tbl2` DROP INDEX idx_c2;ALTER TABLE `db2`.`tbl2`

↪→ DROP COLUMN `c2`

3. Use sql-replace to preset a replace operation that is to be executed when DM mi-
grates the corresponding binlog event to the downstream.
» sql-replace --worker=127.0.0.1:8262 --sql-pattern=~(?i)ALTER\s+TABLE\

↪→ s+`db2`.`tbl2`\s+DROP\s+COLUMN\s+`c2` test ALTER TABLE `db2`.`
↪→ tbl2` DROP INDEX idx_c2;ALTER TABLE `db2`.`tbl2` DROP COLUMN `c2`

{
"result": true,
"msg": "",
"workers": [

213

{
"result": true,
"worker": "",
"msg": ""

}
]

}

You can also view the following log in the corresponding DM-worker node:
2018/12/28 15:33:13 operator.go:121: [info] [sql-operator] set a new

↪→ operator
uuid: c699a18a-8e75-47eb-8e7e-0e5abde2053c, pattern: ~(?i)ALTER\s+TABLE

↪→ \s+`db2`.`tbl2`\s+DROP\s+COLUMN\s+`c2`,
op: REPLACE, args: ALTER TABLE `db2`.`tbl2` DROP INDEX idx_c2; ALTER

↪→ TABLE `db2`.`tbl2` DROP COLUMN `c2`
on migration unit

4. Execute the DDL statements in the upstream MySQL.

5. Check if the downstream table schema is altered successfully, and you can view the
following log in the corresponding DM-worker node:
2018/12/28 15:33:45 operator.go:158: [info] [sql-operator]
sql-pattern ~(?i)ALTER\s+TABLE\s+`db2`.`tbl2`\s+DROP\s+COLUMN\s+`c2`

↪→ matched SQL
USE `db2`; ALTER TABLE `db2`.`tbl2` DROP COLUMN `c2`;,
applying operator uuid: c699a18a-8e75-47eb-8e7e-0e5abde2053c,
pattern: ~(?i)ALTER\s+TABLE\s+`db2`.`tbl2`\s+DROP\s+COLUMN\s+`c2`,
op: REPLACE, args: ALTER TABLE `db2`.`tbl2` DROP INDEX idx_c2; ALTER

↪→ TABLE `db2`.`tbl2` DROP COLUMN `c2`

6. Use query-status to guarantee that the stage of the task has been sustained as
Running.

7. Use query-error to guarantee that no DDL execution error exists.

9.4.6.3 Passively skip after the migration gets interrupted in the scenario of
merging and migrating data from sharded tables

9.4.6.3.1 Application scenario
Assume that you need to merge and migrate multiple tables in multiple upstreamMySQL

instances to one same table in the downstream TiDB through multiple DM-workers. And
the DDL statement unsupported by TiDB is executed to the upstream sharded tables.

214

After DM-master coordinates the DDL migration through the DDL lock and requests
the DDL lock owner to execute the DDL statement to the downstream, the migration gets
interrupted because this DDL statement is not supported by TiDB.

9.4.6.3.2 Passively skip the SQL statement
In the scenario of merging and migrating data from sharded tables, passively skipping

the unsupported DDL statement has the similar steps with Passively skip after the migration
gets interrupted.

There are two major differences between the two scenarios as follows. In the scenario of
merging and migrating data from sharded tables:

1. You just need the DDL lock owner to execute sql-skip (--worker={DDL-lock-owner
↪→ }).

2. You just need the DDL lock owner to execute resume-task (--worker={DDL-lock-
↪→ owner}).

9.4.6.4 Actively replace before the migration gets interrupted in the scenario
of merging and migrating data from sharded tables

9.4.6.4.1 Application scenario
Assume that you need to merge and migrate the following four tables in the upstream

to one same table `shard_db`.`shard_table` in the downstream:

• In the MySQL instance 1, there is a schema shard_db_1, which has two tables
shard_table_1 and shard_table_2.

• In the MySQL instance 2, there is a schema shard_db_2, which has two tables
shard_table_1 and shard_table_2.

The initial table schema is:
mysql> SHOW CREATE TABLE shard_db_1.shard_table_1;
+---------------+--+
| Table | Create Table |
+---------------+--+
| shard_table_1 | CREATE TABLE `shard_table_1` (
`c1` int(11) NOT NULL,
`c2` int(11) DEFAULT NULL,
PRIMARY KEY (`c1`),
KEY `idx_c2` (`c2`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 |
+---------------+--+

215

Now, the following DDL statement is executed to all upstream sharded tables to alter
the table schemas (namely, DROP COLUMN c2):
ALTER TABLE shard_db_*.shard_table_* DROP COLUMN c2;

When DM coordinates the two DM-workers to migrate this DDL statement through the
sharding DDL lock and requests the DDL lock owner to execute the DDL statement to the
downstream, because this DDL statement is not supported by TiDB, the migration task gets
interrupted and report the following error:
exec sqls[[USE `shard_db`; ALTER TABLE `shard_db`.`shard_table` DROP COLUMN

↪→ `c2`;]] failed,
err:Error 1105: can't drop column c2 with index covered now

Assume that you know in advance that this DDL statement is not supported
by TiDB before it is executed in the upstream. Then you can use sql-skip or
sql-replace to preset a skip or replace operation for this DDL statement.

For this particular DDL statement, because dropping columns with the index is not
temporarily supported by TiDB, you can use two new SQL statements to replace the original
DDL, namely, DROP the index first and then DROP the column c2.

9.4.6.4.2 Actively replace the SQL statement

1. Design a matchable regular expression for the DDL statement (converted by the op-
tional router-rule) to be executed in the upstream.

• The DDL statement to be executed in the upstream is ALTER TABLE shard_db_
↪→ *.shard_table_* DROP COLUMN c2.

• Because the table name should be converted into `shard_db`.`shard_table` by
the router-rule, you can design the following regular expression:
~(?i)ALTER\s+TABLE\s+`shard_db`.`shard_table`\s+DROP\s+COLUMN\s+`

↪→ c2`

2. Build new DDL statements that are used to replace this original DDL statement.
ALTER TABLE `shard_db`.`shard_table` DROP INDEX idx_c2;ALTER TABLE `

↪→ shard_db`.`shard_table` DROP COLUMN `c2`

3. Because this is in the scenario of merging and migrating data from sharded tables,
you can use --sharding to automatically guarantee that the replace operation is only
executed in the DDL lock owner.

4. Use sql-replace to preset a replace operation that is to be executed when DM mi-
grates the corresponding binlog event to the downstream.

216

» sql-replace --sharding --sql-pattern=~(?i)ALTER\s+TABLE\s+`shard_db
↪→ `.`shard_table`\s+DROP\s+COLUMN\s+`c2` test ALTER TABLE `
↪→ shard_db`.`shard_table` DROP INDEX idx_c2;ALTER TABLE `shard_db
↪→ `.`shard_table` DROP COLUMN `c2`

{
"result": true,
"msg": "request with --sharding saved and will be sent to DDL lock

↪→ 's owner when resolving DDL lock",
"workers": [
]

}

You can also view the following log in the DM-master node:
2018/12/28 16:53:33 operator.go:105: [info] [sql-operator] set a new

↪→ operator
uuid: eba35acd-6c5e-4bc3-b0b0-ae8bd1232351, request: name:"test"
op:REPLACE args:"ALTER TABLE `shard_db`.`shard_table` DROP INDEX idx_c2

↪→ ;"
args:"ALTER TABLE `shard_db`.`shard_table` DROP COLUMN `c2`"
sqlPattern:"~(?i)ALTER\\s+TABLE\\s+`shard_db`.`shard_table`\\s+DROP\\s+

↪→ COLUMN\\s+`c2`"
sharding:true

5. Execute the DDL statements to the sharded tables in the upstream MySQL instances.

6. Check if the downstream table schema is altered successfully, and you can also view
the following log in the DDL lock owner node:
2018/12/28 16:54:35 operator.go:121: [info] [sql-operator] set a new

↪→ operator
uuid: c959f2fb-f1c2-40c7-a1fa-e73cd51736dd,
pattern: ~(?i)ALTER\s+TABLE\s+`shard_db`.`shard_table`\s+DROP\s+COLUMN\

↪→ s+`c2`,
op: REPLACE, args: ALTER TABLE `shard_db`.`shard_table` DROP INDEX

↪→ idx_c2; ALTER TABLE `shard_db`.`shard_table` DROP COLUMN `c2`
on migration unit

2018/12/28 16:54:35 operator.go:158: [info] [sql-operator]
sql-pattern ~(?i)ALTER\s+TABLE\s+`shard_db`.`shard_table`\s+DROP\s+

↪→ COLUMN\s+`c2` matched SQL
USE `shard_db`; ALTER TABLE `shard_db`.`shard_table` DROP COLUMN `c2`;,
applying operator uuid: c959f2fb-f1c2-40c7-a1fa-e73cd51736dd,
pattern: ~(?i)ALTER\s+TABLE\s+`shard_db`.`shard_table`\s+DROP\s+COLUMN\

↪→ s+`c2`,

217

op: REPLACE, args: ALTER TABLE `shard_db`.`shard_table` DROP INDEX
↪→ idx_c2; ALTER TABLE `shard_db`.`shard_table` DROP COLUMN `c2`

In addition, you can view the following log in the DM-master node:
2018/12/28 16:54:35 operator.go:122: [info] [sql-operator] get an

↪→ operator
uuid: eba35acd-6c5e-4bc3-b0b0-ae8bd1232351, request: name:"test" op:

↪→ REPLACE
args:"ALTER TABLE `shard_db`.`shard_table` DROP INDEX idx_c2;"
args:"ALTER TABLE `shard_db`.`shard_table` DROP COLUMN `c2`"
sqlPattern:"~(?i)ALTER\\s+TABLE\\s+`shard_db`.`shard_table`\\s+DROP\\s+

↪→ COLUMN\\s+`c2`"
sharding:true
with key ~(?i)ALTER\s+TABLE\s+`shard_db`.`shard_table`\s+DROP\s+COLUMN\

↪→ s+`c2` matched SQL
USE `shard_db`; ALTER TABLE `shard_db`.`shard_table` DROP COLUMN `c2`;

2018/12/28 16:54:36 operator.go:145: [info] [sql-operator] remove an
↪→ operator

uuid: eba35acd-6c5e-4bc3-b0b0-ae8bd1232351, request: name:"test" op:
↪→ REPLACE

args:"ALTER TABLE `shard_db`.`shard_table` DROP INDEX idx_c2;"
args:"ALTER TABLE `shard_db`.`shard_table` DROP COLUMN `c2`"
sqlPattern:"~(?i)ALTER\\s+TABLE\\s+`shard_db`.`shard_table`\\s+DROP\\s+

↪→ COLUMN\\s+`c2`"
sharding:true

7. Use query-status to guarantee that the stage of the task has been sustained
as Running, and there is no more DDL statement that is blocking the migration
(blockingDDLs) and no more sharding group to be resolved (unresolvedGroups).

8. Use query-error to guarantee that no DDL execution error exists.

9. Use show-ddl-locks to guarantee that all DDL locks have been resolved.

10 Data Migration Monitoring Metrics

If your DM cluster is deployed using DM-Ansible, the monitoring system is also deployed
at the same time. This document describes the monitoring metrics provided by DM-worker.

Note:
Currently, DM-master does not provide monitoring metrics yet.

218

10.1 Task

In the Grafana dashboard, the default name of DM is DM-task.

10.1.1 overview

overview contains some monitoring metrics of all the DM-worker instances in the cur-
rently selected task. The current default alert rule is only for a single DM-worker instance.

