
TiDB Data Migration Documentation

PingCAP Inc.

20220929

Table of Contents

1 About DM 10
1.1 Data Migration Overview · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10

1.1.1 Basic features · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10
1.1.2 Advanced features · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 11
1.1.3 Usage restrictions · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 12

1.2 DM 5.3.0 Release Notes · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 13
1.2.1 Special Notes · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 13
1.2.2 Improvements · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 13
1.2.3 Bug fixes · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 14
1.2.4 Known issues · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 14

1.3 Basic Features· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15
1.3.1 Key Features· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15

1.4 Advanced Features · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 28
1.4.1 Merge and Migrate Data from Sharded Tables · · · · · · · · · · · · · · · · · · · · · 28
1.4.2 Migrate from Databases that Use GH-ost/PT-osc · · · · · · · · · · · · · · · · · · 49
1.4.3 Filter Certain Row Changes Using SQL Expressions · · · · · · · · · · · · · · · · 57

1.5 Data Migration Architecture · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 60
1.5.1 Architecture components· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 61
1.5.2 Architecture features · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 62

1



1.6 DM 5.3.0 Benchmark Report · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 63
1.6.1 Test purpose · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 63
1.6.2 Test environment · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 63
1.6.3 Test scenario · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 64
1.6.4 Recommended parameter configuration · · · · · · · · · · · · · · · · · · · · · · · · · · · 66

2 Quick Start 67
2.1 Quick Start Guide for TiDB Data Migration · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 67

2.1.1 Sample scenario · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 67
2.1.2 Deploy DM using the binary package · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 67
2.1.3 Migrate data from MySQL to TiDB · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 69

2.2 Deploy a DM Cluster Using TiUP· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 72
2.2.1 Prerequisites · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 73
2.2.2 Step 1: Install TiUP on the control machine · · · · · · · · · · · · · · · · · · · · · · · 73
2.2.3 Step 2: Edit the initialization configuration file· · · · · · · · · · · · · · · · · · · · · 73
2.2.4 Step 3: Execute the deployment command · · · · · · · · · · · · · · · · · · · · · · · · 76
2.2.5 Step 4: Check the clusters managed by TiUP · · · · · · · · · · · · · · · · · · · · · · 81
2.2.6 Step 5: Check the status of the deployed DM cluster · · · · · · · · · · · · · · · · 82
2.2.7 Step 6: Start the TiDB cluster· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 82
2.2.8 Step 7: Verify the running status of the TiDB cluster · · · · · · · · · · · · · · · 82
2.2.9 Step 8: Managing migration tasks using dmctl · · · · · · · · · · · · · · · · · · · · · 82

2.3 Create a Data Source · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 82
2.3.1 Step 1: Configure the data source · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 83
2.3.2 Step 2: Create a data source · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 83
2.3.3 Step 3: Query the data source you created · · · · · · · · · · · · · · · · · · · · · · · · 84

2.4 Data Migration Scenarios · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 85
2.4.1 Data Migration Scenario Overview · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 85
2.4.2 Using Migrate Data from Multiple Data Sources to TiDB· · · · · · · · · · · · 86
2.4.3 Data Migration Shard Merge Scenario · · · · · · · · · · · · · · · · · · · · · · · · · · · · 91
2.4.4 Incremental Data Migration Scenario · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 96
2.4.5 Migration when There Are More Columns in the Downstream TiDB

Table · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 100

2



3 Deploy 102
3.1 Software and Hardware Requirements· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 102

3.1.1 Recommended server requirements · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 102
3.2 Deploy a DM Cluster· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 105

3.2.1 Deploy a DM Cluster Using TiUP· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 105
3.2.2 Deploy a DM Cluster Offline Using TiUP (Experimental)· · · · · · · · · · · · 114
3.2.3 Deploy Data Migration Using DM Binary · · · · · · · · · · · · · · · · · · · · · · · · · 119
3.2.4 Use Kubernetes · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 124

3.3 Migrate Data Using Data Migration · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 124
3.3.1 Step 1: Deploy the DM cluster · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 125
3.3.2 Step 2: Check the cluster information· · · · · · · · · · · · · · · · · · · · · · · · · · · · · 125
3.3.3 Step 3: Create data source · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 125
3.3.4 Step 4: Configure the data migration task · · · · · · · · · · · · · · · · · · · · · · · · · 126
3.3.5 Step 5: Start the data migration task · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 128
3.3.6 Step 6: Check the data migration task · · · · · · · · · · · · · · · · · · · · · · · · · · · · 129
3.3.7 Step 7: Stop the data migration task · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 129
3.3.8 Step 8: Monitor the task and check logs· · · · · · · · · · · · · · · · · · · · · · · · · · · 129

3.4 DM Cluster Performance Test · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 129
3.4.1 Migration data flow · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 130
3.4.2 Deploy test environment · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 130
3.4.3 Performance test · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 130

4 Maintain 133
4.1 Tools · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 133

4.1.1 Maintain a DM Cluster Using TiUP · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 133
4.1.2 Maintain DM Clusters Using dmctl· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 142
4.1.3 Maintain DM Clusters Using OpenAPI · · · · · · · · · · · · · · · · · · · · · · · · · · · 145

4.2 Cluster Upgrade · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 168
4.2.1 Manually Upgrade TiDB Data Migration from v1.0.x to v2.0+ · · · · · · · 168

4.3 Manage Data Source Configurations · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 173
4.3.1 Encrypt the database password · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 173
4.3.2 Operate data source· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 174
4.3.3 Change the bindings between upstream MySQL instances and DM-

workers· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 176

3



4.4 Manage a Data Migration Task · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 178
4.4.1 Data Migration Task Configuration Guide · · · · · · · · · · · · · · · · · · · · · · · · · 178
4.4.2 Precheck the Upstream MySQL Instance Configurations · · · · · · · · · · · · · 187
4.4.3 Create a Data Migration Task · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 192
4.4.4 Query Status· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 193
4.4.5 Pause a Data Migration Task · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 204
4.4.6 Resume a Data Migration Task · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 206
4.4.7 Stop a Data Migration Task · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 207
4.4.8 Export and Import Data Sources and Task Configuration of Clusters · · 208
4.4.9 Handle Failed DDL Statements · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 210

4.5 Handle Sharding DDL Locks Manually in DM · · · · · · · · · · · · · · · · · · · · · · · · · · · 227
4.5.1 Command · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 228
4.5.2 Supported scenarios · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 230

4.6 Manage Table Schemas of Tables to be Migrated · · · · · · · · · · · · · · · · · · · · · · · · · 236
4.6.1 Implementation principles· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 236
4.6.2 Command · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 238
4.6.3 Parameters · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 239
4.6.4 Usage example · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 239

4.7 Handle Alerts · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 241
4.7.1 Alerts related to high availability · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 241
4.7.2 Alert rules related to task status · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 243
4.7.3 Alert rules related to relay log · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 243
4.7.4 Alert rules related to Dump/Load · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 245
4.7.5 Alert rules related to binlog replication · · · · · · · · · · · · · · · · · · · · · · · · · · · 245

4.8 Daily Check · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 246

5 Usage Scenarios 246
5.1 Migrate from a MySQL-compatible Database - Taking Amazon Aurora

MySQL as an Example · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 246
5.1.1 Step 1: Precheck· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 248
5.1.2 Step 2: Deploy the DM cluster · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 249
5.1.3 Step 3: Configure the data source · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 250
5.1.4 Step 4: Configure the task · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 252

4



5.1.5 Step 5: Start the task · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 253
5.1.6 Step 6: Query the task and validate the data · · · · · · · · · · · · · · · · · · · · · · 254

5.2 Migration when There Are More Columns in the Downstream TiDB Table · · · 255
5.2.1 The table shcema of the data source · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 255
5.2.2 Migration requirements · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 255
5.2.3 Only migrate incremental data to TiDB and the downstream TiDB

table has more columns · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 255
5.3 Switch DM-worker Connection between Upstream MySQL Instances · · · · · · · · 257

5.3.1 Switch DM-worker connection via virtual IP · · · · · · · · · · · · · · · · · · · · · · · 257
5.3.2 Change the address of the upstream MySQL instance that DM-worker

connects to · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 258

6 Troubleshoot 259
6.1 Handle Errors · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 259

6.1.1 Error system · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 259
6.1.2 Troubleshooting · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 261
6.1.3 Handle common errors· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 262

6.2 Handle Performance Issues · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 266
6.2.1 relay log unit· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 267
6.2.2 Load unit· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 268
6.2.3 Binlog replication unit· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 268

7 Performance Tuning 270
7.1 Optimize Configuration of DM· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 270

7.1.1 Full data export · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 270
7.1.2 Full data import · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 271
7.1.3 Incremental data replication · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 272

8 Reference 273
8.1 Architecture · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 273

8.1.1 Data Migration Overview · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 273
8.1.2 DM-worker Introduction · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 276

5



8.2 Command-line Flags · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 280
8.2.1 DM-master · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 280
8.2.2 DM-worker · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 281
8.2.3 dmctl · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 282

8.3 Configuration · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 283
8.3.1 Data Migration Configuration File Overview · · · · · · · · · · · · · · · · · · · · · · · 283
8.3.2 DM-master Configuration File · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 285
8.3.3 DM-worker Configuration File · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 287
8.3.4 Upstream Database Configuration File · · · · · · · · · · · · · · · · · · · · · · · · · · · · 288

9 Secure 293
9.1 Enable TLS for DM Connections· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 293

9.1.1 Enable encrypted data transmission between DM-master, DM-worker,
and dmctl · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 293

9.1.2 Enable encrypted data transmission between DM components and the
upstream or downstream database · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 294

9.2 Generate Self-signed Certificates · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 295
9.2.1 Install OpenSSL · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 296
9.2.2 Generate the CA certificate · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 296
9.2.3 Issue certificates for individual components · · · · · · · · · · · · · · · · · · · · · · · · 297

9.3 Data Migration Monitoring Metrics · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 299
9.3.1 Task · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 299
9.3.2 Instance · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 317

9.4 DM Alert Information · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 322

10 TiDB Data Migration FAQ 323
10.1 Does DM support migrating data from Alibaba RDS or other cloud databases?323
10.2 Does the regular expression of the block and allow list in the task configuration

support non-capturing (?!)? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 323
10.3 If a statement executed upstream contains multiple DDL operations, does DM

support such migration? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 323
10.4 How to handle incompatible DDL statements? · · · · · · · · · · · · · · · · · · · · · · · · · · · 324
10.5 How to reset the data migration task? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 324