Metric
name Description Alert

Severity
level

task
state

The state of
subtasks for
migration

N/A N/A

storage
capac-
ity

The total
storage
capacity of
the disk
occupied by
relay logs

N/A N/A

storage
re-
main

The
remaining
storage
capacity of
the disk
occupied by
relay logs

N/A N/A

binlog
file
gap
be-
tween
mas-
ter
and
relay

The number
of binlog files
by which the
relay
processing
unit is
behind the
upstream
master

N/A N/A

219

Metric
name Description Alert

Severity
level

load
progress

The
percentage of
the
completed
loading
process of the
load unit.
The value is
between
0%~100%

N/A N/A

binlog
file
gap
be-
tween
mas-
ter
and
syncer

The number
of binlog files
by which the
binlog
replication
unit is
behind the
upstream
master

N/A N/A

shard
lock
resolv-
ing

Whether the
current
subtask is
waiting for
sharding
DDL
migration. A
value greater
than 0 means
that the
current
subtask is
waiting for
sharding
DDL
migration

N/A N/A

10.1.2 Task state

220

Metric
name Description Alert

Severity
level

task
state

The state of
subtasks

An
alert
occurs
when
the
sub-
task
has
been
paused
for
more
than
20
min-
utes

critical

10.1.3 Relay log

Metric
name Description Alert

Severity
level

storage
capac-
ity

The storage
capacity of
the disk
occupied by
the relay log

N/A N/A

storage
re-
main

The
remaining
storage
capacity of
the disk
occupied by
the relay log

An
alert
is
needed
once
the
value
is
smaller
than
10G

critical

221

Metric
name Description Alert

Severity
level

process
exits
with
error

The relay log
encounters
an error
within the
DM-worker
and exits

Immediate
alerts

critical

relay
log
data
cor-
rup-
tion

The number
of corrupted
relay log files

Immediate
alerts

emergency

fail to
read
binlog
from
mas-
ter

The number
of errors
encountered
when the
relay log
reads the
binlog from
the upstream
MySQL

Immediate
alerts

critical

fail to
write
relay
log

The number
of errors
encountered
when the
relay log
writes the
binlog to
disks

Immediate
alerts

critical

binlog
file
index

The largest
index number
of relay log
files. For
example,
“value = 1”
indicates
“relay-
log.000001”

N/A N/A

222

Metric
name Description Alert

Severity
level

binlog
file
gap
be-
tween
mas-
ter
and
relay

The number
of binlog files
in the relay
log that are
behind the
upstream
master

An
alert
occurs
when
the
num-
ber of
binlog
files
by
which
the
relay
pro-
cess-
ing
unit is
be-
hind
the
up-
stream
mas-
ter
ex-
ceeds
one
(>1)
and
the
condi-
tion
lasts
over
10
min-
utes

critical

binlog
pos

The write
offset of the
latest relay
log file

N/A N/A

223

Metric
name Description Alert

Severity
level

read
binlog
event
dura-
tion

The duration
that the relay
log reads
binlog from
the upstream
MySQL (in
seconds)

N/A N/A

write
relay
log
dura-
tion

The duration
that the relay
log writes
binlog into
the disks
each time (in
seconds)

N/A N/A

binlog
event
size

The size of a
single binlog
event that
the relay log
writes into
the disks

N/A N/A

10.1.4 Dump/Load unit

The following metrics show only when task-mode is in the full or all mode.

Metric
name Description Alert

Severity
level

load
progress

The
percentage of
the
completed
loading
process of the
load unit.
The value
range is
0%~100%

N/A N/A

224

Metric
name Description Alert

Severity
level

data
file
size

The total size
of the data
files (includes
the
INSERT INTO
statement) in
the full data
imported by
the load unit

N/A N/A

dump
pro-
cess
exits
with
error

The dump
unit
encounters
an error
within the
DM-worker
and exits

Immediate
alerts

critical

load
pro-
cess
exits
with
error

The load unit
encounters
an error
within the
DM-worker
and exits

Immediate
alerts

critical

table
count

The total
number of
tables in the
full data
imported by
the load unit

N/A N/A

data
file
count

The total
number of
data files
(includes the
INSERT INTO
statement) in
the full data
imported by
the load unit

N/A N/A

225

Metric
name Description Alert

Severity
level

transaction
execu-
tion
la-
tency

The latency
of executing
a transaction
by the load
unit (in
seconds)

N/A N/A

statement
execu-
tion
la-
tency

The duration
of executing
a statement
by the load
unit (in
seconds)

N/A N/A

10.1.5 Binlog replication

The following metrics show only when task-mode is in the incremental or all mode.

Metric
name Description Alert

Severity
level

remaining
time
to
sync

The
predicted
remaining
time it takes
syncer to be
completely
migrated
with the
master (in
minutes)

N/A N/A

replicate
lag

The latency
time it takes
to replicate
the binlog
from master
to syncer (in
seconds)

N/A N/A

226

Metric
name Description Alert

Severity
level

process
exist
with
error

The binlog
replication
unit
encounters
an error
within the
DM-worker
and exits

Immediate
alerts

critical

227

Metric
name Description Alert

Severity
level

binlog
file
gap
be-
tween
mas-
ter
and
syncer

The number
of binlog files
by which the
syncer
processing
unit is
behind the
master

An
alert
occurs
when
the
num-
ber of
binlog
files
by
which
the
syncer
↪→
pro-
cess-
ing
unit is
be-
hind
the
mas-
ter
ex-
ceeds
one
(>1)
and
the
condi-
tion
lasts
over
10
min-
utes

critical

228

Metric
name Description Alert

Severity
level

binlog
file
gap
be-
tween
relay
and
syncer

The number
of binlog files
by which
syncer is
behind relay

An
alert
occurs
when
the
num-
ber of
binlog
files
by
which
the
syncer
↪→
pro-
cess-
ing
unit is
be-
hind
the
relay
pro-
cess-
ing
unit
ex-
ceeds
one
(>1)
and
the
condi-
tion
lasts
over
10
min-
utes

critical

229

Metric
name Description Alert

Severity
level

binlog
event
QPS

The number
of binlog
events
received per
unit of time
(this number
does not
include the
events that
need to be
skipped)

N/A N/A

skipped
binlog
event
QPS

The number
of binlog
events
received per
unit of time
that need to
be skipped

N/A N/A

read
binlog
event
dura-
tion

The duration
that the
binlog
replication
unit reads
the binlog
from the
relay log or
the upstream
MySQL (in
seconds)

N/A N/A

transform
binlog
event
dura-
tion

The duration
that the
binlog
replication
unit parses
and
transforms
the binlog
into SQL
statements
(in seconds)

N/A N/A

230

Metric
name Description Alert

Severity
level

dispatch
binlog
event
dura-
tion

The duration
that the
binlog
replication
unit
dispatches a
binlog event
(in seconds)

N/A N/A

transaction
execu-
tion
la-
tency

The duration
that the
binlog
replication
unit executes
the
transaction
to the
downstream
(in seconds)

N/A N/A

binlog
event
size

The size of a
binlog event
that the
binlog
replication
unit reads
from the
relay log or
the upstream
MySQL

N/A N/A

DML
queue
re-
main
length

The length of
the
remaining
DML job
queue

N/A N/A

total
sqls
jobs

The number
of newly
added jobs
per unit of
time

N/A N/A

finished
sqls
jobs

The number
of finished
jobs per unit
of time

N/A N/A

231

Metric
name Description Alert

Severity
level

statement
execu-
tion
la-
tency

The duration
that the
binlog
replication
unit executes
the statement
to the
downstream
(in seconds)

N/A N/A

add
job
dura-
tion

The duration
tht the binlog
replication
unit adds a
job to the
queue (in
seconds)

N/A N/A

DML
con-
flict
detect
dura-
tion

The duration
that the
binlog
replication
unit detects
the conflict
in DML (in
seconds)

N/A N/A

skipped
event
dura-
tion

The duration
that the
binlog
replication
unit skips a
binlog event
(in seconds)

N/A N/A

unsynced
tables

The number
of tables that
have not
received the
shard DDL
statement in
the current
subtask

N/A N/A

232

Metric
name Description Alert

Severity
level

shard
lock
resolv-
ing

Whether the
current
subtask is
waiting for
the shard
DDL lock to
be resolved.
A value
greater than
0 indicates
that it is
waiting for
the shard
DDL lock to
be resolved

N/A N/A

10.2 Instance

In the Grafana dashboard, the default name of an instance is DM-instance.

10.2.1 Relay log

Metric
name Description Alert

Severity
level

storage
capac-
ity

The total
storage
capacity of
the disk
occupied by
the relay log

N/A N/A

storage
re-
main

The
remaining
storage
capacity
within the
disk occupied
by the relay
log

An
alert
occurs
once
the
value
is
smaller
than
10G

critical

233

Metric
name Description Alert

Severity
level

process
exits
with
error

The relay log
encounters
an error in
DM-worker
and exits

Immediate
alerts

critical

relay
log
data
cor-
rup-
tion

The number
of corrupted
relay logs

Immediate
alerts

emergency

fail to
read
binlog
from
mas-
ter

The number
of errors
encountered
when relay
log reads the
binlog from
the upstream
MySQL

Immediate
alerts

critical

fail to
write
relay
log

The number
of errors
encountered
when the
relay log
writes the
binlog to
disks

Immediate
alerts

critical

binlog
file
index

The largest
index number
of relay log
files. For
example,
“value = 1”
indicates
“relay-
log.000001”

N/A N/A

234

Metric
name Description Alert

Severity
level

binlog
file
gap
be-
tween
mas-
ter
and
relay

The number
of binlog files
by which the
relay
processing
unit is
behind the
upstream
master

An
alert
occurs
when
the
num-
ber of
binlog
files
by
which
the
relay
pro-
cess-
ing
unit is
be-
hind
the
up-
stream
mas-
ter
ex-
ceeds
one
(>1)
and
the
condi-
tion
lasts
over
10
min-
utes

critical

binlog
pos

The write
offset of the
latest relay
log file

N/A N/A

235

Metric
name Description Alert

Severity
level

read
binlog
dura-
tion

The duration
that the relay
log reads the
binlog from
the upstream
MySQL (in
seconds)

N/A N/A

write
relay
log
dura-
tion

The duration
that the relay
log writes the
binlog into
the disk each
time (in
seconds)

N/A N/A

binlog
size

The size of a
single binlog
event that
the relay log
writes into
the disks

N/A N/A

10.2.2 Task

Metric
name Description Alert

Severity
level

task
state

The state of
subtasks for
migration

An
alert
occurs
when
the
sub-
task
has
been
paused
for
more
than
10
min-
utes

critical

236

Metric
name Description Alert

Severity
level

load
progress

The
percentage of
the
completed
loading
process of the
load unit.
The value
range is
0%~100%

N/A N/A

binlog
file
gap
be-
tween
mas-
ter
and
syncer

The number
of binlog files
by which the
binlog
replication
unit is
behind the
upstream
master

N/A N/A

shard
lock
resolv-
ing

Whether the
current
subtask is
waiting for
sharding
DDL
migration. A
value greater
than 0 means
that the
current
subtask is
waiting for
sharding
DDL
migration

N/A N/A

237

11 Migrate from MySQL-compatible Database

11.1 Migrate from a MySQL-compatible Database - Taking Ama-
zon Aurora MySQL as an Example

This document describes how to migrate from Amazon Aurora MySQL to TiDB by using
TiDB Data Migration (DM).

11.1.1 Step 1: Enable binlog in the Aurora cluster

Assuming that you want to migrate data from two Aurora clusters to TiDB, the infor-
mation of the Aurora clusters is listed in the following table. The Aurora-1 cluster contains
a separate reader endpoint.

Cluster Endpoint Port Role
Aurora-1 pingcap-1.h8emfqdptyc4.us-east-2.rds.amazonaws.com 3306 Writer
Aurora-1 pingcap-1-us-east-2a.h8emfqdptyc4.us-east-2.rds.amazonaws.com 3306 Reader
Aurora-2 pingcap-2.h8emfqdptyc4.us-east-2.rds.amazonaws.com 3306 Writer

DM relies on the ROW format of binlog during the incremental replication process, so you
need to set the binlog format as ROW. If binlog is not enabled or is incorrectly configured,
DM cannot migrate data normally. For more details, see Checking items.

Note:
Because binlog cannot be enabled in the Aurora reader, it cannot be taken
as the upstream master server when you use DM to migrate data.

If you need to migrate data based on GTID (Global Transaction Identifier), enable GTID
for the Aurora cluster.

Note:
GTID-based data migration requires MySQL 5.7 (Aurora 2.04.1) version or
later.

11.1.1.1 Modify binlog related parameters in the Aurora cluster

238

https://aws.amazon.com/rds/aurora/details/mysql-details/?nc1=h_ls

In the Aurora cluster, binlog related parameters are cluster level parameters among
cluster parameter groups. For more information about binlog in the Aurora cluster, see
Enable Binary Logging on the Replication Master. You need to set the binlog_format to
ROW when using DM for data migration.