6



10.6 How to handle the error returned by the DDL operation related to the gh-ost
table, after online-ddl-scheme: "gh-ost" is set? · · · · · · · · · · · · · · · · · · · · · · · 324

10.7 How to add tables to the existing data migration tasks? · · · · · · · · · · · · · · · · · · · 325
10.7.1 In the Dump stage · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 325
10.7.2 In the Load stage · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 326
10.7.3 In the Sync stage · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 326

10.8 How to handle the error packet for query is too large. Try adjusting
the 'max_allowed_packet' variable that occurs during the full import? · · 327

10.9 How to handle the error Error 1054: Unknown column 'binlog_gtid' in
'field list' that occurs when existing DM migration tasks of an DM 1.0
cluster are running on a DM 2.0 or newer cluster? · · · · · · · · · · · · · · · · · · · · · · · · 327

10.10 Why does TiUP fail to deploy some versions of DM (for example, v2.0.0-
hotfix)？ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 327

10.11 How to handle the error parse mydumper metadata error: EOF that occurs
when DM is replicating data？ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 327

10.12 Why does DM report no fatal error when replicating sharded schemas and
tables, but downstream data is lost? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 327

10.13 Why does the replicate lag monitor metric show no data when DM is not
replicating from upstream? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 328

10.14 How to handle the error fail to initial unit Sync of subtask when DM
is starting a task, with the RawCause in the error message showing context
deadline exceeded?· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 328

10.15 How to handle the error duplicate entry when DM is replicating data? · · · · 328
10.16 Why do some monitoring panels show No data point? · · · · · · · · · · · · · · · · · · · 329
10.17 In DM v1.0, why does the command sql-skip fail to skip some statements

when the task is in error? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 329
10.18 Why do REPLACE statements keep appearing in the downstream when DM is

replicating? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 329
10.19 In DM v2.0, why does the full import task fail if DM restarts during the task? 330
10.20 Why does DM report the error ERROR 1236 (HY000): The slave is

connecting using CHANGE MASTER TO MASTER_AUTO_POSITION = 1, but
the master has purged binary logs containing GTIDs that the slave
requires. if it restarts during an incremental task? · · · · · · · · · · · · · · · · · · · · · · 330

10.21 Why does the Grafana dashboard of a DM cluster display failed to fetch
dashboard if the cluster is deployed using TiUP v1.3.0 or v1.3.1? · · · · · · · · · · · 331

10.22 In DM v2.0, why does the query result of the command query-status
show that the Syncer checkpoint GTIDs are inconsecutive if the task has
enable-relay and enable-gtid enabled at the same time?· · · · · · · · · · · · · · · · 331

7



10.23 In DM v2.0, how do I handle the error “heartbeat config is different from pre-
vious used: serverID not equal” when switching the connection between DM-
workers and MySQL instances in a virtual IP environment with the heartbeat
feature enabled? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 335

10.24 Why does a DM-master fail to join the cluster after it restarts and DM reports
the error “fail to start embed etcd, RawCause: member xxx has already been
bootstrapped”? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 335

10.25 Why DM-master cannot be connected when I use dmctl to execute commands?335
10.26 How to handle the returned error when executing start-relay command for

DM versions from 2.0.2 to 2.0.6? · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 336

11 TiDB Data Migration Glossary 336
11.1 B· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 336

11.1.1 Binlog · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 336
11.1.2 Binlog event · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 337
11.1.3 Binlog event filter· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 337
11.1.4 Binlog position · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 337
11.1.5 Binlog replication processing unit/sync unit · · · · · · · · · · · · · · · · · · · · · · · 337
11.1.6 Block & allow table list · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 337

11.2 C· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 337
11.2.1 Checkpoint · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 337

11.3 D · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 338
11.3.1 Dump processing unit/dump unit · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 338

11.4 G · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 338
11.4.1 GTID · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 338

11.5 L · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 338
11.5.1 Load processing unit/load unit · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 338

11.6 M · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 338
11.6.1 Migrate/migration · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 338

11.7 R· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 339
11.7.1 Relay log · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 339
11.7.2 Relay processing unit· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 339
11.7.3 Replicate/replication · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 339

8



11.8 S · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 339
11.8.1 Safe mode · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 339
11.8.2 Shard DDL · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 340
11.8.3 Shard DDL lock · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 340
11.8.4 Shard group · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 340
11.8.5 Subtask · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 340
11.8.6 Subtask status · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 340

11.9 T· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 340
11.9.1 Table routing · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 340
11.9.2 Task · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 341
11.9.3 Task status · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 341

12 Release Notes 341
12.1 v5.3 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 341

12.1.1 DM 5.3.0 Release Notes · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 341
12.2 v2.0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 342

12.2.1 DM 2.0.7 Release Notes · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 342
12.2.2 DM 2.0.6 Release Notes · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 343
12.2.3 DM 2.0.5 Release Notes · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 343
12.2.4 DM 2.0.4 Release Notes · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 344
12.2.5 DM 2.0.3 Release Notes · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 345
12.2.6 DM 2.0.2 Release Notes · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 346
12.2.7 DM 2.0.1 Release Notes · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 348
12.2.8 DM 2.0 GA Release Notes · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 349
12.2.9 DM 2.0 RC.2 Release Notes · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 351
12.2.10 DM 2.0 RC Release Notes· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 352

12.3 v1.0 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 354
12.3.1 DM 1.0.7 Release Notes · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 354
12.3.2 DM 1.0.6 Release Notes · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 354
12.3.3 DM 1.0.5 Release Notes · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 355
12.3.4 DM 1.0.4 Release Notes · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 356
12.3.5 DM 1.0.3 Release Notes · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 357
12.3.6 DM 1.0.2 Release Notes · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 358

9



1 About DM

1.1 Data Migration Overview

TiDB Data Migration (DM) is an integrated data migration task management platform,
which supports the full data migration and the incremental data replication from MySQL-
compatible databases (such as MySQL, MariaDB, and Aurora MySQL) into TiDB. It can
help to reduce the operation cost of data migration and simplify the troubleshooting process.
When using DM for data migration, you need to perform the following operations:

• Deploy a DM Cluster
• Create upstream data source and save data source access information
• Create data migration tasks to migrate data from data sources to TiDB

The data migration task includes two stages: full data migration and incremental data
replication:

• Full data migration: Migrate the table structure of the corresponding table from the
data source to TiDB, and then read the data stored in the data source and write it to
the TiDB cluster.

• Incremental data replication: After the full data migration is completed, the corre-
sponding table changes from the data source are read and then written to the TiDB
cluster.

The following describes the features of DM.

1.1.1 Basic features

This section describes the basic data migration features provided by DM.

10

https://github.com/pingcap/dm


Figure 1: DM Core Features

1.1.1.1 Block and allow lists migration at the schema and table levels
The block and allow lists filtering rule is similar to the replication-rules-db

↪→ /replication-rules-table feature of MySQL, which can be used to filter or replicate
all operations of some databases only or some tables only.

1.1.1.2 Binlog event filtering
The binlog event filtering feature means that DM can filter certain types of SQL state-

ments from certain tables in the source database. For example, you can filter all INSERT
statements in the table test.sbtest or filter all TRUNCATE TABLE statements in the schema
test.

1.1.1.3 Schema and table routing
The schema and table routing feature means that DM can migrate a certain table of

the source database to the specified table in the downstream. For example, you can migrate
the table structure and data from the table test.sbtest1 in the source database to the
table test.sbtest2 in TiDB. This is also a core feature for merging and migrating sharded
databases and tables.

1.1.2 Advanced features

1.1.2.1 Shard merge and migration
DM supports merging and migrating the original sharded instances and tables from the

source databases into TiDB, but with some restrictions. For details, see Sharding DDL usage

11



restrictions in the pessimistic mode and Sharding DDL usage restrictions in the optimistic
mode.

1.1.2.2 Optimization for third-party online-schema-change tools in the migra-
tion process

In the MySQL ecosystem, tools such as gh-ost and pt-osc are widely used. DM provides
support for these tools to avoid migrating unnecessary intermediate data. For details, see
Online DDL Tools

1.1.2.3 Filter certain row changes using SQL expressions
In the phase of incremental replication, DM supports the configuration of SQL expres-

sions to filter out certain row changes, which lets you replicate the data with a greater
granularity. For more information, refer to Filter Certain Row Changes Using SQL Expres-
sions.

1.1.3 Usage restrictions

Before using the DM tool, note the following restrictions:

• Database version requirements

– MySQL version > 5.5
– MariaDB version >= 10.1.2

Note:
If there is a primary-secondary migration structure between the upstream
MySQL/MariaDB servers, then choose the following version.

– MySQL version > 5.7.1
– MariaDB version >= 10.1.3

Warning:
Support for MySQL 8.0 is an experimental feature of TiDB Data Mi-
gration v2.0. It is NOT recommended that you use it in a production
environment.

• DDL syntax compatibility

12



– Currently, TiDB is not compatible with all the DDL statements that MySQL
supports. Because DM uses the TiDB parser to process DDL statements, it only
supports the DDL syntax supported by the TiDB parser. For details, see MySQL
Compatibility.

– DM reports an error when it encounters an incompatible DDL statement. To
solve this error, you need to manually handle it using dmctl, either skipping this
DDL statement or replacing it with a specified DDL statement(s). For details,
see Skip or replace abnormal SQL statements.

• Sharding merge with conflicts

– If conflict exists between sharded tables, solve the conflict by referring to han-
dling conflicts of auto-increment primary key. Otherwise, data migration is not
supported. Conflicting data can cover each other and cause data loss.

– For other sharding DDL migration restrictions, see Sharding DDL usage restric-
tions in the pessimistic mode and Sharding DDL usage restrictions in the opti-
mistic mode.

• Switch of MySQL instances for data sources
When DM-worker connects the upstream MySQL instance via a virtual IP (VIP), if
you switch the VIP connection to another MySQL instance, DM might connect to
the new and old MySQL instances at the same time in different connections. In this
situation, the binlog migrated to DM is not consistent with other upstream status
that DM receives, causing unpredictable anomalies and even data damage. To make
necessary changes to DM manually, see Switch DM-worker connection via virtual IP.

1.2 DM 5.3.0 Release Notes

Release date: November 30, 2021
DM version: 5.3.0

1.2.1 Special Notes

In earlier versions (v1.0 and v2.0), DM uses version numbers that are independent of
TiDB. Since v5.3, DM uses the same version number as TiDB. The next version of DM v2.0
is DM v5.3. There are no compatibility changes from DM v2.0 to v5.3, and the upgrade
process is no different from a normal upgrade, only an increase in version number.