To migrate data based on GTID, set both gtid-mode and enforce_gtid_consistency
to ON. See Configuring GTID-Based Replication for an Aurora MySQL Cluster for more
information about enabling GTID-based migration for Aurora cluster.

Note:
In the AWS Management Console, the gtid_mode parameter appears as gtid
↪→ -mode.

11.1.2 Step 2: Deploy the DM cluster

It is recommended to use DM-Ansible to deploy a DM cluster. See Deploy Data Migra-
tion Using DM-Ansible.

Note:

• Use password encrypted with dmctl in all the DM configuration files. If
the database password is empty, it is unnecessary to encrypt it. For how
to use dmctl to encrypt a cleartext password, see Encrypt the upstream
MySQL user password using dmctl.

• Both the upstream and downstream users must have the corresponding
read and write privileges.

11.1.3 Step 3: Check the cluster informtaion

After a DM cluster is deployed using DM-Ansible, the configuration information is as
follows:

• DM cluster components

Component Host Port
dm_worker1 172.16.10.72 8262
dm_worker2 172.16.10.73 8262
dm_master 172.16.10.71 8261

239

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Replication.MySQL.html#AuroraMySQL.Replication.MySQL.EnableBinlog
https://docs.aws.amazon.com/zh_cn/AmazonRDS/latest/AuroraUserGuide/mysql-replication-gtid.html#mysql-replication-gtid.configuring-aurora

• Upstream and downstream database instances

Database
instance Host Port Username

Encrypted
pass-
word

Upstream
Aurora-1

pingcap-
1.h8emfqdptyc4.us-
east-
2.rds.amazonaws.com

3306 root VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=

Upstream
Aurora-2

pingcap-
2.h8emfqdptyc4.us-
east-
2.rds.amazonaws.com

3306 root VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=

Downstream
TiDB

172.16.10.834000 root

• Configuration in the {ansible deploy}/conf/dm-master.toml DM-master process
configuration file
DM-Master Configuration

[[deploy]]
source-id = "mysql-replica-01"
dm-worker = "172.16.10.72:8262"

[[deploy]]
source-id = "mysql-replica-02"
dm-worker = "172.16.10.73:8262"

11.1.4 Step 4: Configure the task

This section assumes that you need to migrate data of the test_table table in the
test_db schema of Aurora-1 and Aurora-2 instances, in both full data migration and incre-
mental replication modes, to the test_table table of the test_db schema in one downstream
TiDB instance.

Copy and edit {ansible deploy}/conf/task.yaml.example to generate the following
task.yaml configuration file:
The task name. You need to use a different name for each of the multiple

↪→ tasks that run simultaneously.
name: "test"
The full data migration plus incremental replication task mode.
task-mode: "all"
The downstream TiDB configuration information.

240

target-database:
host: "172.16.10.83"
port: 4000
user: "root"
password: ""

Configuration of all the upstream MySQL instances required by the current
↪→ data migration task.

mysql-instances:
-
ID of the upstream instance or the migration group. Refer to the

↪→ configuration of `source_id` in the `inventory.ini` file or
↪→ configuration of `source-id` in the `dm-master.toml` file.

source-id: "mysql-replica-01"
The configuration item name of the block and allow lists of the schema

↪→ or table to be migrated, used to quote the global block and allow
↪→ lists configuration. For global configuration, see the `block-allow-
↪→ list` below.

block-allow-list: "global" # Use black-white-list if the DM's version <=
↪→ v1.0.6.

The configuration item name of the dump unit, used to quote the global
↪→ dump unit configuration.

mydumper-config-name: "global"

-
source-id: "mysql-replica-02"
block-allow-list: "global" # Use black-white-list if the DM's version <=

↪→ v1.0.6.
mydumper-config-name: "global"

The global configuration of block and allow lists. Each instance can
↪→ quote it by the configuration item name.

block-allow-list: # Use black-white-list if the DM's version
↪→ <= v1.0.6.

global:
do-tables: # The allow list of the upstream table to

↪→ be migrated
- db-name: "test_db" # The database name of the table to be

↪→ migrated
tbl-name: "test_table" # The name of the table to be migrated

The global configuration of dump unit. Each instance can quote it by the
↪→ configuration item name.

mydumpers:
global:

241

extra-args: "-B test_db -T test_table" # Extra arguments of the dump
↪→ unit. Since DM 1.0.2, DM automatically generates the "--tables-
↪→ list" configuration. For versions earlier than 1.0.2, you need to
↪→ configure this option manually.

11.1.5 Step 5: Start the task

1. Go to the dmctl directory: /home/tidb/dm-ansible/resources/bin/.

2. Start dmctl using the following command:
./dmctl --master-addr 172.16.10.71:8261

3. Start data migration task using the following command:
`task.yaml` is the previously edited configuration file.
start-task ./task.yaml

• If the returned results do not contain any error, it indicates the task is successfully
started.

• If the returned results contain the following error information, it indicates the
upstream Aurora user might have privileges unsupported by TiDB:
{

"id": 4,
"name": "source db dump privilege chcker",
"desc": "check dump privileges of source DB",
"state": "fail",
"errorMsg": "line 1 column 285 near \"LOAD FROM S3, SELECT INTO

↪→ S3 ON *.* TO 'root'@'%' WITH GRANT OPTION\" ...",
"instruction": "",
"extra": "address of db instance - pingcap-1.h8emfqdptyc4.us-

↪→ east-2.rds.amazonaws.com"
},
{

"id": 5,
"name": "source db replication privilege chcker",
"desc": "check replication privileges of source DB",
"state": "fail",
"errorMsg": "line 1 column 285 near \"LOAD FROM S3, SELECT INTO

↪→ S3 ON *.* TO 'root'@'%' WITH GRANT OPTION\" ...",
"instruction": "",
"extra": "address of db instance - pingcap-1.h8emfqdptyc4.us-

↪→ east-2.rds.amazonaws.com"
}

242

To resolve this issue, use either of the following two solutions to handle it and
then use the start-task command to restart the task:
1. Remove the unnecessary privileges unsupported by TiDB for the Aurora user

that is used to migrate data.
2. If you can make sure that the Aurora user has the privileges required by DM,

add the following configuration item to the task.yaml configuration file to
skip the privileges precheck when starting the task.
ignore-checking-items: ["dump_privilege", "

↪→ replication_privilege"]

11.1.6 Step 6: Query the task

To view the on-going data migration task(s) in the DM cluster or the task status, run
the following command in dmctl to query:
query-status

Note:
If the following error message is in the returned results of the above query
command, it indicates the corresponding lock cannot be obtained during the
phase of the full data migration.
bash Couldn't acquire global lock, snapshots will not be
↪→ consistent: Access denied for user 'root'@'%' (using
↪→ password: YES)
If it is acceptable to not use FTWL to guarantee that the dump file is con-
sistent with metadata or the upstream can pause writing data, you can skip
the above error by adding the --no-locks argument for extra-args under
mydumpers. The steps are as follows:

1. Use the stop-task command to stop the paused task caused by the
failure of nomarl dumping.

2. In the task.yaml file, modify extra-args: "-B test_db -T
↪→ test_table" to extra-args: "-B test_db -T test_table --no
↪→ -locks".

3. Use the start-task command to restart the task.

243

12 DM Portal Overview

Data Migration (DM) provides a variety of features, including table routing, block &
allow table lists, and binlog event filter. However, these features also increase the complexity
of using DM, especially when users are modifying DM task configurations.

To address this problem, DM provides a simple web application, DM Portal. DM Portal
enables users to visually configure the required migration tasks, and generates a task.yaml
file that can be directly executed by DM.

12.1 Features

This sections describes the features of DM Portal.

12.1.1 Configure the migration mode

DM Portal supports three migration modes:

• Full migration
• Incremental replication
• All (full + incremental)

12.1.2 Configure the instance information

DM Portal supports configuring table routing, and merging sharded schemas and tables
in DM.

12.1.3 Configure the binlog event filter

DM Portal supports configuring the binlog event filter in schemas and tables.

12.1.4 Generate the configuration file

DM Portal supports generating configuration files and downloading these files to your
local computer. Meanwhile, it automatically creates a file in the /tmp/ directory on the
dm-portal server.

12.2 Restrictions

Currently, DM Portal’s visualized pages cover most DM configuration scenarios, but with
the following restrictions:

• The SQL pattern of binlog event filter is not supported.

244

• The editing feature does not support parsing the task.yaml file created by the user.
The user can only edit the task.yaml file generated by the page.

• The editing feature does not support modifying the instance configuration. If the user
need to adjust the instance configuration, the task.yaml file has to be regenerated.

• The upstream instance configuration on the page can only be used to obtain the up-
stream table schema. The related upstream instance information still needs to be
configured in DM-worker.

• In the generated task.yaml file, mydumper-path is ./bin/mydumper by default. If
you use another path, modify the generated task.yaml file manually.

12.3 Deploy

This section describes how to deploy DM Portal in two ways: using binary or DM
Ansible.

12.3.1 Deploy using binary

Download DM Portal at dm-portal-latest-linux-amd64.tar.gz. To start DM Portal, run
the ./dm-portal command.

• If you run DM Portal locally, visit 127.0.0.1:8280 in your browser.
• If you run DM Portal on a server, configure a proxy on the server.

12.3.2 Deploy using DM Ansible

To deploy DM Portal using DM Ansible, refer to Deploy Data Migration Using DM-
Ansible for details.

12.4 Usage

This section describes how to use DM Portal.

12.4.1 Create rules

This feature is used to create a task.yaml file.

12.4.1.1 Operation steps
Access the dm-portal page, and click Create New Rule.

245

https://download.pingcap.org/dm-portal-latest-linux-amd64.tar.gz

12.4.2 Configure the basic information

This feature is used to fill in the task name and select a task type.

12.4.2.1 Prerequisites
Create New Sync Rule is already selected.

12.4.2.2 Operation steps

1. Fill in the task name.
2. Choose a task type.

Figure 7: DM Portal BasicConfig

12.4.3 Configure the instance information

This feature is used to configure the upstream and downstream instance information,
including Host, Port, Username, and Password.

12.4.3.1 Prerequisites
Task Name and Task Type are already filled in.

246

Note:
If you choose Incremental orAll in Task Type, you need to configure binlog-
file and binlog-pos when configuring the upstream instance information.

12.4.3.2 Operation steps

1. Fill in the upstream instance information.
2. Fill in the downstream instance information.
3. Click Next.

Figure 8: DM Portal InstanceConfig

12.4.4 Configure the binlog filter

This feature is used to filter the upstream binlog. You can choose the DDL or DML
that needs to be filtered. The filter configured on the database is automatically inherited by
tables in that database.

247

12.4.4.1 Prerequisites

• The upstream and downstream instance information is configured.
• The connection is verified.

Note:

• The binlog filter configuration can only be modified in the upstream in-
stance. Once the database or table is moved to the downstream instance,
the configuration cannot be modified.

• The binlog filter configured on the database is automatically inherited
by tables in that database.

12.4.4.2 Operation steps

1. Select the databases or tables that need to be configured.

2. Click the Edit button, and select the binlog types to be filtered.

Figure 9: DM Portal InstanceShow

248

Figure 10: DM Portal BinlogFilter 1

249

Figure 11: DM Portal BinlogFilter 2

12.4.5 Configure table routing

This feature is used to perform the following operations:

• Select the databases and tables that need to be synced, modify their names, and merge
databases and tables

• Revert the last operation
• Reset all configurations of table routing

After the task configuration is completed, DM Portal generates the corresponding task
↪→ .yaml file.

250

12.4.5.1 Prerequisites
The required binlog filter rules are configured.

Note:

• Batch operation is not supported when you merge databases and tables.
You can only drag them one by one.

• You can only drag tables when you merge databases and tables. You
cannot drag databases.