1.2.2 Improvements

• Reduce latency when Relay Log is enabled #2225
• Compress/merge DML statements for incremental replication to reduce replication

latency #3162 #3167

13

https://pingcap.com/docs/stable/reference/mysql-compatibility/#ddl
https://pingcap.com/docs/stable/reference/mysql-compatibility/#ddl
https://github.com/pingcap/dm/pull/2225
https://github.com/pingcap/tiflow/pull/3162
https://github.com/pingcap/tiflow/pull/3167


• Support OpenAPI feature to better manage DM clusters (experimental feature) #1928
• Optimize the user experience of dmctl and add subcommands #1746
• Support for maintaining transaction atomicity when stopping or pausing replication

tasks #1928
• Support for reading Relay Log files with file names longer than 999999 #1933
• Load and sync units support more monitoring metrics #1778
• Support for concurrently manipulating tasks via dmctl #1995
• Optimize DML concurrency for incremental replication #2043
• Prompt user when HTTP proxy-related environment variables are detected #1960
• Optimize log display when handling RowEvent #2006
• Optimize log display when SQL execution is too slow #2024
• Optimize logic for fetching status data from upstream sources to reduce pressure on

upstream #2076
• Report errors and prompt users when encountering unsupported binlog formats #2099
• Support for batch manipulation of all sync tasks in a data source via dmctl #2166
• Generate DML WHERE statements from downstream table schemas #3168
• Support for automatic acquisition and configuration of upstream and downstream time

zones #3403

1.2.3 Bug fixes

• Fix the issue of high availability scheduling failure when configuring SSL certificates
upstream and downstream #1910

• Fix the issue that pausing tasks takes too much time #1945
• Fix the issue that handle-error revert returns unclear error messages #1969
• Fix the issue that a replication task fails when you use binlog filter to skip certain DDL

#1975
• Fix the issue that evict-leader fails in certain circumstances #1986
• Fix the issue that dmctl returns unclear error messages #2063
• Fix the issue of DM-worker scheduling failure when Relay Log is enabled #2199
• Fix the issue that DM-worker fails to connect to the upstream database and to start

when Relay Log is enabled #2227
• Fix the issue of a meta file writing failure when Relay Log is enabled and upstream

database switches #3164

1.2.4 Known issues

GitHub issues

14

https://github.com/pingcap/dm/issues/1982
https://github.com/pingcap/dm/pull/1746
https://github.com/pingcap/dm/pull/1928
https://github.com/pingcap/dm/pull/1933
https://github.com/pingcap/dm/pull/1778
https://github.com/pingcap/dm/pull/1955
https://github.com/pingcap/dm/pull/2043
https://github.com/pingcap/dm/pull/1960
https://github.com/pingcap/dm/pull/2006
https://github.com/pingcap/dm/pull/2024
https://github.com/pingcap/dm/pull/2076
https://github.com/pingcap/dm/pull/2099
https://github.com/pingcap/dm/pull/2166
https://github.com/pingcap/tiflow/pull/3168
https://github.com/pingcap/tiflow/pull/3403
https://github.com/pingcap/dm/pull/1910
https://github.com/pingcap/dm/pull/1954
https://github.com/pingcap/dm/pull/1969
https://github.com/pingcap/dm/pull/1975
https://github.com/pingcap/dm/pull/1986
https://github.com/pingcap/dm/pull/2063
https://github.com/pingcap/dm/pull/2219
https://github.com/pingcap/dm/pull/2227
https://github.com/pingcap/tiflow/pull/3164
https://github.com/pingcap/tiflow/issues?q=is%3Aissue+is%3Aopen+label%3Atype%2Fbug+label%3Aarea%2Fdm


1.3 Basic Features

1.3.1 Key Features

This document describes the data migration features provided by TiDB Data Migration
(DM) and introduces appropriate parameter configurations.

For different DM versions, pay attention to the different match rules of schema or table
names in the table routing, block & allow lists, and binlog event filter features:

• For DM v1.0.5 or later versions, all the above features support the wildcard match.
For all versions of DM, note that there can be only one * in the wildcard expression,
and * must be placed at the end.

• For DM versions earlier than v1.0.5, table routing and binlog event filter support the
wildcard but do not support the [...] and [!...] expressions. The block & allow
lists only supports the regular expression.

It is recommended that you use the wildcard for matching in simple scenarios.

1.3.1.1 Table routing
The table routing feature enables DM to migrate a certain table of the upstream MySQL

or MariaDB instance to the specified table in the downstream.

Note:

• Configuring multiple different routing rules for a single table is not sup-
ported.

• The match rule of schema needs to be configured separately, which is
used to migrate CREATE/DROP SCHEMA xx, as shown in rule-2 of the
parameter configuration.

1.3.1.1.1 Parameter configuration
routes:
rule-1:
schema-pattern: "test_*"
table-pattern: "t_*"
target-schema: "test"
target-table: "t"

rule-2:
schema-pattern: "test_*"
target-schema: "test"

15

https://en.wikipedia.org/wiki/Glob_(programming)#Syntax


1.3.1.1.2 Parameter explanation
DM migrates the upstream MySQL or MariaDB instance table that matches the schema

↪→ -pattern/table-pattern rule provided by Table selector to the downstream target-
↪→ schema/target-table.

1.3.1.1.3 Usage examples
This section shows the usage examples in different scenarios.
Merge sharded schemas and tables
Assuming in the scenario of sharded schemas and tables, you want to migrate the test_

↪→ {1,2,3...}.t_{1,2,3...} tables in two upstream MySQL instances to the test.t table
in the downstream TiDB instance.

To migrate the upstream instances to the downstream test.t, you must create the
following routing rules:

• rule-1 is used to migrate DML or DDL statements of the table that matches schema
↪→ -pattern: "test_*" and table-pattern: "t_*" to the downstream test.t.

• rule-2 is used to migrate DDL statements of the schema that matches schema-
↪→ pattern: "test_*", such as CREATE/DROP SCHEMA xx.

Note:

• If the downstream schema: test already exists and is not to be deleted,
you can omit rule-2.

• If the downstream schema: test does not exist and only rule-1 is con-
figured, then it reports the schema test doesn't exist error during
migration.

rule-1:
schema-pattern: "test_*"
table-pattern: "t_*"
target-schema: "test"
target-table: "t"

rule-2:
schema-pattern: "test_*"
target-schema: "test"

Merge sharded schemas

16



Assuming in the scenario of sharded schemas, you want to migrate the test_{1,2,3...}
↪→ .t_{1,2,3...} tables in the two upstream MySQL instances to the test.t_{1,2,3...}
tables in the downstream TiDB instance.

To migrate the upstream schemas to the downstream test.t_[1,2,3], you only need to
create one routing rule.
rule-1:
schema-pattern: "test_*"
target-schema: "test"

Incorrect table routing
Assuming that the following two routing rules are configured and test_1_bak.t_1_bak

matches both rule-1 and rule-2, an error is reported because the table routing configura-
tion violates the number limitation.
rule-1:
schema-pattern: "test_*"
table-pattern: "t_*"
target-schema: "test"
target-table: "t"

rule-2:
schema-pattern: "test_1_bak"
table-pattern: "t_1_bak"
target-schema: "test"
target-table: "t_bak"

1.3.1.2 Block and allow table lists
The block and allow lists filtering rule of the upstream database instance tables is sim-

ilar to MySQL replication-rules-db/tables, which can be used to filter or only migrate all
operations of some databases or some tables.

1.3.1.2.1 Parameter configuration
block-allow-list: # Use black-white-list if the DM version is

↪→ earlier than or equal to v2.0.0-beta.2.
rule-1:
do-dbs: ["test*"] # Starting with characters other than "~"

↪→ indicates that it is a wildcard;
# v1.0.5 or later versions support the regular

↪→ expression rules.
do-tables:
- db-name: "test[123]" # Matches test1, test2, and test3.
tbl-name: "t[1-5]" # Matches t1, t2, t3, t4, and t5.

- db-name: "test"

17



tbl-name: "t"
rule-2:
do-dbs: ["~^test.*"] # Starting with "~" indicates that it is a

↪→ regular expression.
ignore-dbs: ["mysql"]
do-tables:
- db-name: "~^test.*"
tbl-name: "~^t.*"

- db-name: "test"
tbl-name: "t"

ignore-tables:
- db-name: "test"
tbl-name: "log"

1.3.1.2.2 Parameter explanation

• do-dbs: allow lists of the schemas to be migrated, similar to replicate-do-db in
MySQL

• ignore-dbs: block lists of the schemas to be migrated, similar to replicate-ignore
↪→ -db in MySQL

• do-tables: allow lists of the tables to be migrated, similar to replicate-do-table
in MySQL. Both db-name and tbl-name must be specified

• ignore-tables: block lists of the tables to be migrated, similar to replicate-ignore
↪→ -table in MySQL. Both db-name and tbl-name must be specified

If a value of the above parameters starts with the ~ character, the subsequent characters
of this value are treated as a regular expression. You can use this parameter to match schema
or table names.

1.3.1.2.3 Filtering process
The filtering rules corresponding to do-dbs and ignore-dbs are similar to the Evaluation

of Database-Level Replication and Binary Logging Options in MySQL. The filtering rules
corresponding to do-tables and ignore-tables are similar to the Evaluation of Table-Level
Replication Options in MySQL.

Note:
In DM and in MySQL, the allow and block lists filtering rules are different in
the following ways:

18

https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#option_mysqld_replicate-do-db
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#option_mysqld_replicate-ignore-db
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#option_mysqld_replicate-ignore-db
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#option_mysqld_replicate-do-table
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#option_mysqld_replicate-ignore-table
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#option_mysqld_replicate-ignore-table
https://golang.org/pkg/regexp/syntax/#hdr-syntax
https://dev.mysql.com/doc/refman/5.7/en/replication-rules-db-options.html
https://dev.mysql.com/doc/refman/5.7/en/replication-rules-db-options.html
https://dev.mysql.com/doc/refman/5.7/en/replication-rules-table-options.html
https://dev.mysql.com/doc/refman/5.7/en/replication-rules-table-options.html


• In MySQL, replicate-wild-do-table and replicate-wild-ignore-
↪→ table support wildcard characters. In DM, some parameter values
directly supports regular expressions that start with the ~ character.

• DM currently only supports binlogs in the ROW format, and does not
support those in the STATEMENT or MIXED format. Therefore, the filtering
rules in DM correspond to those in the ROW format in MySQL.