12.4.5.2 Operation steps

1. Select the databases and tables that need to be synced from Upstream Instance.

2. Click the Move button and move the selected databases and tables to Downstream
Instance.

Figure 12: DM Portal TableRoute 1

251

Figure 13: DM Portal TableRoute 2

3. Right click the databases and tables to rename them.

252

Figure 14: DM Portal ChangeTableName

4. Select the required table to perform the following operation:

• To merge two tables, drag the table onto another table

253

Figure 15: DM Portal MergeTable 1

254

Figure 16: DM Portal MergeTable 2

• To move the table to an existing database, drag the table onto the database

255

Figure 17: DM Portal MoveToDB 1

256

Figure 18: DM Portal MoveToDB 2

• To move the table to a new database, drag the table onto the target-instance
icon

257

Figure 19: DM Portal MoveToNewDB 1

258

Figure 20: DM Portal MoveToNewDB 2

5. Click Go Back to undo the last operation.

259

Figure 21: DM Portal Revert

6. Click Reset to clear the downstream instance.

260

Figure 22: DM Portal Reset

7. Click Finish & Download. DM Portal automatically downloads the task.yaml file
to the local computer, and creates a task.yaml configuration file in the /tmp/ directory
on the DM Portal server.

261

Figure 23: DM Portal GenerateConfig

13 Alert

13.1 DM Alert Information

The alert system is deployed by default when you deploy a DM cluster using DM-Ansible.

Note:
There are alert rules provided with DM-worker only.

For more information about DM alert rules and the solutions, refer to handle alerts.
Both DM alert information and monitoring metrics are based on Prometheus. For more

information about their relationship, refer to DM monitoring metrics.

262

13.2 Handle Alerts

This document introduces how to deal with the alert information in DM.

13.2.1 Alert rules related to task status

13.2.1.1 DM_task_state

• Description:
When a sub-task of DM-worker is in the Paused state for over 20 minutes, an alert is
triggered.

• Solution:
Refer to Troubleshoot DM.

13.2.2 Alert rules related to relay log

13.2.2.1 DM_relay_process_exits_with_error

• Description:
When the relay log processing unit encounters an error, this unit moves to Paused
state, and an alert is triggered immediately.

• Solution:
Refer to Troubleshoot DM.

13.2.2.2 DM_remain_storage_of_relay_log

• Description:
When the free space of the disk where the relay log is located is less than 10G, an alert
is triggered.

• Solutions:
You can take the following methods to handle the alert:

– Delete unwanted data manually to increase free disk space.
– Reconfigure the automatic data purge strategy of the relay log or purge data

manually.
– Migrate the DM-worker instance to a disk with enough free space.

263

13.2.2.3 DM_relay_log_data_corruption

• Description:
When the relay log processing unit validates the binlog event read from the upstream
and detects abnormal checksum information, this unit moves to the Paused state, and
an alert is triggered immediately.

• Solution:
Refer to Troubleshoot DM.

13.2.2.4 DM_fail_to_read_binlog_from_master

• Description:
If an error occurs when the relay log processing unit tries to read the binlog event
from the upstream, this unit moves to the Paused state, and an alert is triggered
immediately.

• Solution:
Refer to Troubleshoot DM.

13.2.2.5 DM_fail_to_write_relay_log

• Description:
If an error occurs when the relay log processing unit tries to write the binlog event
into the relay log file, this unit moves to the Paused state, and an alert is triggered
immediately.

• Solution:
Refer to Troubleshoot DM.

13.2.2.6 DM_binlog_file_gap_between_master_relay

• Description:
When the number of the binlog files in the current upstream MySQL/MariaDB exceeds
that of the latest binlog files pulled by the relay log processing unit by more than 1
for 10 minutes, and an alert is triggered.

• Solution:
Refer to Troubleshoot DM.

264

13.2.3 Alert rules related to Dump/Load

13.2.3.1 DM_dump_process_exists_with_error

• Description:
When the Dump processing unit encounters an error, this unit moves to the Paused
state, and an alert is triggered immediately.

• Solution:
Refer to Troubleshoot DM.

13.2.3.2 DM_load_process_exists_with_error

• Description:
When the Load processing unit encounters an error, this unit moves to the Paused
state, and an alert is triggered immediately.

• Solution:
Refer to Troubleshoot DM.

13.2.4 Alert rules related to binlog replication

13.2.4.1 DM_sync_process_exists_with_error

• Description:
When the binlog replication processing unit encounters an error, this unit moves to
the Paused state, and an alert is triggered immediately.

• Solution:
Refer to Troubleshoot DM.

13.2.4.2 DM_binlog_file_gap_between_master_syncer

• Description:
When the number of the binlog files in the current upstream MySQL/MariaDB exceeds
that of the latest binlog files processed by the relay log processing unit by more than
1 for 10 minutes, an alert is triggered.

• Solution:
Refer to Handle Performance Issues.

265

13.2.4.3 DM_binlog_file_gap_between_relay_syncer

• Description:
When the number of the binlog files in the current relay log processing unit exceeds
that of the latest binlog files processed by the binlog replication processing unit by
more than 1 for 10 minutes, an alert is triggered.

• Solution:
Refer to Handle Performance Issues.

14 Troubleshoot

14.1 Handle Errors

This document introduces the error system and how to handle common errors when you
use DM.

14.1.1 Error system

In the error system, usually, the information of a specific error is as follows:

• code: error code.
DM uses the same error code for the same error type. An error code does not change
as the DM version changes.
Some errors might be removed during the DM iteration, while the error codes are not.
DM uses a new error code instead of an existing one for a new error.

• class: error type.
It is used to mark the component where an error occurs (error source).
The following table displays all error types, error sources, and error samples.
|
Error Type
| Error Source | Error Sample

↪→ |

:————– | :—————————— | :————————————————————
|
database | Database operations | [code=10003:class=database:scope=downstream
↪→ :level=medium] database driver: invalid connection |

266

functional | Underlying functions of DM | [code=11005:class=functional:scope
↪→ =internal:level=high] not allowed operation: alter multiple tables
↪→ in one statement |
config | Incorrect configuration | [code=20005:class=config:scope=internal:
↪→ level=medium] empty source-id not valid |
binlog-op | Binlog operations | [code=22001:class=binlog-op:scope=internal:
↪→ level=high] empty UUIDs not valid |
checkpoint | checkpoint operations | [code=24002:class=checkpoint:scope=
↪→ internal:level=high] save point bin.1234 is older than current pos
↪→ bin.1371 |
task-check | Performing task check | [code=26003:class=task-check:scope=
↪→ internal:level=medium] new table router error |
relay-event-lib| Executing the basic functions of the relay module | [code=28001:
↪→ class=relay-event-lib:scope=internal:level=high] parse server-uuid.
↪→ index |
relay-unit | relay processing unit | [code=30015:class=relay-unit:scope=
↪→ upstream:level=high] TCPReader get event: ERROR 1236 (HY000): Could
↪→ not open log file |
dump-unit | dump processing unit | [code=32001:class=dump-unit:scope=internal
↪→ :level=high] mydumper runs with error: CRITICAL **: 15:12:17.559:
↪→ Error connecting to database: Access denied for user 'root'@'172.17.0.1'
↪→ (using password: NO) |
load-unit | load processing unit | [code=34002:class=load-unit:scope=internal
↪→ :level=high] corresponding ending of sql: ')' not found |
sync-unit | sync processing unit | [code=36027:class=sync-unit:scope=internal
↪→ :level=high] Column count doesn't match value count: 9 (columns)vs
↪→ 10 (values) |
dm-master | DM-master service | [code=38008:class=dm-master:scope=internal
↪→ :level=high] grpc request error: rpc error: code = Unavailable desc
↪→ = all SubConns are in TransientFailure, latest connection error:
↪→ connection error: desc = "transport: Error while dialing dial tcp
↪→ 172.17.0.2:8262: connect: connection refused" |
dm-worker | DM-worker service | [code=40066:class=dm-worker:scope=internal
↪→ :level=high] ExecuteDDL timeout, try use query-status to query
↪→ whether the DDL is still blocking |
dm-tracer | DM-tracer service | [code=42004:class=dm-tracer:scope=internal:
↪→ level=medium] trace event test.1 not found |
schema-tracker | schema-tracker (during incremental data replication) | [code
↪→ =44006:class=schema-tracker:scope=internal:level=high],"cannot track
↪→ DDL: ALTER TABLE test DROP COLUMN col1" |
scheduler | Scheduling operations (of data migration tasks) | [code=46001:class=
↪→ scheduler:scope=internal:level=high],"the scheduler has not started"
|
dmctl | An error occurs within dmctl or when it interacts with other components |
[code=48001:class=dmctl:scope=internal:level=high],"can not create grpc

267

↪→ connection" |

• scope: Error scope.
It is used to mark the scope and source of DM objects when an error occurs. scope
includes four types: not-set, upstream, downstream, and internal.
If the logic of the error directly involves requests between upstream and downstream
databases, the scope is set to upstream or downstream; otherwise, it is currently set
to internal.

• level: Error level.
The severity level of the error, including low, medium, and high.

– The low level error usually relates to user operations and incorrect inputs. It does
not affect migration tasks.

– The medium level error usually relates to user configurations. It affects some newly
started services; however, it does not affect the existing DM migration status.

– The high level error usually needs your attention, since you need to resolve it to
avoid the possible interruption of a migration task.

• message: Error descriptions.
Detailed descriptions of the error. To wrap and store every additional layer of error
message on the error call chain, the errors.Wrap mode is adopted. The message de-
scription wrapped at the outermost layer indicates the error in DM and the message
description wrapped at the innermost layer indicates the error source.

• workaround: Error handling methods (optional)
The handling methods for this error. For some confirmed errors (such as configuration
errors), DM gives the corresponding manual handling methods in workaround.

• Error stack information (optional)
Whether DM outputs the error stack information depends on the error severity and
the necessity. The error stack records the complete stack call information when the
error occurs. If you cannot figure out the error cause based on the basic information
and the error message, you can trace the execution path of the code when the error
occurs using the error stack.

For the complete list of error codes, refer to the error code lists.

14.1.2 Troubleshooting

If you encounter an error while running DM, take the following steps to troubleshoot
this error:

268

https://godoc.org/github.com/pkg/errors#hdr-Adding_context_to_an_error
https://github.com/pingcap/dm/blob/master/_utils/terror_gen/errors_release.txt

1. Execute the query-status command to check the task running status and the error
output.

2. Check the log files related to the error. The log files are on the DM-master and DM-
worker nodes. To get key information about the error, refer to the error system. Then
check the Handle Common Errors section to find the solution.

3. If the error is not covered in this document, and you cannot solve the problem by
checking the log or monitoring metrics, you can contact the R&D.

4. After the error is resolved, restart the task using dmctl.
resume-task ${task name}

However, you need to reset the data migration task in some cases. For details, refer to
Reset the Data Migration Task.

14.1.3 Handle common errors

|
Error Code
| Error Description | How to

↪→ Handle |

:———– | :———————————————————— | :————————————
———————– |
code=10001 | Abnormal database operation. | Further analyze the error message and error
stack. |
code=10002 | The bad connection error from the underlying database. It usually indicates
that the connection between DM and the downstream TiDB instance is abnormal (possibly
caused by network failure, TiDB restart and so on) and the currently requested data is not
sent to TiDB. | DM provides automatic recovery for such error. If the recovery is not suc-
cessful for a long time, check the network or TiDB status. |
code=10003 | The invalid connection error from the underlying database. It usually in-
dicates that the connection between DM and the downstream TiDB instance is abnormal
(possibly caused by network failure, TiDB restart and so on) and the currently requested
data is partly sent to TiDB. | DM provides automatic recovery for such error. If the recovery
is not successful for a long time, further check the error message and analyze the information
based on the actual situation. |
code=10005 | Occurs when performing the QUERY type SQL statements. | |
code=10006 | Occurs when performing the EXECUTE type SQL statements, including DDL
statements and DML statements of the INSERT, UPDATEor DELETE type. For more detailed
error information, check the error message which usually includes the error code and error
information returned for database operations.