• MySQL determines a DDL statement only by the database name explic-
itly specified in the USE section of the statement. DM determines a state-
ment first based on the database name section in the DDL statement. If
the DDL statement does not contain such a section, DM determines the
statement by the USE section. Suppose that the SQL statement to be de-
termined is USE test_db_2; CREATE TABLE test_db_1.test_table
↪→ (c1 INT PRIMARY KEY); that replicate-do-db=test_db_1 is con-
figured in MySQL and do-dbs: ["test_db_1"] is configured in DM.
Then this rule only applies to DM and not to MySQL.

The filtering process is as follows:

1. Filter at the schema level:

• If do-dbs is not empty, judge whether a matched schema exists in do-dbs.
– If yes, continue to filter at the table level.
– If not, filter test.t.

• If do-dbs is empty and ignore-dbs is not empty, judge whether a matched schema
exits in ignore-dbs.

– If yes, filter test.t.
– If not, continue to filter at the table level.

• If both do-dbs and ignore-dbs are empty, continue to filter at the table level.

2. Filter at the table level:

1. If do-tables is not empty, judge whether a matched table exists in do-tables.
• If yes, migrate test.t.
• If not, filter test.t.

2. If ignore-tables is not empty, judge whether a matched table exists in ignore
↪→ -tables.
• If yes, filter test.t.
• If not, migrate test.t.

3. If both do-tables and ignore-tables are empty, migrate test.t.

19

https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#option_mysqld_replicate-wild-do-table
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#option_mysqld_replicate-wild-ignore-table
https://dev.mysql.com/doc/refman/5.7/en/replication-options-replica.html#option_mysqld_replicate-wild-ignore-table


Note:
To judge whether the schema test should be filtered, you only need to filter
at the schema level.

1.3.1.2.4 Usage example
Assume that the upstream MySQL instances include the following tables:

`logs`.`messages_2016`
`logs`.`messages_2017`
`logs`.`messages_2018`
`forum`.`users`
`forum`.`messages`
`forum_backup_2016`.`messages`
`forum_backup_2017`.`messages`
`forum_backup_2018`.`messages`

The configuration is as follows:
block-allow-list: # Use black-white-list if the DM version is earlier than

↪→ or equal to v2.0.0-beta.2.
bw-rule:
do-dbs: ["forum_backup_2018", "forum"]
ignore-dbs: ["~^forum_backup_"]
do-tables:
- db-name: "logs"
tbl-name: "~_2018$"

- db-name: "~^forum.*"
 tbl-name: "messages"

ignore-tables:
- db-name: "~.*"

 tbl-name: "^messages.*"

After using the bw-rule rule:

Table

Whether
to
filter Why filter

logs
↪→ .messages_2016
↪→

Yes The schema
logs fails to
match any
do-dbs.

20



Table

Whether
to
filter Why filter

logs
↪→ .messages_2017
↪→

Yes The schema
logs fails to
match any
do-dbs.

logs
↪→ .messages_2018
↪→

Yes The schema
logs fails to
match any
do-dbs.

forum_backup_2016
↪→ .messages
↪→

Yes The schema
forum_backup_2016
↪→ fails to
match any
do-dbs.

forum_backup_2017
↪→ .messages
↪→

Yes The schema
forum_backup_2017
↪→ fails to
match any
do-dbs.

forum
↪→ .users
↪→

Yes 1. The schema
forum matches
do-dbs and
continues to
filter at the
table level. 2.
The schema and
table fail to
match any of
do-tables and
ignore-tables
and do-tables
is not empty.

21



Table

Whether
to
filter Why filter

forum
↪→ .messages
↪→

No 1. The schema
forum matches
do-dbs and
continues to
filter at the
table level. 2.
The table
messages is in
the
db-name: "~^
↪→ forum.*",
↪→ tbl-name:
↪→ "messages"
of do-tables.

forum_backup_2018
↪→ .messages
↪→

No 1. The schema
forum_backup_2018
↪→ matches
do-dbs and
continues to
filter at the
table level. 2.
The schema and
table match the
db-name: "~^
↪→ forum.*",
↪→ tbl-name:
↪→ "messages"
of do-tables.

1.3.1.3 Binlog event filter
Binlog event filter is a more fine-grained filtering rule than the block and allow lists

filtering rule. You can use statements like INSERT or TRUNCATE TABLE to specify the binlog
events of schema/table that you need to migrate or filter out.

Note:

• If the same table matches multiple rules, these rules are applied in order
and the block list has priority over the allow list. This means if both the
Ignore and Do rules are applied to a table, the Ignore rule takes effect.

22



• Starting from DM v2.0.2, you can configure binlog event filters in the
source configuration file. For details, see Upstream Database Configura-
tion File.

1.3.1.3.1 Parameter configuration
filters:
rule-1:
schema-pattern: "test_*"
 table-pattern: "t_*"
 events: ["truncate table", "drop table"]
sql-pattern: ["^DROP\\s+PROCEDURE", "^CREATE\\s+PROCEDURE"]
 action: Ignore

1.3.1.3.2 Parameter explanation

• schema-pattern/table-pattern: the binlog events or DDL SQL statements of
upstream MySQL or MariaDB instance tables that match schema-pattern/table-
↪→ pattern are filtered by the rules below.

• events: the binlog event array. You can only select one or more Events from the
following table:

Events Type Description
all Includes all the events below
all dml Includes all DML events below
all ddl Includes all DDL events below
none Includes none of the events below
none ddl Includes none of the DDL events below
none dml Includes none of the DML events below
insert DML The INSERT DML event
update DML The UPDATE DML event
delete DML The DELETE DML event
create database DDL The CREATE DATABASE DDL event
drop database DDL The DROP DATABASE DDL event
create table DDL The CREATE TABLE DDL event
create index DDL The CREATE INDEX DDL event
drop table DDL The DROP TABLE DDL event
truncate table DDL The TRUNCATE TABLE DDL event
rename table DDL The RENAME TABLE DDL event
drop index DDL The DROP INDEX DDL event
alter table DDL The ALTER TABLE DDL event

23



• sql-pattern: it is used to filter specified DDL SQL statements. The matching rule
supports using a regular expression. For example, "^DROP\\s+PROCEDURE".

• action: the string (Do/Ignore). Based on the following rules, it judges whether to
filter. If either of the two rules is satisfied, the binlog is filtered; otherwise, the binlog
is not filtered.

– Do: the allow list. The binlog is filtered in either of the following two conditions:
* The type of the event is not in the event list of the rule.
* The SQL statement of the event cannot be matched by sql-pattern of the
rule.

– Ignore: the block list. The binlog is filtered in either of the following two condi-
tions:
* The type of the event is in the event list of the rule.
* The SQL statement of the event can be matched by sql-pattern of the rule.

1.3.1.3.3 Usage examples
This section shows the usage examples in the scenario of sharding (sharded schemas and

tables).
Filter all sharding deletion operations
To filter out all deletion operations, configure the following two filtering rules:

• filter-table-rule filters out the truncate table, drop table and delete
↪→ statement operations of all tables that match the test_*.t_* pattern.

• filter-schema-rule filters out the drop database operation of all schemas that
match the test_* pattern.

filters:
filter-table-rule:
schema-pattern: "test_*"
table-pattern: "t_*"
events: ["truncate table", "drop table", "delete"]
action: Ignore

filter-schema-rule:
schema-pattern: "test_*"
events: ["drop database"]
action: Ignore

Only migrate sharding DML statements
To only migrate sharding DML statements, configure the following two filtering rules:

• do-table-rule only migrates the create table, insert, update and delete state-
ments of all tables that match the test_*.t_* pattern.

24



• do-schema-rule only migrates the create database statement of all schemas that
match the test_* pattern.

Note:
The reason why the create database/table statement is migrated is that
you can migrate DML statements only after the schema and table are created.

filters:
do-table-rule:
schema-pattern: "test_*"
table-pattern: "t_*"
events: ["create table", "all dml"]
action: Do

do-schema-rule:
schema-pattern: "test_*"
events: ["create database"]
action: Do

Filter out the SQL statements that TiDB does not support
To filter out the PROCEDURE statements that TiDB does not support, configure the fol-

lowing filter-procedure-rule:
filters:
filter-procedure-rule:
schema-pattern: "test_*"
table-pattern: "t_*"
sql-pattern: ["^DROP\\s+PROCEDURE", "^CREATE\\s+PROCEDURE"]
action: Ignore

filter-procedure-rule filters out the ^CREATE\\s+PROCEDURE and ^DROP\\s+
↪→ PROCEDURE statements of all tables that match the test_*.t_* pattern.

Filter out the SQL statements that the TiDB parser does not support
For the SQL statements that the TiDB parser does not support, DM cannot parse them

and get the schema/table information. So you must use the global filtering rule: schema-
↪→ pattern: "*".

Note:
To avoid filtering out data that need to be migrated, you must configure the
global filtering rule as strictly as possible.

25



To filter out the PARTITION statements that the TiDB parser (of some version) does not
support, configure the following filtering rule:
filters:
filter-partition-rule:
schema-pattern: "*"
sql-pattern: ["ALTER\\s+TABLE[\\s\\S]*ADD\\s+PARTITION", "ALTER\\s+TABLE

↪→ [\\s\\S]*DROP\\s+PARTITION"]
action: Ignore

1.3.1.4 Online DDL tools
In the MySQL ecosystem, tools such as gh-ost and pt-osc are widely used. DM provides

supports for these tools to avoid migrating unnecessary intermediate data.

1.3.1.4.1 Restrictions

• DM only supports gh-ost and pt-osc.
• When online-ddl is enabled, the checkpoint corresponding to incremental replication

should not be in the process of online DDL execution. For example, if an upstream
online DDL operation starts at position-A and ends at position-B of the binlog, the
starting point of incremental replication should be earlier than position-A or later
than position-B; otherwise, an error occurs. For details, refer to FAQ.

1.3.1.4.2 Parameter configuration
In v2.0.5 and later versions, you need to use the online-ddl configuration item in the

task configuration file.

• If the upstream MySQL/MariaDB (at the same time) uses the gh-ost or pt-osc tool,
set online-ddl to true in the task configuration file:

online-ddl: true

Note:
Since v2.0.5, online-ddl-scheme has been deprecated, so you need to use
online-ddl instead of online-ddl-scheme. That means that setting online
↪→ -ddl: true overwrites online-ddl-scheme, and setting online-ddl-
↪→ scheme: "pt" or online-ddl-scheme: "gh-ost" is converted to online
↪→ -ddl: true.

26



Before v2.0.5 (not including v2.0.5), you need to use the online-ddl-scheme configura-
tion item in the task configuration file.

• If the upstream MySQL/MariaDB uses the gh-ost tool, set it in the task configuration
file:

online-ddl-scheme: "gh-ost"

• If the upstream MySQL/MariaDB uses the pt tool, set it in the task configuration file:

online-ddl-scheme: "pt"

1.3.1.5 Shard merge
DM supports merging the DML and DDL data in the upstream MySQL/MariaDB

sharded tables and migrating the merged data to the downstream TiDB tables.

1.3.1.5.1 Restrictions
Currently, the shard merge feature is supported only in limited scenarios. For details,

refer to Sharding DDL usage Restrictions in the pessimistic mode and Sharding DDL usage
Restrictions in the optimistic mode.

1.3.1.5.2 Parameter configuration
Set shard-mode to pessimistic in the task configuration file:

shard-mode: "pessimistic" # The shard merge mode. Optional modes are ""/"
↪→ pessimistic"/"optimistic". The "" mode is used by default which means
↪→ sharding DDL merge is disabled. If the task is a shard merge task,
↪→ set it to the "pessimistic" mode. After getting a deep understanding
↪→ of the principles and restrictions of the "optimistic" mode, you can
↪→ set it to the "optimistic" mode.

1.3.1.5.3 Handle sharding DDL locks manually
In some abnormal scenarios, you need to handle sharding DDL Locks manually.

27



1.4 Advanced Features

1.4.1 Merge and Migrate Data from Sharded Tables

1.4.1.1 Merge and Migrate Data from Sharded Tables
This document introduces the sharding support feature provided by Data Migration

(DM). This feature allows you to merge and migrate the data of tables with the same or
different table schemas in the upstream MySQL or MariaDB instances into one same table
in the downstream TiDB. It supports not only migrating the upstream DML statements,
but also coordinating to migrate the table schema change using DDL statements in multiple
upstream sharded tables.

1.4.1.1.1 Overview
DM supports merging and migrating the data of multiple upstream sharded tables into

one table in TiDB. During the migration, the DDL of each sharded table, and the DML
before and after the DDL need to be coordinated. For the usage scenarios, DM supports
two different modes: pessimistic mode and optimistic mode.

Note:

• To merge and migrate data from sharded tables, you must set shard-
↪→ mode in the task configuration file.

• DM uses the pessimistic mode by default for the merge of the sharding
support feature. (If there is no special description in the document, use
the pessimistic mode by default.)

• It is not recommended to use this mode if you do not understand the
principles and restrictions of the optimistic mode. Otherwise, it may
cause serious consequences such as migration interruption and even data
inconsistency.

The pessimistic mode
When an upstream sharded table executes a DDL statement, the migration of this

sharded table will be suspended. After all other sharded tables execute the same DDL,
the DDL will be executed in the downstream and the data migration task will restart. The
advantage of this mode is that it can ensure that the data migrated to the downstream will
not go wrong. For details, refer to shard merge in pessimistic mode. ###### The
optimistic mode

DM will automatically modify the DDL executed on a sharded table into a statement
compatible with other sharded tables, and then migrate to the downstream. This will not
block the DML migration of any sharded tables. The advantage of this mode is that it will

28



not block data migration when processing DDL. However, improper use will cause migration
interruption or even data inconsistency. For details, refer to shard merge in optimistic mode.

Contrast

Pessimistic
mode

Optimistic
mode

Sharded
tables that
executes
DDL suspend
DML
migration

Sharded
tables that
executes
DDL
continue
DML
migration

The DDL
execution
order and
statements of
each sharded
table must be
the same

Each sharded
table only
needs to keep
the table
schema
compatible
with each
other

The DDL is
migrated to
the
downstream
after the
entire shard
group is
consistent

The DDL of
each sharded
table
immediately
affects the
downstream

Wrong DDL
operations
can be
intercepted
after the
detection

Wrong DDL
operations
will be
migrated to
the
downstream,
which may
cause
inconsistency
between the
upstream and
downstream
data before
the detection

29



1.4.1.2 Merge and Migrate Data from Sharded Tables in the Pessimistic Mode

This document introduces the sharding support feature provided by Data Migration
(DM) in the pessimistic mode (the default mode). This feature allows you to merge and
migrate the data of tables with the same table schema in the upstream MySQL or MariaDB
instances into one same table in the downstream TiDB.

1.4.1.2.1 Restrictions
DM has the following sharding DDL usage restrictions in the pessimistic mode:

• For a logical sharding group (composed of all sharded tables that need to be merged
and migrated into one same downstream table), it is limited to use one task containing
exactly the sources of sharded tables to perform the migration.

• In a logical sharding group, the same DDL statements must be executed in the same
order in all upstream sharded tables (the schema name and the table name can be
different), and the next DDL statement cannot be executed unless the current DDL
operation is completely finished.

– For example, if you add column A to table_1 before you add column B, then you
cannot add column B to table_2 before you add column A. Executing the DDL
statements in a different order is not supported.

• In a sharding group, the corresponding DDL statements should be executed in all
upstream sharded tables.

– For example, if DDL statements are not executed on one or more upstream
sharded tables corresponding to DM-worker-2, then other DM-workers that have
executed the DDL statements pause their migration task and wait for DM-worker
↪→ -2 to receive the upstream DDL statements.

• The sharding group migration task does not support DROP DATABASE/DROP TABLE.

– The sync unit in DM-worker automatically ignores the DROP DATABASE/DROP
↪→ TABLE statement of upstream sharded tables.

• The sharding group migration task does not support TRUNCATE TABLE.

– The sync unit in DM-worker automatically ignores the TRUNCATE TABLE state-
ment of upstream sharded tables.

• The sharding group migration task supports RENAME TABLE, but with the following
limitations (online DDL is supported in another solution):

– A table can only be renamed to a new name that is not used by any other table.
– A single RENAME TABLE statement can only involve a single RENAME operation.

• The sharding group migration task requires each DDL statement to involve operations
on only one table.

30



• The table schema of each sharded table must be the same at the starting point of
the incremental replication task, so as to make sure the DML statements of different
sharded tables can be migrated into the downstream with a definite table schema, and
the subsequent sharding DDL statements can be correctly matched and migrated.

• If you need to change the table routing rule, you have to wait for the migration of all
sharding DDL statements to complete.

– During the migration of sharding DDL statements, an error is reported if you use
dmctl to change router-rules.

• If you need to CREATE a new table to a sharding group where DDL statements are
being executed, you have to make sure that the table schema is the same as the newly
modified table schema.

– For example, both the original table_1 and table_2 have two columns (a, b)
initially, and have three columns (a, b, c) after the sharding DDL operation, so
after the migration the newly created table should also have three columns (a, b,
c).

• Because the DM-worker that has received the DDL statements will pause the task to
wait for other DM-workers to receive their DDL statements, the delay of data migration
will be increased.

1.4.1.2.2 Background
Currently, DM uses the binlog in the ROW format to perform the migration task. The

binlog does not contain the table schema information. When you use the ROW binlog to
migrate data, if you have not migrated multiple upstream tables into the same downstream
table, then there only exist DDL operations of one upstream table that can update the table
schema of the downstream table. The ROW binlog can be considered to have the nature
of self-description. During the migration process, the DML statements can be constructed
accordingly with the column values and the downstream table schema.

However, in the process of merging and migrating sharded tables, if DDL statements
are executed on the upstream tables to modify the table schema, then you need to perform
extra operations to migrate the DDL statements so as to avoid the inconsistency between the
DML statements produced by the column values and the actual downstream table schema.

Here is a simple example:

31



Figure 2: shard-ddl-example-1

In the above example, the merging process is simplified, where only two MySQL instances
exist in the upstream and each instance has only one table. When the migration begins, the
table schema version of two sharded tables is marked as schema V1, and the table schema
version after executing DDL statements is marked as schema V2.

Now assume that in the migration process, the binlog data received from the two up-
stream sharded tables has the following time sequence:

1. When the migration begins, the sync unit in DM-worker receives the DML events of
schema V1 from the two sharded tables.

2. At t1, the sharding DDL events from instance 1 are received.
3. From t2 on, the sync unit receives the DML events of schema V2 from instance 1; but

from instance 2, it still receives the DML events of schema V1.
4. At t3, the sharding DDL events from instance 2 are received.
5. From t4 on, the sync unit receives the DML events of schema V2 from instance 2 as

well.

Assume that the DDL statements of sharded tables are not processed during the mi-
gration process. After DDL statements of instance 1 are migrated to the downstream, the
downstream table schema is changed to schema V2. But for instance 2, the sync unit in
DM-worker is still receiving DML events of schema V1 from t2 to t3. Therefore, when the
DML statements of schema V1 are migrated to the downstream, the inconsistency between
the DML statements and the table schema can cause errors and the data cannot be migrated
successfully.

1.4.1.2.3 Principles

32



This section shows how DM migrates DDL statements in the process of merging sharded
tables based on the above example in the pessimistic mode.

Figure 3: shard-ddl-flow

In this example, DM-worker-1 migrates the data from MySQL instance 1 and DM-worker
↪→ -2migrates the data from MySQL instance 2. DM-master coordinates the DDL migration
among multiple DM-workers. Starting from DM-worker-1 receiving the DDL statements, the
DDL migration process is simplified as follows:

1. DM-worker-1 receives the DDL statement from MySQL instance 1 at t1, pauses the
data migration of the corresponding DDL and DML statements, and sends the DDL
information to DM-master.

2. DM-master decides that the migration of this DDL statement needs to be coordinated
based on the received DDL information, creates a lock for this DDL statement, sends
the DDL lock information back to DM-worker-1 and marks DM-worker-1 as the owner
of this lock at the same time.

3. DM-worker-2 continues migrating the DML statement until it receives the DDL state-
ment from MySQL instance 2 at t3, pauses the data migration of this DDL statement,
and sends the DDL information to DM-master.

4. DM-master decides that the lock of this DDL statement already exists based on the
received DDL information, and sends the lock information directly to DM-worker-2.

5. Based on the configuration information when the task is started, the sharded table
information in the upstream MySQL instances, and the deployment topology infor-
mation, DM-master decides that it has received this DDL statement of all upstream
sharded tables to be merged, and requests the owner of the DDL lock (DM-worker-1)
to migrate this DDL statement to the downstream.

33



6. DM-worker-1 verifies the DDL statement execution request based on the DDL lock
information received at Step #2, migrates this DDL statement to the downstream, and
sends the results to DM-master. If this operation is successful, DM-worker-1 continues
migrating the subsequent (starting from the binlog at t2) DML statements.