269

|
code=11006 | Occurs when the built-in parser of DM parses the incompatible DDL state-
ments. | Refer to Data Migration - incompatible DDL statements for solution. |
code=20010 | Occurs when decrypting the database password that is provided in task config-
uration. | Check whether the downstream database password provided in the configuration
task is correctly encrypted using dmctl. |
code=26002 | The task check fails to establish database connection. For more detailed error
information, check the error message which usually includes the error code and error infor-
mation returned for database operations. | Check whether the machine where DM-master is
located has permission to access the upstream. |
code=32001 | Abnormal dump processing unit | If the error message contains mydumper:
↪→ argument list too long., configure the table to be exported by manually adding the
--regex regular expression in the Mydumper argument extra-args in the task.yaml file
according to the block-allow list. For example, to export all tables named hello, add --
↪→ regex '.*\\.hello$'; to export all tables, add --regex '.*'. |
code=38008 | An error occurs in the gRPC communication among DM components. | Check
class. Find out the error occurs in the interaction of which components. Determine the
type of communication error. If the error occurs when establishing gRPC connection, check
whether the communication server is working normally. |

14.1.3.1 What can I do when a migration task is interrupted with the invalid
connection error returned?

The invalid connection error indicates that anomalies have occurred in the connection
between DM and the downstream TiDB database (such as network failure, TiDB restart,
TiKV busy and so on) and that a part of the data for the current request has been sent to
TiDB.

Because DM has the feature of concurrently migrating data to the downstream in migra-
tion tasks, several errors might occur when a task is interrupted. You can check these errors
by using query-status or query-error.

• If only the invalid connection error occurs during the incremental replication pro-
cess, DM retries the task automatically.

• If DM does not or fails to retry automatically because of version problems, use stop-
↪→ task to stop the task and then use start-task to restart the task.

14.1.3.2 A migration task is interrupted with the driver: bad connection error
returned

The driver: bad connection error indicates that anomalies have occurred in the con-
nection between DM and the upstream TiDB database (such as network failure, TiDB restart
and so on) and that the data of the current request has not yet been sent to TiDB at that
moment.

The current version of DM automatically retries on error. If you use the previous version
which does not support automatically retry, you can execute the stop-task command to

270

stop the task. Then execute start-task to restart the task.

14.1.3.3 The relay unit throws error event from * in * diff from passed-in
event * or a migration task is interrupted with failing to get or parse binlog
errors like get binlog error ERROR 1236 (HY000) and binlog checksum mismatch,
data may be corrupted returned

During the DM process of relay log pulling or incremental replication, this two errors
might occur if the size of the upstream binlog file exceeds 4 GB.

Cause: When writing relay logs, DM needs to perform event verification based on
binlog positions and the size of the binlog file, and store the replicated binlog positions as
checkpoints. However, the official MySQL uses uint32 to store binlog positions. This means
the binlog position for a binlog file over 4 GB overflows, and then the errors above occur.

For relay units, manually recover migration using the following solution:

1. Identify in the upstream that the size of the corresponding binlog file has exceeded
4GB when the error occurs.

2. Stop the DM-worker.

3. Copy the corresponding binlog file in the upstream to the relay log directory as the
relay log file.

4. In the relay log directory, update the corresponding relay.meta file to pull from the
next binlog file. If you have specified enable_gtid to true for the DM-worker, you
need to modify the GTID corresponding to the next binlog file when updating the
relay.meta file. Otherwise, you don’t need to modify the GTID.
Example: when the error occurs, binlog-name = "mysql-bin.004451" and binlog-
↪→ pos = 2453. Update them respectively to binlog-name = "mysql-bin.004452"
↪→ and binlog-pos = 4, and update binlog-gtid to f0e914ef-54cf-11e7-813d-6
↪→ c92bf2fa791:1-138218058.

5. Restart the DM-worker.

For binlog replication processing units, manually recover migration using the following
solution:

1. Identify in the upstream that the size of the corresponding binlog file has exceeded
4GB when the error occurs.

2. Stop the migration task using stop-task.

3. Update the binlog_name in the global checkpoints and in each table checkpoint of
the downstream dm_meta database to the name of the binlog file in error; update

271

binlog_pos to a valid position value for which migration has completed, for example,
4.
Example: the name of the task in error is dm_test, the corresponding ssource-id is
replica-1, and the corresponding binlog file is mysql-bin|000001.004451. Execute
the following command:
UPDATE dm_test_syncer_checkpoint SET binlog_name='mysql-bin

↪→ |000001.004451', binlog_pos = 4 WHERE id='replica-1';

4. Specify safe-mode: true in the syncers section of the migration task configuration
to ensure re-entrant.

5. Start the migration task using start-task.

6. View the status of the migration task using query-status. You can restore safe-
↪→ mode to the original value and restart the migration task when migration is done
for the original error-triggering relay log files.

14.1.3.4 Access denied for user 'root'@'172.31.43.27' (using password: YES)
shows when you query the task or check the log

For database related passwords in all the DM configuration files, it is recommended to
use the passwords encrypted by dmctl. If a database password is empty, it is unnecessary to
encrypt it. For how to encrypt the plaintext password, see Encrypt the upstream MySQL
user password using dmctl.

In addition, the user of the upstream and downstream databases must have the cor-
responding read and write privileges. Data Migration also prechecks the corresponding
privileges automatically while starting the data migration task.

14.2 Handle Performance Issues

This document introduces common performance issues that might exist in DM and how
to deal with them.

Before diagnosing an issue, you can refer to the DM 1.0-GA Benchmark Report.
When diagnosing and handling performance issues, make sure that:

• The DM monitoring component is correctly configured and installed.
• You can view monitoring metrics on the Grafana monitoring dashboard.
• The component you diagnose works well; otherwise, possible monitoring metrics excep-

tions might interfere with the diagnosis of performance issues.

In the case of a large latency in the data migration, to quickly figure out whether the
bottleneck is inside the DM component or in the TiDB cluster, you can first check DML
↪→ queue remain length in Write SQL Statements to Downstream.

272

14.2.1 relay log unit

To diagnose performance issues in the relay log unit, you can check the binlog file
↪→ gap between master and relay monitoring metric. For more information about this
metric, refer to monitoring metrics of the relay log. If this metric is greater than 1 for a
long time, it usually indicates that there is a performance issue; if this metric is 0, it usually
indicates that there is no performance issue.

If the value of binlog file gap between master and relay is 0, but you suspect that
there is a performance issue, you can check binlog pos. If master in this metric is much
larger than relay, a performance issue might exist. In this case, diagnose and handle this
issue accordingly.

14.2.1.1 Read binlog data
read binlog event duration refers to the duration that the relay log reads binlog

from the upstream database (MySQL/MariaDB). Ideally, this metric is close to the network
latency between DM-worker and MySQL/MariaDB instances.

• For data migration in one data center, reading binlog data is not a performance bot-
tleneck. If the value of read binlog event duration is too large, check the network
connection between DM-worker and MySQL/MariaDB.

• For data migration in the geo-distributed environment, try to deploy DM-worker and
MySQL/MariaDB in one data center, while deploying the TiDB cluster in the target
data center.

The process of reading binlog data from the upstream database includes the following
sub-processes:

• The upstream MySQL/MariaDB reads the binlog data locally and sends it through the
network. When no exception occurs in the MySQL/MariaDB load, this sub-process
usually does not become a bottleneck.

• The binlog data is transferred from the machine where MySQL/MariaDB is located to
the machine where DM-worker is located via the network. Whether this sub-process
becomes a bottleneck mainly depends on the network connection between DM-worker
and the upstream MySQL/MariaDB.

• DM-worker reads binlog data from the network data stream and constructs it as a
binlog event. When no exception occurs in the DM-worker load, this sub-process
usually does not become a bottleneck.

273

Note:
If the value of read binlog event duration is large, another possible reason
is that the upstream MySQL/MariaDB has a low load. This means that no
binlog event needs to be sent to DM for a period of time, and the relay log
unit stays in a wait state, thus this value includes additional waiting time.

14.2.1.2 binlog data decoding and verification
After reading the binlog event into the DM memory, DM’s relay processing unit decodes

and verifies data. This usually does not lead to performance bottleneck; therefore, there
is no related performance metric on the monitoring dashboard by default. If you need to
view this metric, you can manually add a monitoring item in Grafana. This monitoring item
corresponds to dm_relay_read_transform_duration, a metric from Prometheus.

14.2.1.3 Write relay log files
When writing a binlog event to a relay log file, the relevant performance metric is write

↪→ relay log duration. This value should be microseconds when binlog event size
is not too large. If write relay log duration is too large, check the write performance of
the disk. To avoid low write performance, use local SSDs for DM-worker.

14.2.2 Load unit

The main operations of the Load unit are to read the SQL file data from the local and
write it to the downstream. The related performance metric is transaction execution
↪→ latency. If this value is too large, check the downstream performance by checking the
monitoring of the downstream database. You can also check whether there is a large network
latency between DM and the downstream database.

14.2.3 Binlog replication unit

To diagnose performance issues in the Binlog replication unit, you can check the
binlog file gap between master and syncer monitoring metric. For more information
about this metric, refer to monitoring metrics of the Binlog replication.

• If this metric is greater than 1 for a long time, it usually indicates that there is a
performance issue.

• If this metric is 0, it usually indicates that there is no performance issue.

When binlog file gap between master and syncer is greater than 1 for a long time,
check binlog file gap between relay and syncer to figure out which unit the latency

274

mainly exists in. If this value is usually 0, the latency might exist in the relay log unit. Then
you can refer to relay log unit to resolve this issue; otherwise, continue checking the Binlog
replication unit.

14.2.3.1 Read binlog data
The Binlog replication unit decides whether to read the binlog event from the upstream

MySQL/MariaDB or from the relay log file according to the configuration. The related
performance metric is read binlog event duration, which generally ranges from a few
microseconds to tens of microseconds.

• If DM’s Binlog replication processing unit reads the binlog event from upstream
MySQL/MariaDB, to locate and resolve the issue, refer to read binlog data in the
“relay log unit” section.

• If DM’s Binlog replication processing unit reads the binlog event from the relay log file,
when binlog event size is not too large, the value of read binlog event duration
↪→ should be microseconds. If read binlog event duration is too large, check the
read performance of the disk. To avoid low write performance, use local SSDs for
DM-worker.

14.2.3.2 binlog event conversion
The Binlog replication unit constructs DML, parses DDL, and performs table router con-

version from binlog event data. The related metric is transform binlog event duration.
The duration is mainly affected by the write operations upstream. Take the INSERT

↪→ INTO statement as an example, the time consumed to convert a single VALUES greatly
differs from that to convert a lot of VALUES. The time consumed might range from tens of
microseconds to hundreds of microseconds. However, usually this is not a bottleneck of the
system.

14.2.3.3 Write SQL statements to downstream
When the Binlog replication unit writes the converted SQL statements to the down-

stream, the related performance metrics are DML queue remain length and transaction
↪→ execution latency.

After constructing SQL statements from binlog event, DM uses worker-count queues
to concurrently write these statements to the downstream. However, to avoid too many
monitoring entries, DM performs the modulo 8 operation on the IDs of concurrent queues.
This means that all concurrent queues correspond to one item from q_0 to q_7.

DML queue remain length indicates in the concurrent processing queue, the number of
DML statements that have not been consumed and have not started to be written down-
stream. Ideally, the curves corresponding to each q_* are almost the same. If not, it indicates
that the concurrent load is extremely unbalanced.

275

If the load is not balanced, confirm whether tables need to be migrated have primary
keys or unique keys. If these keys do not exist, add the primary keys or the unique keys; if
these keys do exist while the load is not balanced, upgrade DM to v1.0.5 or later versions.

• When there is no noticeable latency in the entire data migration link, the corresponding
curve of DML queue remain length is almost always 0, and the maximum does not
exceed the value of batch in the task configuration file.

• If you find a noticeable latency in the data migration link, and the curve of DML queue
↪→ remain length corresponding to each q_* is almost the same and is almost always
0, it means that DM fails to read, convert, or concurrently write the data from the
upstream in time (the bottleneck might be in the relay log unit). For troubleshooting,
refer to the previous sections of this document.

If the corresponding curve of DML queue remain length is not 0 (usually the maximum
is not more than 1024), it indicates that there is a bottleneck when writing SQL statements to
the downstream. You can use transaction execution latency to view the time consumed
to execute a single transaction to the downstream.

transaction execution latency is usually tens of milliseconds. If this value is too
large, check the downstream performance based on the monitoring of the downstream
database. You can also check whether there is a large network latency between DM and the
downstream database.

To view the time consumed to write a single statement such as BEGIN, INSERT, UPDATE,
DELETE, or COMMIT to the downstream, you can also check statement execution latency.

15 TiDB Data Migration FAQ

This document collects the frequently asked questions (FAQs) about TiDB Data Migra-
tion (DM).

15.1 Does DM support migrating data from Alibaba RDS or other
cloud databases?

Currently, DM only supports decoding the standard version of MySQL or MariaDB
binlog. It has not been tested for Alibaba Cloud RDS or other cloud databases. If you are
confirmed that its binlog is in standard format, then it is supported.

Here are some known incompatible issues:

• In Alibaba Cloud RDS, for an upstream table with no primary key, its binlog still
contains a hidden primary key column, which is inconsistent with the original table
structure.

• In HUAWEI Cloud RDS, directly reading binlog files is not supported. For more
details, see Can HUAWEI Cloud RDS Directly Read Binlog Backup Files?

276

https://support.huaweicloud.com/en-us/rds_faq/rds_faq_0210.html

15.2 Does the regular expression of the block and allow list in the
task configuration support non-capturing (?!)?

Currently, DM does not support it and only supports the regular expressions of the
Golang standard library. See regular expressions supported by Golang via re2-syntax.

15.3 If a statement executed upstream contains multiple DDL op-
erations, does DM support such migration?

DM will attempt to split a single statement containing multiple DDL change operations
into multiple statements containing only one DDL operation, but might not cover all cases.
It is recommended to include only one DDL operation in a statement executed upstream,
or verify it in the test environment. If it is not supported, you can file an issue to the DM
repository.

15.4 How to handle incompatible DDL statements?

When you encounter a DDL statement unsupported by TiDB, you need to manually
handle it using dmctl (skipping the DDL statement or replacing the DDL statement with a
specified DDL statement). For details, see Skip or replace abnormal SQL statements.

Note:
Currently, TiDB is not compatible with all the DDL statements that MySQL
supports. See MySQL Compatibility.

15.5 How to reset the data migration task?

15.5.1 Reset the data migration task when the relay log is in the normal state

If the relay log required by the data migration task is normal, you can use the following
steps to reset the data migration task:

1. Use stop-task to stop abnormal data migration tasks.

2. Clean up the downstream migrated data.

3. Choose one of the following methods to restart the data migration task:

• Modify the task configuration file to specify a new task name, and then use start
↪→ -task to restart the migration task.

• Modify the task configuration file to set remove-meta to true, and then use
start-task to restart the migration task.

277

https://github.com/google/re2/wiki/Syntax
https://github.com/pingcap/dm/issues
https://pingcap.com/docs/dev/reference/mysql-compatibility/#ddl

15.5.2 Reset the data migration task when the relay log is in the abnormal state

15.5.2.1 The required relay log exists in upstream MySQL
If the relay log required by the migration task is abnormal in the DM-worker, but is

normal in the upstream MySQL, you can use the following steps to restore the data migration
task:

1. Use the stop-task command to stop all the migration tasks that are currently running.

2. Refer to restart DM-worker to stop the abnormal DM-worker node.

3. Copy the normal binlog file from the upstream MySQL to replace the corresponding
file in the relay log directory of DM-worker.

• If the cluster is deployed using DM-Ansible, the relay log is in the <deploy_dir
↪→ >/relay_log directory.

• If the cluster is manually deployed using the binary, the relay log is in the directory
set by the relay-dir parameter.

4. Modify the information of relay.meta in the relay log directory of DM-worker to the
information corresponding to the next binlog file.

• If enable-gtid is not enabled, set binlog-name to the file name of the next
binlog file, and set binlog-pos to 4. If you copy mysq-bin.000100 from the
upstream MySQL to the relay directory, and want to continue to pull binlog from
mysql-bin.000101 later, set binlog-name to mysql-bin.000101.

• If enable-gtid is enabled, set binlog-gtid to the value corresponding to
Previous_gtids at the beginning of the next binlog file. You can obtain the
value by executing SHOW BINLOG EVENTS.

5. Refer to restart DM-worker to start the abnormal DM-worker node.

6. Use start-task to resume all stopped migration tasks.

15.5.2.2 The required relay log has been purged in upstream MySQL
If the relay log required by the migration task is abnormal in the DM-worker, and has

been purged in the upstream MySQL, you can use the following steps to reset the data
migration task:

1. Use the stop-task command to stop all the migration tasks that are currently running.

2. Use DM-Ansible to stop the entire DM cluster.

3. Manually clean up the relay log directory of the DM-worker corresponding to the
MySQL cluster whose binlog is reset.

278

https://dev.mysql.com/doc/refman/5.7/en/show-binlog-events.html

• If the cluster is deployed using DM-Ansible, the relay log is in the <deploy_dir
↪→ >/relay_log directory.

• If the cluster is manually deployed using the binary, the relay log is in the directory
set of the relay-dir parameter.

4. Clean up downstream migrated data.

5. Use DM-Ansible to start the entire DM cluster.

6. Choose one of the following methods to restart the data migration task:

• Modify the task configuration file to specify a new task name, and then use start
↪→ -task to restart the migration task.

• Modify the task configuration file to set remove-meta to true, and then use
start-task to restart the migration task.

15.6 How to handle the error returned by the DDL operation
related to the gh-ost table, after online-ddl-scheme: "gh-ost"
is set?

[unit=Sync] ["error information"="{\"msg\":\"[code=36046:class=sync-unit:
↪→ scope=internal:level=high] online ddls on ghost table `xxx`.`
↪→ _xxxx_gho`\\ngithub.com/pingcap/dm/pkg/terror.(*Error).Generate
↪→

The above error can be caused by the following reason:
In the last rename ghost_table to origin table step, DM reads the DDL informa-

tion in memory, and restores it to the DDL of the origin table.
However, the DDL information in memory is obtained in either of the two ways:

• DM processes the gh-ost table during the alter ghost_table operation and records
the DDL information of ghost_table;

• When DM-worker is restarted to start the task, DM reads the DDL from dm_meta.{
↪→ task_name}_onlineddl.

Therefore, in the process of incremental replication, if the specified Pos has skipped
the alter ghost_table DDL but the Pos is still in the online-ddl process of gh-ost, the
ghost_table is not written into memory or dm_meta.{task_name}_onlineddl correctly. In
such cases, the above error is returned.

You can avoid this error by the following steps:

1. Remove the online-ddl-scheme configuration of the task.

279

2. Configure _{table_name}_gho, _{table_name}_ghc, and _{table_name}_del in
block-allow-list.ignore-tables.

3. Execute the upstream DDL in the downstream TiDB manually.

4. After the Pos is replicated to the position after the gh-ost process, re-enable the online
↪→ -ddl-scheme and comment out block-allow-list.ignore-tables.

15.7 How to add tables to the existing data migration tasks?

If you need to add tables to a data migration task that is running, you can address it in
the following ways according to the stage of the task.

Note:
Because adding tables to an existing data migration task is complex, it is
recommended that you perform this operation only when necessary.

15.7.1 In the Dump stage

Since MySQL cannot specify a snapshot for export, it does not support updating data
migration tasks during the export and then restarting to resume the export through the
checkpoint. Therefore, you cannot dynamically add tables that need to be migrated at the
Dump stage.

If you really need to add tables for migration, it is recommended to restart the task
directly using the new configuration file.

15.7.2 In the Load stage

During the export, multiple data migration tasks usually have different binlog positions.
If you merge the tasks in the Load stage, they might not be able to reach consensus on binlog
positions. Therefore, it is not recommended to add tables to a data migration task in the
Load stage.

15.7.3 In the Sync stage

When the data migration task is in the Sync stage, if you add additional tables to the
configuration file and restart the task, DM does not re-execute full export and import for
the newly added tables. Instead, DM continues incremental replication from the previous
checkpoint.

280

Therefore, if the full data of the newly added table has not been imported to the down-
stream, you need to use a separate data migration task to export and import the full data
to the downstream.

Record the position information in the global checkpoint (is_global=1) correspond-
ing to the existing migration task as checkpoint-T, such as (mysql-bin.000100, 1234).
Record the position information of the full export metedata (or the checkpoint of another
data migration task in the Sync stage) of the table to be added to the migration task as
checkpoint-S, such as (mysql-bin.000099, 5678). You can add the table to the migration
task by the following steps:

1. Use stop-task to stop an existing migration task. If the table to be added belongs to
another running migration task, stop that task as well.

2. Use a MySQL client to connect the downstream TiDB database and manually update
the information in the checkpoint table corresponding to the existing migration task
to the smaller value between checkpoint-T and checkpoint-S. In this example, it is
(mysql- bin.000099, 5678).

• The checkpoint table to be updated is {task-name}_syncer_checkpoint in the
{dm_meta} schema.

• The checkpoint rows to be updated match id=(source-id) and is_global=1.
• The checkpoint columns to be updated are binlog_name and binlog_pos.

3. Set safe-mode: true for the syncers in the task to ensure reentrant execution.

4. Start the task using start-task.

5. Observe the task status through query-status. When syncerBinlog exceeds the
larger value of checkpoint-T and checkpoint-S, restore safe-mode to the original
value and restart the task. In this example, it is (mysql-bin.000100, 1234).

15.8 In DM v1.0, why does the command sql-skip fail to skip
some statements when the task is in error?

You need to first check whether the binlog position is still advancing after you execute
sql-skip. If so, it means that sql-skip has taken effect. The reason why this error keeps
occurring is that the upstream sends multiple unsupported DDL statements. You can use
sql-skip -s <sql-pattern> to set a pattern to match these statements.

Sometimes, the error message contains the parse statement information, for example:
if the DDL is not needed, you can use a filter rule with \"*\" schema-

↪→ pattern to ignore it.\n\t : parse statement: line 1 column 11 near \"
↪→ EVENT `event_del_big_table` \r\nDISABLE\" %!!(MISSING)(EXTRA string=
↪→ ALTER EVENT `event_del_big_table` \r\nDISABLE

281

The reason for this type of error is that the TiDB parser cannot parse DDL statements
sent by the upstream, such as ALTER EVENT, so sql-skip does not take effect as expected.
You can add binlog event filters in the configuration file to filter those statements and set
schema-pattern: "*".

15.9 Why do REPLACE statements keep appearing in the down-
stream when DM is replicating?

You need to check whether the safe mode is automatically enabled for the task. If the
task is automatically resumed after an error, or if there is high availability scheduling, then
the safe mode is enabled because it is within 5 minutes after the task is started or resumed.

You can check the DM-worker log file and search for a line containing change count.
If the new count in the line is not zero, the safe mode is enabled. To find out why it is
enabled, check when it happens and if any errors are reported before.

16 Releases

16.1 v1.0

16.1.1 DM 1.0.7 Release Notes

Release date: June 21, 2021
DM version: 1.0.7

16.1.1.1 Bug fixes

• Fix the issue that data may be lost after a task restarts from interruption #1783

16.1.2 DM 1.0.6 Release Notes

Release date: June 17, 2020
DM version: 1.0.6
DM-Ansible version: 1.0.6

16.1.2.1 Improvements

• Support the original plaintext passwords for upstream and downstream databases
• Support configuring session variables for DM’s connections to upstream and down-

stream databases

282

https://github.com/pingcap/dm/pull/1783

• Remove the call stack information in some error messages returned by the query-
↪→ status command when the data migration task encounters an exception

• Filter out the items that pass the precheck from the message returned when the
precheck of the data migration task fails

16.1.2.2 Bug fixes

• Fix the issue that the data migration task is not automatically paused and the error
cannot be identified by executing the query-status command if an error occurs when
the load unit creates a table

• Fix possible DM-worker panics when data migration tasks run simultaneously
• Fix the issue that the existing data migration task cannot be automatically restarted

when the DM-worker process is restarted if the enable-heartbeat parameter of the
task is set to true

• Fix the issue that the shard DDL conflict error may not be returned after the task is
resumed

• Fix the issue that the replicate lag information is displayed incorrectly for an initial
period of time when the enable-heartbeat parameter of the data migration task is
set to true

• Fix the issue that replicate lag cannot be calculated using the heartbeat information
when lower_case_table_names is set to 1 in the upstream database

• Disable the meaningless auto-resume tasks triggered by the unsupported collation
error during data migration

16.1.2.3 Detailed bug fixes and changes

• Support the original plaintext passwords for upstream and downstream databases #676
• Support configuring session variables for DM’s connections to upstream and down-

stream databases #692
• Remove the call stack information in some error messages returned by the query-

↪→ status command when the data migration task encounters an exception #733
#747

• Filter out the items that pass the precheck from the message returned when the
precheck of the data migration task fails #730