7. DM-master receives the response from the lock owner that the DDL is successfully
executed, and requests all other DM-workers (DM-worker-2) that are waiting for the
DDL lock to ignore this DDL statement and then continue to migrate the subsequent
(starting from the binlog at t4) DML statements.

The characteristics of DM handling the sharding DDL migration among multiple DM-
workers can be concluded as follows:

• Based on the task configuration and DM cluster deployment topology information, a
logical sharding group is built in DM-master to coordinate DDL migration. The group
members are DM-workers that handle each sub-task divided from the migration task).

• After receiving the DDL statement from the binlog event, each DM-worker sends the
DDL information to DM-master.

• DM-master creates or updates the DDL lock based on the DDL information received
from each DM-worker and the sharding group information.

• If all members of the sharding group receive a same specific DDL statement, this
indicates that all DML statements before the DDL execution on the upstream sharded
tables have been completely migrated, and this DDL statement can be executed. Then
DM can continue to migrate the subsequent DML statements.

• After being converted by the table router, the DDL statement of the upstream sharded
tables must be consistent with the DDL statement to be executed in the downstream.
Therefore, this DDL statement only needs to be executed once by the DDL owner and
all other DM-workers can ignore this DDL statement.

In the above example, only one sharded table needs to be merged in the upstreamMySQL
instance corresponding to each DM-worker. But in actual scenarios, there might be multiple
sharded tables in multiple sharded schemas to be merged in one MySQL instance. And when
this happens, it becomes more complex to coordinate the sharding DDL migration.

Assume that there are two sharded tables, namely table_1 and table_2, to be merged
in one MySQL instance:

Figure 4: shard-ddl-example-2

34



Because data comes from the same MySQL instance, all the data is obtained from the
same binlog stream. In this case, the time sequence is as follows:

1. The sync unit in DM-worker receives the DML statements of schema V1 from both
sharded tables when the migration begins.

2. At t1, the sync unit in DM-worker receives the DDL statements of table_1.
3. From t2 to t3, the received data includes the DML statements of schema V2 from

table_1 and the DML statements of schema V1 from table_2.
4. At t3, the sync unit in DM-worker receives the DDL statements of table_2.
5. From t4 on, the sync unit in DM-worker receives the DML statements of schema V2

from both tables.

If the DDL statements are not processed particularly during the data migration, when the
DDL statement of table_1 is migrated to the downstream and changes the downstream table
schema, the DML statement of schema V1 from table_2 cannot be migrated successfully.
Therefore, within a single DM-worker, a logical sharding group similar to that within DM-
↪→ master is created, except that members of this group are different sharded tables in the
same upstream MySQL instance.

But when a DM-worker coordinates the migration of the sharding group within itself, it
is not totally the same as that performed by DM-master. The reasons are as follows:

• When the DM-worker receives the DDL statement of table_1, it cannot pause the mi-
gration and needs to continue parsing the binlog to get the subsequent DDL statements
of table_2. This means it needs to continue parsing between t2 and t3.

• During the binlog parsing process between t2 and t3, the DML statements of schema
↪→ V2 from table_1 cannot be migrated to the downstream until the sharding DDL
statement is migrated and successfully executed.

In DM, the simplified migration process of sharding DDL statements within the DM
worker is as follows:

1. When receiving the DDL statement of table_1 at t1, the DM-worker records the DDL
information and the current position of the binlog.

2. DM-worker continues parsing the binlog between t2 and t3.
3. DM-worker ignores the DML statement with the schema V2 schema that belongs to

table_1, and migrates the DML statement with the schema V1 schema that belongs
to table_2 to the downstream.

4. When receiving the DDL statement of table_2 at t3, the DM-worker records the DDL
information and the current position of the binlog.

5. Based on the information of the migration task configuration and the upstream schemas
and tables, the DM-worker decides that the DDL statements of all sharded tables in the
MySQL instance have been received and migrates them to the downstream to modify
the downstream table schema.

35



6. DM-worker sets the starting point of parsing the new binlog stream to be the position
saved at Step #1.

7. DM-worker resumes parsing the binlog between t2 and t3.
8. DM-worker migrates the DML statement with the schema V2 schema that belongs

to table_1 to the downstream, and ignores the DML statement with the schema V1
schema that belongs to table_2.

9. After parsing the binlog position saved at Step #4, the DM-worker decides that all
DML statements that have been ignored in Step #3 have been migrated to the down-
stream again.

10. DM-worker resumes the migration starting from the binlog position at t4.

You can conclude from the above analysis that DM mainly uses two-level sharding groups
for coordination and control when handling migration of the sharding DDL. Here is the
simplified process:

1. Each DM-worker independently coordinates the DDL statements migration for the
corresponding sharding group composed of multiple sharded tables within the upstream
MySQL instance.

2. After the DM-worker receives the DDL statements of all sharded tables, it sends the
DDL information to DM-master.

3. DM-master coordinates the DDL migration of the sharding group composed of the
DM-workers based on the received DDL information.

4. After receiving the DDL information from all DM-workers, DM-master requests the
DDL lock owner (a specific DM-worker) to execute the DDL statement.

5. The DDL lock owner executes the DDL statement and returns the result to DM-master
↪→ . Then the owner restarts the migration of the previously ignored DML statements
during the internal coordination of DDL migration.

6. After DM-master confirms that the owner has successfully executed the DDL statement,
it asks all other DM-workers to continue the migration.

7. All other DM-workers separately restart the migration of the previously ignored DML
statements during the internal coordination of DDL migration.

8. After finishing migrating the ignored DML statements again, all DM-workers resume
the normal migration process.

1.4.1.3 Merge and Migrate Data from Sharded Tables in Optimistic Mode
This document introduces the sharding support feature provided by Data Migration

(DM) in the optimistic mode. This feature allows you to merge and migrate the data of
tables with the same or different table schema(s) in the upstream MySQL or MariaDB
instances into one same table in the downstream TiDB.

Note:

36



If you do not have an in-depth understanding of the optimistic mode and its
restrictions, it is NOT recommended to use this mode. Otherwise, migration
interruption or even data inconsistency might occur.

1.4.1.3.1 Background
DM supports executing DDL statements on sharded tables online, which is called shard-

ing DDL, and uses the “pessimistic mode” by default. In this mode, when a DDL statement is
executed in an upstream sharded table, data migration of this table is paused until the same
DDL statement is executed in all other sharded tables. Only by then this DDL statement is
executed in the downstream and data migration resumes.

The pessimistic mode guarantees that the data migrated to the downstream is always
correct, but it pauses the data migration, which is bad for making A/B changes in the
upstream. In some cases, users might spend a long time executing DDL statements in a
single sharded table and change the schemas of other sharded tables only after a period of
validation. In the pessimistic mode, these DDL statements block data migration and cause
many binlog events to pile up.

Therefore, an “optimistic mode” is needed. In this mode, a DDL statement executed
on a sharded table is automatically converted to a statement that is compatible with other
sharded tables, and then immediately migrated to the downstream. In this way, the DDL
statement does not block any sharded table from executing DML migration.

1.4.1.3.2 Configuration of the optimistic mode
To use the optimistic mode, specify the shard-mode item in the task configuration file

as optimistic. For the detailed sample configuration file, see DM Advanced Task Configu-
ration File.

1.4.1.3.3 Restrictions
It takes some risks to use the optimistic mode. Follow these rules when you use it:

• Ensure that the schema of every sharded table is consistent with each other before and
after you execute a batch of DDL statements.

• If you perform an A/B test, perform the test ONLY on one sharded table.

• After the A/B test is finished, migrate only the most direct DDL statement(s) to the
final schema. Do not re-execute every right or wrong step of the test.
For example, if you have executed ADD COLUMN A INT; DROP COLUMN A; ADD COLUMN
↪→ A FLOAT; in a sharded table, you only need to execute ADD COLUMN A FLOAT in
other sharded tables. You do not need to executed all of the three DDL statements
again.

37



• Observe the status of the DM migration when executing the DDL statement. When
an error is reported, you need to determine whether this batch of DDL statements will
cause data inconsistency.

Currently, the following statements are not supported in the optimistic mode:

• ALTER TABLE table_name ADD COLUMN column_name datatype NOT NULL (To add a
NOT NULL column without a default value).

• ALTER TABLE table_name ADD COLUMN column_name datetime DEFAULT NOW()
(To add a column with a varying value).

• ALTER TABLE table_name ADD COLUMN col1 INT, DROP COLUMN col2 (Contains
both ADD COLUMN and DROP COLUMN in one DDL statement).

• ALTER TABLE table_name RENAME COLUMN column_1 TO column_2; (To rename a
column).

• ALTER TABLE table_name RENAME INDEX index_1 TO index_2; (To rename an in-
dex).

In addition, the following restrictions apply to both the optimistic mode and the pes-
simistic mode:

• In an incremental replication task, ensure that each sharded table’s schema that cor-
responds to the binlog position at the start of the task is consistent with each other.

• The new table added to a sharding group must have a consistent table schema with
that of other members. The CREATE/RENAME TABLE statement is forbidden when a
batch of DDL statements is being executed.

• DROP TABLE or DROP DATABASE is not supported.
• TRUNCATE TABLE is not supported.
• Each DDL statement must involve operations on only one table.
• The DDL statement that is not supported in TiDB is also not supported in DM.
• The default value of a newly added column must not contain current_timestamp

↪→ , rand(), uuid(); otherwise, data inconsistency between the upstream and the
downstream might occur.

1.4.1.3.4 Risks
When you use the optimistic mode for a migration task, a DDL statement is migrated

to the downstream immediately. If this mode is misused, data inconsistency between the
upstream and the downstream might occur.

Operations that cause data inconsistency

• The schema of each sharded table is incompatible with each other. For example:

– Two columns of the same name are added to two sharded tables respectively, but
the columns are of different types.

38



– Two columns of the same name are added to two sharded tables respectively, but
the columns have different default values.

– Two generated columns of the same name are added to two sharded tables respec-
tively, but the columns are generated using different expressions.

– Two indexes of the same name are added to two sharded tables respectively, but
the keys are different.

– Other different table schemas with the same name.

• Execute the DDL statement that can corrupt data in the sharded table and then try
to roll back.
For example, drop a column X and then add this column back.

Example
Merge and migrate the following three sharded tables to TiDB:

Figure 5: optimistic-ddl-fail-example-1

Add a new column Age in tbl01 and set the default value of the column to 0:
ALTER TABLE `tbl01` ADD COLUMN `Age` INT DEFAULT 0;

39



Figure 6: optimistic-ddl-fail-example-2

Add a new column Age in tbl00 and set the default value of the column to -1:
ALTER TABLE `tbl00` ADD COLUMN `Age` INT DEFAULT -1;

Figure 7: optimistic-ddl-fail-example-3

By then, the Age column of tbl00 is inconsistent because DEFAULT 0 and DEFAULT -1
are incompatible with each other. In this situation, DM will report the error, but you have

40



to manually fix the data inconsistency.