• Fix the issue that the data migration task is not automatically paused and the error
cannot be identified by executing the query-status command if an error occurs when
the load unit creates a table #747

• Fix possible DM-worker panics when data migration tasks run simultaneously #710
• Fix the issue that the existing data migration task cannot be automatically restarted

when the DM-worker process is restarted if the enable-heartbeat parameter of the
task is set to true #739

• Fix the issue that the shard DDL conflict error may not be returned after the task is
resumed #739 #742

283

https://github.com/pingcap/dm/pull/676
https://github.com/pingcap/dm/pull/692
https://github.com/pingcap/dm/pull/733
https://github.com/pingcap/dm/pull/747
https://github.com/pingcap/dm/pull/730
https://github.com/pingcap/dm/pull/747
https://github.com/pingcap/dm/pull/710
https://github.com/pingcap/dm/pull/739
https://github.com/pingcap/dm/pull/739
https://github.com/pingcap/dm/pull/742

• Fix the issue that the replicate lag information is displayed incorrectly for an initial
period of time when the enable-heartbeat parameter of the data migration task is
set to true #704

• Fix the issue that replicate lag cannot be calculated using the heartbeat information
when lower_case_table_names is set to 1 in the upstream database #704

• Disable the meaningless auto-resume tasks triggered by the unsupported collation
error during data migration #735

• Optimize some logs #660 #724 #738

16.1.3 DM 1.0.5 Release Notes

Release date: April 27, 2020
DM version: 1.0.5
DM-Ansible version: 1.0.5

16.1.3.1 Improvements

• Improve the incremental replication speed when the UNIQUE KEY column has the NULL
value

• Add retry for the Write conflict (9007 and 8005) error returned by TiDB

16.1.3.2 Bug fixes

• Fix the issue that the Duplicate entry error might occur during the full data import
• Fix the issue that the migration task cannot be stopped or paused when the full data

import is completed and the upstream has no written data

• Fix the issue the monitoring metrics still display data after the migration task is
stopped

16.1.3.3 Detailed bug fixes and changes

• Improve the incremental replication speed when the UNIQUE KEY column has the NULL
value #588 #597

• Add retry for the Write conflict (9007 and 8005) error returned by TiDB #632
• Fix the issue that the Duplicate entry error might occur during the full data import

#554
• Fix the issue that the migration task cannot be stopped or paused when the full data

import is completed and the upstream has no written data #622
• Fix the issue the monitoring metrics still display data after the migration task is

stopped #616

284

https://github.com/pingcap/dm/pull/704
https://github.com/pingcap/dm/pull/704
https://github.com/pingcap/dm/pull/735
https://github.com/pingcap/dm/pull/660
https://github.com/pingcap/dm/pull/724
https://github.com/pingcap/dm/pull/738
https://github.com/pingcap/dm/pull/588
https://github.com/pingcap/dm/pull/597
https://github.com/pingcap/dm/pull/632
https://github.com/pingcap/dm/pull/554
https://github.com/pingcap/dm/pull/622
https://github.com/pingcap/dm/pull/616

• Fix the issue that the Column count doesn't match value count error might be
returned during the sharding DDL migration #624

• Fix the issue that some metrics such as data file size are incorrectly displayed when
the paused task of full data import is resumed #570

• Add and fix multiple monitoring metrics #590 #594

16.1.4 DM 1.0.4 Release Notes

Release date: March 13, 2020
DM version: 1.0.4
DM-Ansible version: 1.0.4

16.1.4.1 Improvements

• Add English UI for DM-portal
• Add the --more parameter in the query-status command to show complete migration

status information

16.1.4.2 Bug fixes

• Fix the issue that resume-task might fail to resume the migration task which is
interrupted by the abnormal connection to the downstream TiDB server

• Fix the issue that the online DDL operation cannot be properly migrated after a failed
migration task is restarted because the online DDL meta information has been cleared
after the DDL operation failure

• Fix the issue that query-error might cause the DM-worker to panic after start-task
goes into error

• Fix the issue that the relay log file and relay.meta cannot be correctly recovered when
restarting an abnormally stopped DM-worker process before relay.meta is successfully
written

16.1.4.3 Detailed bug fixes and changes

• Add English UI for DM-portal #480
• Add the --more parameter in the query-status command to show complete migration

status information #533
• Fix the issue that resume-task might fail to resume the migration task which is

interrupted by the abnormal connection to the downstream TiDB server #436
• Fix the issue that the online DDL operation cannot be properly migrated after a failed

migration task is restarted because the online DDL meta information is cleared after
the DDL operation failure #465

285

https://github.com/pingcap/dm/pull/624
https://github.com/pingcap/dm/pull/570
https://github.com/pingcap/dm/pull/590
https://github.com/pingcap/dm/pull/594
https://github.com/pingcap/dm/pull/480
https://github.com/pingcap/dm/pull/533
https://github.com/pingcap/dm/pull/436
https://github.com/pingcap/dm/pull/465

• Fix the issue that query-error might cause the DM-worker to panic after start-task
goes into error #519

• Fix the issue that the relay log file and relay.meta cannot be correctly recovered when
restarting an abnormally stopped DM-worker process before relay.meta is successfully
written #534

• Fix the issue that the value out of range error might be reported when getting
server-id from the upstream #538

• Fix the issue that when Prometheus is not configured DM-Ansible prints the wrong
error message that DM-master is not configured #438

16.1.5 DM 1.0.3 Release Notes

Release date: December 13, 2019
DM version: 1.0.3
DM-Ansible version: 1.0.3

16.1.5.1 Improvements

• Add the command mode in dmctl
• Support migrating the ALTER DATABASE DDL statement
• Optimize the error message output

16.1.5.2 Bug fixes

• Fix the panic-causing data race issue occurred when the full import unit pauses or
exits

• Fix the issue that stop-task and pause-task might not take effect when retrying
SQL operations to the downstream

16.1.5.3 Detailed bug fixes and changes

• Add the command mode in dmctl #364
• Optimize the error message output #351
• Optimize the output of the query-status command #357
• Optimize the privilege check for different task modes #374
• Support checking the duplicate quoted route-rules or filter-rules in task config #385
• Support migrating the ALTER DATABASE DDL statement #389
• Optimize the retry mechanism for anomalies #391
• Fix the panic issue caused by the data race when the import unit pauses or exits #353
• Fix the issue that stop-task and pause-task might not take effect when retrying

SQL operations to the downstream #400
• Upgrade Golang to v1.13 and upgrade the version of other dependencies #362

286

https://github.com/pingcap/dm/pull/519
https://github.com/pingcap/dm/pull/534
https://github.com/pingcap/dm/pull/538
https://github.com/pingcap/dm/pull/438
https://github.com/pingcap/dm/pull/364
https://github.com/pingcap/dm/pull/351
https://github.com/pingcap/dm/pull/357
https://github.com/pingcap/dm/pull/374
https://github.com/pingcap/dm/pull/385
https://github.com/pingcap/dm/pull/389
https://github.com/pingcap/dm/pull/391
https://github.com/pingcap/dm/pull/353
https://github.com/pingcap/dm/pull/400
https://github.com/pingcap/dm/pull/362

• Filter the error that the context is canceled when a SQL statement is being executed
#382

• Fix the issue that the error occurred when performing a rolling update to DM monitor
using DM-ansible causes the update to fail #408

16.1.6 DM 1.0.2 Release Notes

Release date: October 30, 2019
DM version: 1.0.2
DM-Ansible version: 1.0.2

16.1.6.1 Improvements

• Generate some config items for DM-worker automatically
• Generate some config items for migration task automatically
• Simplify the output of query-status without arguments
• Manage DB connections directly for downstream

16.1.6.2 Bug fixes

• Fix some panic when starting up or executing SQL statements
• Fix abnormal sharding DDL migration on DDL execution timeout
• Fix starting task failure caused by the checking timeout or any inaccessible DM-worker
• Fix SQL execution retry for some error

16.1.6.3 Detailed bug fixes and changes

• Generate random server-id for DM-worker config automatically #337
• Generate flavor for DM-worker config automatically #328
• Generate relay-binlog-name and relay-binlog-gtid for DM-worker config auto-

matically #318
• Generate the name list of tables to be dumped in task config from block & allow table

lists automatically #326
• Add concurrency items (mydumper-thread, loader-thread and syncer-thread) for

task config #314
• Simplify the output of query-status without arguments #340
• Fix abnormal sharding DDL migration on DDL execution timeout #338
• Fix potential DM-worker panic when restoring subtask from local meta #311
• Fix DM-worker panic when committing a DML transaction failed #313
• Fix DM-worker or DM-master panic when the listening port is being used #301
• Fix retry for error code 1105 #321, #332
• Fix retry for Duplicate entry and Data too long for column #313

287

https://github.com/pingcap/dm/pull/382
https://github.com/pingcap/dm/pull/408
https://github.com/pingcap/dm/pull/337
https://github.com/pingcap/dm/pull/328
https://github.com/pingcap/dm/pull/318
https://github.com/pingcap/dm/pull/326
https://github.com/pingcap/dm/pull/314
https://github.com/pingcap/dm/pull/340
https://github.com/pingcap/dm/pull/338
https://github.com/pingcap/dm/pull/311
https://github.com/pingcap/dm/pull/313
https://github.com/pingcap/dm/pull/301
https://github.com/pingcap/dm/pull/321
https://github.com/pingcap/dm/pull/332
https://github.com/pingcap/dm/pull/313

• Fix task check timeout when having large amounts of tables in upstream #327
• Fix starting task failure when any DM-worker is not accessible #319
• Fix potential DM-worker startup failure in GTID mode after being recovered from

corrupt relay log #339
• Fix in-memory TPS count for sync unit #294
• Manage DB connections directly for downstream #325
• Improve the error system by refining error information passed between components

#320

17 TiDB Data Migration Glossary

This document lists the terms used in the logs, monitoring, configurations, and docu-
mentation of TiDB Data Migration (DM).

17.1 B

17.1.1 Binlog

In TiDB DM, binlogs refer to the binary log files generated in the TiDB database. It
has the same indications as that in MySQL or MariaDB. Refer to MySQL Binary Log and
MariaDB Binary Log for details.

17.1.2 Binlog event

Binlog events are information about data modification made to a MySQL or MariaDB
server instance. These binlog events are stored in the binlog files. Refer to MySQL Binlog
Event and MariaDB Binlog Event for details.

17.1.3 Binlog event filter

Binlog event filter is a more fine-grained filtering feature than the block and allow lists
filtering rule. Refer to binlog event filter for details.

17.1.4 Binlog position

The binlog position is the offset information of a binlog event in a binlog file. Refer to
MySQL SHOW BINLOG EVENTS and MariaDB SHOW BINLOG EVENTS for details.

17.1.5 Binlog replication processing unit

Binlog replication processing unit is the processing unit used in DM-worker to read
upstream binlogs or local relay logs, and to replicate these logs to the downstream. Each

288

https://github.com/pingcap/dm/pull/327
https://github.com/pingcap/dm/pull/319
https://github.com/pingcap/dm/pull/339
https://github.com/pingcap/dm/pull/294
https://github.com/pingcap/dm/pull/325
https://github.com/pingcap/dm/pull/320
https://dev.mysql.com/doc/internals/en/binary-log.html
https://mariadb.com/kb/en/library/binary-log/
https://dev.mysql.com/doc/internals/en/binlog-event.html
https://dev.mysql.com/doc/internals/en/binlog-event.html
https://mariadb.com/kb/en/library/1-binlog-events/
https://dev.mysql.com/doc/refman/8.0/en/show-binlog-events.html
https://mariadb.com/kb/en/library/show-binlog-events/

subtask corresponds to a binlog replication processing unit. In the current documentation,
the binlog replication processing unit is also referred to as the sync processing unit.

17.1.6 Block & allow table list

Block & allow table list is the feature that filters or only migrates all operations of some
databases or some tables. Refer to block & allow table lists for details. This feature is similar
to MySQL Migration Filtering and MariaDB Migration Filters.

17.2 C

17.2.1 Checkpoint

A checkpoint indicates the position from which a full data import or an incremental
replication task is paused and resumed, or is stopped and restarted.

• In a full import task, a checkpoint corresponds to the offset and other information of
the successfully imported data in a file that is being imported. A checkpoint is updated
synchronously with the data import task.

• In an incremental replication, a checkpoint corresponds to the binlog position and
other information of a binlog event that is successfully parsed and migrated to the
downstream. A checkpoint is updated after the DDL operation is successfully migrated
or 30 seconds after the last update.

In addition, the relay.meta information corresponding to a relay processing unit works
similarly to a checkpoint. A relay processing unit pulls the binlog event from the upstream
and writes this event to the relay log, and writes the binlog position or the GTID information
corresponding to this event to relay.meta.

17.3 D

17.3.1 Dump processing unit

The dump processing unit is the processing unit used in DM-worker to export all data
from the upstream. Each subtask corresponds to a dump processing unit.

17.4 G

17.4.1 GTID

The GTID is the global transaction ID of MySQL or MariaDB. With this feature enabled,
the GTID information is recorded in the binlog files. Multiple GTIDs form a GTID set. Refer
to MySQL GTID Format and Storage and MariaDB Global Transaction ID for details.

289

https://dev.mysql.com/doc/refman/5.6/en/replication-rules.html
https://mariadb.com/kb/en/library/replication-filters/
https://dev.mysql.com/doc/refman/5.7/en/replication-gtids-concepts.html
https://mariadb.com/kb/en/library/gtid/

17.5 H

17.5.1 Heartbeat

The heartbeat is a mechanism that calculates the delay from the time data is written in
the upstream to the time data is processed by the binlog replication processing unit. Refer
to migration delay monitoring for details.

17.6 L

17.6.1 Load processing unit

The load processing unit is the processing unit used in DM-worker to import the fully
exported data to the downstream. Each subtask corresponds to a load processing unit. In the
current documentation, the load processing unit is also referred to as the import processing
unit.

17.7 M

17.7.1 Migrate/migration

The process of using the TiDB Data Migration tool to copy the full data of the upstream
database to the downstream database.

In the case of clearly mentioning “full”, not explicitly mentioning “full or incremental”,
and clearly mentioning “full + incremental”, use migrate/migration instead of replicate/repli-
cation.

17.8 R

17.8.1 Relay log

The relay log refers to the binlog files that DM-worker pulls from the upstream MySQL
or MariaDB, and stores in the local disk. The format of the relay log is the standard binlog
file, which can be parsed by tools such as mysqlbinlog of a compatible version.

For more details such as the relay log’s directory structure, initial migration rules, and
data purge in TiDB DM, see TiDB DM relay log.

17.8.2 Relay processing unit

The relay processing unit is the processing unit used in DM-worker to pull binlog files
from the upstream and write data into relay logs. Each DM-worker instance has only one
relay processing unit.

290

https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html

17.8.3 Replicate/replication

The process of using the TiDB Data Migration tool to copy the incremental data of
the upstream database to the downstream database.

In the case of clearly mentioning “incremental”, use replicate/replication instead of mi-
grate/migration.

17.9 S

17.9.1 Safe mode

Safe mode is the mode in which DML statements can be imported more than once when
the primary key or unique index exists in the table schema. In this mode, some statements
from the upstream are migrated to the downstream only after they are re-written. The
INSERT statement is re-written as REPLACE; the UPDATE statement is re-written as DELETE
and REPLACE.

This mode is enabled in any of the following situations:

• TiDB DM automatically enables the safe mode within 5 minutes immediately after the
incremental replication task is started or resumed.

• The safe mode remains enabled when the safe-mode parameter in the task configura-
tion file is set to true.

• In shard merge scenarios, the safe mode remains enabled before DDL statements are
replicated in all sharded tables.

17.9.2 Shard DDL

The shard DDL is the DDL statement that is executed on the upstream sharded tables.
It needs to be coordinated and migrated by TiDB DM in the process of merging the sharded
tables. In the current documentation, the shard DDL is also referred to as the sharding
DDL.

17.9.3 Shard DDL lock

The shard DDL lock is the lock mechanism that coordinates the migration of shard DDL.
Refer to the implementation principles of merging and migrating data from sharded tables
for details. In the current documentation, the shard DDL lock is also referred to as the
sharding DDL lock.

17.9.4 Shard group

A shard group is all the upstream sharded tables to be merged and migrated to the same
table in the downstream. Two-level shard groups are used for implementation of TiDB DM.

291

Refer to the implementation principles of merging and migrating sharded tables for details.
In the current documentation, the shard group is also referred to as the sharding group.

17.9.5 Subtask

The subtask is a part of a data migration task that is running on each DM-worker
instance. In different task configurations, a single data migration task might have one
subtask or multiple subtasks.

17.9.6 Subtask status

The subtask status is the status of a data migration subtask. The current status options
include New, Running, Paused, Stopped, and Finished. Refer to subtask status for more
details about the status of a data migration task or subtask.

17.10 T

17.10.1 Table routing

The table routing feature enables DM to migrate a certain table of the upstream MySQL
or MariaDB instance to the specified table in the downstream, which can be used to merge
and migrate sharded tables. Refer to table routing for details.

17.10.2 Task

The data migration task, which is started after you successfully execute a start-task
↪→ command. In different task configurations, a single migration task can run on a single
DM-worker instance or on multiple DM-worker instances at the same time.

17.10.3 Task status

The task status refers to the status of a data migration task. The task status depends
on the statuses of all its subtasks. Refer to subtask status for details.

©2019 PingCAP All Rights Reversed.

292

	Overview
	Data Migration Overview
	Architecture
	Data migration features
	Usage restrictions

	DM-worker Introduction
	DM-worker processing unit
	Privileges required by DM-worker

	Data Migration Relay Log
	Directory structure
	Initial migration rules
	Data purge

	Features
	Data Migration Features
	Table routing
	Block and allow table lists
	Binlog event filter
	Column mapping
	Migration delay monitoring

	DM online-ddl-scheme
	Overview
	Configuration
	online-schema-change: gh-ost
	online-schema-change: pt

	Sharding Support
	Merge and migrate Data from Sharded Tables
	Handle Sharding DDL Locks Manually in DM

	Benchmark
	DM 1.0-GA Benchmark Report
	Test purpose
	Test environment
	Test scenario
	Recommended parameters

	DM 1.0-alpha Benchmark Report
	Test purpose
	Test environment
	Test scenario
	Test result

	Usage Scenarios
	Data Migration Simple Usage Scenario
	Upstream instances
	Migration requirements
	Downstream instances
	Migration solution
	Migration task configuration

	Data Migration Shard Merge Scenario
	Upstream instances
	Migration requirements
	Downstream instances
	Migration solution
	Migration task configuration

	Best Practices of Data Migration in the Shard Merge Scenario
	Use a separate data migration task
	Handle sharding DDL locks manually
	Handle conflicts of auto-increment primary key
	Create/drop tables in the upstream
	Speed limits and traffic flow control

	Switch DM-worker Connection between Upstream MySQL Instances
	Switch DM-worker connection via virtual IP
	Change the address of the upstream MySQL instance that DM-worker connects to

	TiDB DM (Data Migration) Tutorial
	Architecture
	Setup
	Migrating shards
	Starting DM master and workers
	Conclusion

	Deploy
	Deploy a DM Cluster
	Deploy Data Migration Using DM-Ansible
	Deploy Data Migration Cluster Using DM Binary
	Use Kubernetes (Experimental)

	Migrate Data Using Data Migration
	Step 1: Deploy the DM cluster
	Step 2: Check the cluster information
	Step 3: Configure the data migration task
	Step 4: Start the data migration task
	Step 5: Check the data migration task
	Step 6: Stop the data migration task
	Step 7: Monitor the task and check logs

	Configure
	Data Migration Configuration File Overview
	DM process configuration files
	DM migration task configuration

	DM-master Configuration File
	Configuration file template
	Configurable items

	DM-worker Configuration File
	Configuration file template
	Configuration parameters

	DM-worker Advanced Configuration File
	Configuration file template
	Configuration parameters

	Data Migration Task Configuration File
	Important concepts
	Task configuration file template (basic)

	```yaml
	———– Global configuration ———–
	********** Basic configuration ************
	Configuration order
	Global configuration
	Instance configuration
	Modify the task configuration

	DM Advanced Task Configuration File
	Important concepts
	Disable checking items
	Task configuration file template (advanced)
	Configuration order
	Global configuration
	Instance configuration


	Manage the DM Cluster
	Data Migration Cluster Operations
	Start a cluster
	Stop a cluster
	Restart cluster components
	Upgrade the component version
	Add a DM-worker instance
	Remove a DM-worker instance
	Replace/migrate a DM-master instance
	Replace/migrate a DM-worker instance

	Upgrade Data Migration
	Upgrade to v1.0.3
	Upgrade to v1.0.2
	Upgrade to v1.0.1
	Upgrade to v1.0.0-10-geb2889c9 (1.0 GA)
	Upgrade to v1.0.0-rc.1-12-gaa39ff9


	Manage Migration Tasks
	Manage the Data Migration Task
	dmctl interactive mode
	Manage the data migration task
	Manage DDL locks
	Other task and cluster management commands
	Refresh worker tasks
	dmctl command mode
	Deprecated or unrecommended commands

	Precheck the upstream MySQL instance configuration
	Command
	Checking items

	Data Migration Query Status
	Query result
	Task status
	Detailed query result
	Subtask status

	Skip or Replace Abnormal SQL Statements
	Restrictions
	Match the binlog event
	Supported scenarios
	Implementation principles
	Command
	Usage examples


	Data Migration Monitoring Metrics
	Task
	overview
	Task state
	Relay log
	Dump/Load unit
	Binlog replication

	Instance
	Relay log
	Task


	Migrate from MySQL-compatible Database
	Migrate from a MySQL-compatible Database - Taking Amazon Aurora MySQL as an Example
	Step 1: Enable binlog in the Aurora cluster
	Step 2: Deploy the DM cluster
	Step 3: Check the cluster informtaion
	Step 4: Configure the task
	Step 5: Start the task
	Step 6: Query the task


	DM Portal Overview
	Features
	Configure the migration mode
	Configure the instance information
	Configure the binlog event filter
	Generate the configuration file

	Restrictions
	Deploy
	Deploy using binary
	Deploy using DM Ansible

	Usage
	Create rules
	Configure the basic information
	Configure the instance information
	Configure the binlog filter
	Configure table routing


	Alert
	DM Alert Information
	Handle Alerts
	Alert rules related to task status
	Alert rules related to relay log
	Alert rules related to Dump/Load
	Alert rules related to binlog replication


	Troubleshoot
	Handle Errors
	Error system
	Troubleshooting
	Handle common errors

	Handle Performance Issues
	relay log unit
	Load unit
	Binlog replication unit


	TiDB Data Migration FAQ
	Does DM support migrating data from Alibaba RDS or other cloud databases?
	Does the regular expression of the block and allow list in the task configuration support non-capturing (?!)?
	If a statement executed upstream contains multiple DDL operations, does DM support such migration?
	How to handle incompatible DDL statements?
	How to reset the data migration task?
	Reset the data migration task when the relay log is in the normal state
	Reset the data migration task when the relay log is in the abnormal state

	How to handle the error returned by the DDL operation related to the gh-ost table, after online-ddl-scheme: "gh-ost" is set?
	How to add tables to the existing data migration tasks?
	In the Dump stage
	In the Load stage
	In the Sync stage

	In DM v1.0, why does the command sql-skip fail to skip some statements when the task is in error?
	Why do REPLACE statements keep appearing in the downstream when DM is replicating?

	Releases
	v1.0
	DM 1.0.7 Release Notes
	DM 1.0.6 Release Notes
	DM 1.0.5 Release Notes
	DM 1.0.4 Release Notes
	DM 1.0.3 Release Notes
	DM 1.0.2 Release Notes


	TiDB Data Migration Glossary
	B
	Binlog
	Binlog event
	Binlog event filter
	Binlog position
	Binlog replication processing unit
	Block & allow table list

	C
	Checkpoint

	D
	Dump processing unit

	G
	GTID

	H
	Heartbeat

	L
	Load processing unit

	M
	Migrate/migration

	R
	Relay log
	Relay processing unit
	Replicate/replication

	S
	Safe mode
	Shard DDL
	Shard DDL lock
	Shard group
	Subtask
	Subtask status

	T
	Table routing
	Task
	Task status