1.4.1.3.5 Implementation principle
In the optimistic mode, after DM-worker receives the DDL statement from the upstream,

it forwards the updated table schema to DM-master. DM-worker tracks the current schema
of each sharded table, and DM-master merges these schemas into a composite schema that
is compatible with DML statements of every sharded table. Then DM-master migrates the
corresponding DDL statement to the downstream. DML statements are directly migrated
to the downstream.

Figure 8: optimistic-ddl-flow

Examples
Assume the upstream MySQL has three sharded tables (tbl00, tbl01, and tbl02).

Merge and migrate these sharded tables to the tbl table in the downstream TiDB. See the
following image:

41



Figure 9: optimistic-ddl-example-1

Add a Level column in the upstream:
ALTER TABLE `tbl00` ADD COLUMN `Level` INT;

Figure 10: optimistic-ddl-example-2

Then TiDB will receive the DML statement from tbl00 (with the Level column) and
the DML statement from the tbl01 and tbl02 tables (without the Level column).

42



Figure 11: optimistic-ddl-example-3

The following DML statements can be migrated to the downstream without any modifi-
cation:
UPDATE `tbl00` SET `Level` = 9 WHERE `ID` = 1;
INSERT INTO `tbl02` (`ID`, `Name`) VALUES (27, 'Tony');

Figure 12: optimistic-ddl-example-4

43



Also add a Level column in tbl01:
ALTER TABLE `tbl01` ADD COLUMN `Level` INT;

Figure 13: optimistic-ddl-example-5

At this time, the downstream already have had the same Level column, so DM-master
performs no operation after comparing the table schemas.

Drop a Name column in tbl01:
ALTER TABLE `tbl01` DROP COLUMN `Name`;

44



Figure 14: optimistic-ddl-example-6

Then the downstream will receive the DML statements from tbl00 and tbl02 with the
Name column, so this column is not immediately dropped.

In the same way, all DML statements can still be migrated to the downstream:
INSERT INTO `tbl01` (`ID`, `Level`) VALUES (15, 7);
UPDATE `tbl00` SET `Level` = 5 WHERE `ID` = 5;

45



Figure 15: optimistic-ddl-example-7

Add a Level column in tbl02:
ALTER TABLE `tbl02` ADD COLUMN `Level` INT;

46



Figure 16: optimistic-ddl-example-8

By then, all sharded tables have the Level column.
Drop the Name columns in tbl00 and tbl02 respectively:

ALTER TABLE `tbl00` DROP COLUMN `Name`;
ALTER TABLE `tbl02` DROP COLUMN `Name`;

47



Figure 17: optimistic-ddl-example-9

By then, the Name columns are dropped from all sharded tables and can be safely dropped
in the downstream:
ALTER TABLE `tbl` DROP COLUMN `Name`;

48



Figure 18: optimistic-ddl-example-10

1.4.2 Migrate from Databases that Use GH-ost/PT-osc

This document introduces the online-ddl feature of DM when DM is used to migrate
data from MySQL to TiDB and how online DDL tools perform during the data migration
process.

1.4.2.1 Overview
DDL statements are always used in database applications. MySQL 5.6 and later versions

support the online-ddl feature, but there are limitations. For example, DDL execution
sometimes acquires an MDL lock, resulting in a table lock that can block reads or writes to
and from a database to a certain extent in production scenarios. In other cases, some DDLs
copy the whole table and this affects overall database performance.

Therefore, online DDL tools are often used to execute DDLs to reduce the impact on
reads and writes. Common DDL tools are gh-ost and pt-osc.

Generally, these tools work by the following steps:

1. Create a new ghost table according to the table schema of the DDL real table;
2. Apply DDLs on the ghost table;
3. Replicate the data of the DDL real table to the ghost table;
4. After the data are consistent between the two tables, use the rename statement to

replace the real table with the ghost table.

49

https://github.com/github/gh-ost
https://www.percona.com/doc/percona-toolkit/3.0/pt-online-schema-change.html


Figure 19: DM online-ddl

When you migrate data from MySQL to TiDB using DM, online DDL tools can identify
the DDLs in the above step 2 and apply them downstream in step 4, which can reduce the
replication workload for the ghost table.

1.4.2.2 online-ddl Configuration
Generally, it is recommended to enbale the online-ddl configuration and you can see

the following effects:

50



Figure 20: DM online-ddl

• The downstream TiDB does not need to create and replicate the ghost table, saving
the storage space and network transmission overhead;

• When you merge and migrate data from sharded tables, the RENAME operation is
ignored for each sharded ghost tables to ensure the correctness of the replication;

• Currently, one limitation for DM is that DMLs in this task are blocked until DDL
operation is finished when you apply DDL operation to the downstream TiDB. This
limitation will be removed later.

Note:
If you need to disable the online-ddl configuration, pay attention to the
following effects:

• The downstream TiDB replicates the behaviors of online DDL tools like
gh-ost/pt-osc;

• You need to manually add various temporary tables and ghost tables
generated by the online DDL tools to the task configuration white list;

• You cannot merge and migrate data from sharded tables.

51



1.4.2.3 Configuration
In the task configuration file, online-ddl is at the same level of name. For example:

### ----------- Global configuration -----------
#### ********* Basic configuration *********
name: test # The name of the task. Should be globally

↪→ unique.
task-mode: all # The task mode. Can be set to `full`/`

↪→ incremental`/`all`.
shard-mode: "pessimistic" # The shard merge mode. Optional modes are ""/"

↪→ pessimistic"/"optimistic". The "" mode is used by default which means
↪→ sharding DDL merge is disabled. If the task is a shard merge task,
↪→ set it to the "pessimistic" mode. After understanding the principles
↪→ and restrictions of the "optimistic" mode, you can set it to the "
↪→ optimistic" mode.

meta-schema: "dm_meta" # The downstream database that stores the `meta`
↪→ information.

online-ddl: true # Supports automatic processing of "gh-ost" and
↪→ "pt" for the upstream database.

online-ddl-scheme: "gh-ost" # `online-ddl-scheme` will be deprecated in the
↪→ future, so it is recommended to use `online-ddl`.

target-database: # Configuration of the downstream database
↪→ instance.

host: "192.168.0.1"
port: 4000
user: "root"
password: "" # It is recommended to use password encrypted

↪→ with dmctl if the password is not empty.

For the advanced configuration and the description of each configuration parameter, refer
to DM advanced task configuration file template.

When you merge and migrate data from sharded tables, you need to coordinate the DDL
of each sharded table, and the DML before and after the DDL. DM supports two different
modes: pessimistic mode and optimistic mode. For the differences and scenarios between
the two modes, refer to Merge and Migrate Data from Sharded Tables.

1.4.2.4 Working details for DM with online DDL tools
This section describes the working details for DM with the online DDL tools gh-ost and

pt-osc when implementing online-schema-change.

1.4.2.4.1 online-schema-change: gh-ost
When gh-ost implements online-schema-change, 3 types of tables are created:

52

https://docs.pingcap.com/zh/tidb-data-migration/stable/feature-shard-merge
https://github.com/github/gh-ost
https://www.percona.com/doc/percona-toolkit/3.0/pt-online-schema-change.html


• gho: used to apply DDLs. When the data is fully replicated and the gho table is
consistent with the origin table, the origin table is replaced by renaming.

• ghc: used to store information that is related to online-schema-change.
• del: created by renaming the origin table.

In the process of migration, DM divides the above tables into 3 categories:

• ghostTable: \_\*\_gho
• trashTable: \_\*\_ghc, \_\*\_del
• realTable: the origin table that executes online-ddl.

The SQL statements mostly used by gh-ost and the corresponding operation of DM are
as follows:

1. Create the _ghc table:
Create /* gh-ost */ table `test`.`_test4_ghc` (

id bigint auto_increment,
last_update timestamp not null DEFAULT

↪→ CURRENT_TIMESTAMP ON UPDATE
↪→ CURRENT_TIMESTAMP,

hint varchar(64) charset ascii not null,
value varchar(4096) charset ascii not null,
primary key(id),
unique key hint_uidx(hint)

) auto_increment=256 ;

DM does not create the _test4_ghc table.

2. Create the _gho table:
Create /* gh-ost */ table `test`.`_test4_gho` like `test`.`test4` ;

DM does not create the _test4_gho table. DM deletes the dm_meta.{task_name}\
↪→ _onlineddl record in the downstream according to ghost_schema, ghost_table,
and the server_id of dm_worker, and clears the related information in memory.
DELETE FROM dm_meta.{task_name}_onlineddl WHERE id = {server_id} and

↪→ ghost_schema = {ghost_schema} and ghost_table = {ghost_table};

3. Apply the DDL that needs to be executed in the _gho table:
Alter /* gh-ost */ table `test`.`_test4_gho` add column cl1 varchar

↪→ (20) not null ;

DM does not perform the DDL operation of _test4_gho. It records this DDL in
dm_meta.{task_name}\_onlineddl and memory.

53



REPLACE INTO dm_meta.{task_name}_onlineddl (id, ghost_schema ,
↪→ ghost_table , ddls) VALUES (......);

4. Write data to the _ghc table, and replicate the origin table data to the _gho table:
Insert /* gh-ost */ into `test`.`_test4_ghc` values (......);
Insert /* gh-ost `test`.`test4` */ ignore into `test`.`_test4_gho` (`

↪→ id`, `date`, `account_id`, `conversion_price`, `
↪→ ocpc_matched_conversions`, `ad_cost`, `cl2`)

(select `id`, `date`, `account_id`, `conversion_price`, `
↪→ ocpc_matched_conversions`, `ad_cost`, `cl2` from `test`.`test4`
↪→ force index (`PRIMARY`)

where (((`id` > _binary'1') or ((`id` = _binary'1'))) and ((`id` <
↪→ _binary'2') or ((`id` = _binary'2')))) lock in share mode

) ;

DM does not execute DML statements that are not for realtable.

5. After the migration is completed, both the origin table and _gho table are renamed,
and the online DDL operation is completed:
Rename /* gh-ost */ table `test`.`test4` to `test`.`_test4_del`, `test

↪→ `.`_test4_gho` to `test`.`test4`;

DM performs the following two operations:

• DM splits the above rename operation into two SQL statements.
rename test.test4 to test._test4_del;
rename test._test4_gho to test.test4;

• DM does not execute rename to _test4_del. When executing rename
↪→ ghost_table to origin table, DM takes the following steps:

– Read the DDL recorded in memory in Step 3
– Replace ghost_table and ghost_schema with origin_table and its corre-

sponding schema
– Execute the DDL that has been replaced

alter table test._test4_gho add column cl1 varchar(20) not null;
-- Replaced with:
alter table test.test4 add column cl1 varchar(20) not null;

54



Note:
The specific SQL statements of gh-ost vary with the parameters used in the
execution. This document only lists the major SQL statements. For more
details, refer to the gh-ost documentation.

1.4.2.5 online-schema-change: pt
When pt-osc implements online-schema-change, 2 types of tables are created:

• new: used to apply DDL. When the data is fully replicated and the new table is
consistent with the origin table, the origin table is replaced by renaming.

• old: created by renaming the origin table.
• 3 kinds of Trigger: pt_osc\_\*\_ins, pt_osc\_\*\_upd, pt_osc\_\*\_del. In the

process of pt_osc, the new data generated by the origin table is replicated to new by
the Trigger.

In the process of migration, DM divides the above tables into 3 categories:

• ghostTable: \_\*\_new
• trashTable: \_\*\_old
• realTable: the origin table that executes online-ddl.

The SQL statements mostly used by pt-osc and the corresponding operation of DM are
as follows:

1. Create the _new table:
CREATE TABLE `test`.`_test4_new` ( id int(11) NOT NULL AUTO_INCREMENT,
date date DEFAULT NULL, account_id bigint(20) DEFAULT NULL,

↪→ conversion_price decimal(20,3) DEFAULT NULL,
↪→ ocpc_matched_conversions bigint(20) DEFAULT NULL, ad_cost
↪→ decimal(20,3) DEFAULT NULL,cl2 varchar(20) COLLATE utf8mb4_bin
↪→ NOT NULL,cl1 varchar(20) COLLATE utf8mb4_bin NOT NULL,PRIMARY
↪→ KEY (id) ) ENGINE=InnoDB AUTO_INCREMENT=3 DEFAULT CHARSET=
↪→ utf8mb4 COLLATE=utf8mb4_bin ;

DM does not create the _test4_new table. DM deletes the dm_meta.{task_name}\
↪→ _onlineddl record in the downstream according to ghost_schema, ghost_table,
and the server_id of dm_worker, and clears the related information in memory.
DELETE FROM dm_meta.{task_name}_onlineddl WHERE id = {server_id} and

↪→ ghost_schema = {ghost_schema} and ghost_table = {ghost_table};

55

https://github.com/github/gh-ost#gh-ost


2. Execute DDL in the _new table:
ALTER TABLE `test`.`_test4_new` add column c3 int;

DM does not perform the DDL operation of _test4_new. Instead, it records this DDL
in dm_meta.{task_name}\_onlineddl and memory.
REPLACE INTO dm_meta.{task_name}_onlineddl (id, ghost_schema ,

↪→ ghost_table , ddls) VALUES (......);

3. Create 3 Triggers used for data migration:
CREATE TRIGGER `pt_osc_test_test4_del` AFTER DELETE ON `test`.`test4`

↪→ ...... ;
CREATE TRIGGER `pt_osc_test_test4_upd` AFTER UPDATE ON `test`.`test4`

↪→ ...... ;
CREATE TRIGGER `pt_osc_test_test4_ins` AFTER INSERT ON `test`.`test4`

↪→ ...... ;

DM does not execute Trigger operations that are not supported in TiDB.

4. Replicate the origin table data to the _new table:
INSERT LOW_PRIORITY IGNORE INTO `test`.`_test4_new` (`id`, `date`, `

↪→ account_id`, `conversion_price`, `ocpc_matched_conversions`, `
↪→ ad_cost`, `cl2`, `cl1`) SELECT `id`, `date`, `account_id`, `
↪→ conversion_price`, `ocpc_matched_conversions`, `ad_cost`, `cl2`,
↪→ `cl1` FROM `test`.`test4` LOCK IN SHARE MODE /*pt-online-schema-
↪→ change 3227 copy table*/

DM does not execute the DML statements that are not for realtable.

5. After the data migration is completed, the origin table and _new table are renamed,
and the online DDL operation is completed:
RENAME TABLE `test`.`test4` TO `test`.`_test4_old`, `test`.`_test4_new`

↪→ TO `test`.`test4`

DM performs the following two operations:

• DM splits the above rename operation into two SQL statements:
sql rename test.test4 to test._test4_old; rename test._test4_new
↪→ to test.test4;

• DM does not execute rename to _test4_old. When executing rename
↪→ ghost_table to origin table, DM takes the following steps:

– Read the DDL recorded in memory in Step 2

56



– Replace ghost_table and ghost_schema with origin_table and its corre-
sponding schema

– Execute the DDL that has been replaced

ALTER TABLE `test`.`_test4_new` add column c3 int;
-- Replaced with:
ALTER TABLE `test`.`test4` add column c3 int;

6. Delete the _old table and 3 Triggers of the online DDL operation:
DROP TABLE IF EXISTS `test`.`_test4_old`;
DROP TRIGGER IF EXISTS `pt_osc_test_test4_del` AFTER DELETE ON `test

↪→ `.`test4` ...... ;
DROP TRIGGER IF EXISTS `pt_osc_test_test4_upd` AFTER UPDATE ON `test

↪→ `.`test4` ...... ;
DROP TRIGGER IF EXISTS `pt_osc_test_test4_ins` AFTER INSERT ON `test

↪→ `.`test4` ...... ;

DM does not delete _test4_old and Triggers.

Note:
The specific SQL statements of pt-osc vary with the parameters used in the
execution. This document only lists the major SQL statements. For more
details, refer to the pt-osc documentation.

1.4.3 Filter Certain Row Changes Using SQL Expressions

1.4.3.1 Overview
In the process of data migration, DM provides the Binlog Event Filter feature to filter

certain types of binlog events. For example, for archiving or auditing purposes, DELETE event
might be filtered when data is migrated to the downstream. However, Binlog Event Filter
cannot judge with a greater granularity whether the DELETE event of a certain row should
be filtered.

To solve the above issue, DM supports filtering certain row changes using SQL expres-
sions. The binlog in the ROW format supported by DM has the values of all columns in binlog
events. You can configure SQL expressions according to these values. If the SQL expressions
evaluate a row change as TRUE, DM will not migrate the row change downstream.

57

https://www.percona.com/doc/percona-toolkit/2.2/pt-online-schema-change.html


Note:
This feature only takes effect in the phase of incremental replication, not in
the phase of full migration.

1.4.3.2 Configuration example
Similar to Binlog Event Filter, you also need to configure the expression-filter feature in

the configuration file of the data migration task, as shown below. For complete configuration
and its descriptions, refer to DM Advanced Task Configuration File：
name: test
task-mode: all

target-database:
host: "127.0.0.1"
port: 4000
user: "root"
password: ""

mysql-instances:
- source-id: "mysql-replica-01"
expression-filters: ["even_c"]

expression-filter:
even_c:
schema: "expr_filter"
table: "tbl"
insert-value-expr: "c % 2 = 0"

The above example configures even_c rule, and allows the data source whose ID is
mysql-replica-01 to refer this rule. The meaning of even_c is:

For the tbl table in the expr_filter shema, when the value of the inserted c is even
(c % 2 = 0), the inserted statement will not be migrated downstream.

The usage result of this rule is shown below.
Insert the following data in the upstream data source:

INSERT INTO tbl(id, c) VALUES (1, 1), (2, 2), (3, 3), (4, 4);

Then query the tbl table downstream and you can find that only rows with an odd value
of c are migrated downstream:

58



MySQL [test]> select * from tbl;
+------+------+
| id | c |
+------+------+
| 1 | 1 |
| 3 | 3 |
+------+------+
2 rows in set (0.001 sec)

1.4.3.3 Configuration parameters and rule descriptions

• schema: The name of the upstream database to be matched. Wildcard match or
regular match is not supported.

• table: The name of the upstream table to be matched. Wildcard match or regular
match is not supported.

• insert-value-expr: Specifies an expression which takes effect on the value of bin-
log event (WRITE_ROWS_EVENT) of INSERT type. Do not use it with update
↪→ -old-value-expr, update-new-value-expr, or delete-value-expr in the same
configuration item.

• update-old-value-expr：Specifies an expression which takes effect on the old value
of binlog event (UPDATE_ROWS_EVENT) of UPDATE type. Do not use it with
insert-value-expr or delete-value-expr in the same configuration item.

• update-new-value-expr: Specifies an expression which takes effect on the new value
of binlog event (UPDATE_ROWS_EVENT) of UPDATE type. Do not use it with
insert-value-expr or delete-value-expr in the same configuration item.

• delete-value-expr：Specifies an expression which takes effect on the value of binlog
event (DELETE_ROWS_EVENT) of DELETE type. Do not use it withinsert-
↪→ value-expr, update-old-value-expr, or update-new-value-expr in the same
configuration item.

Note:
You can configure update-old-value-expr and update-new-value-expr at
the same time.

• When you configure update-old-value-expr and update-new-value
↪→ -expr at the same time, the row changes where updated old value
meets the rule of update-old-value-expr and the updated new value
meets the rule of update-new-value-expr will be filtered out.

59



• When you only configure one parameter, the statement you configure
will decide whether to filter the whole row changes, which means the
delete event of an old value and the insert event of a new value will be
filtered out as a whole.

SQL expressions can involve one or more columns. You can also use the SQL functions
TiDB supports, such as c % 2 = 0, a*a + b*b = c*c, and ts > NOW().

The timezone of TIMESTAMP is UTC by default. You can use c_timestamp =
↪→ '2021-01-01 12:34:56.5678+08:00' to specify the timezone explicitly.

You can define multiple filter rules under the configuration item expression-filter
↪→ . By refering the rules you need in the configuration item of expression-filters in the
upstream data source, the rules can take effect. When multiple rules take effect, matching
any of the rules causes a row change to be filtered.

Note:
Setting too many expression filters for a table increases the computing over-
head of DM，which might impede data migration.

1.5 Data Migration Architecture

This document introduces the architecture of Data Migration (DM).
DM consists of three components: DM-master, DM-worker, and dmctl.

60



Figure 21: Data Migration architecture

1.5.1 Architecture components

1.5.1.1 DM-master
DM-master manages and schedules the operations of data migration tasks.

• Storing the topology information of the DM cluster
• Monitoring the running state of DM-worker processes
• Monitoring the running state of data migration tasks
• Providing a unified portal for the management of data migration tasks
• Coordinating the DDL migration of sharded tables in each instance under the sharding

scenario

1.5.1.2 DM-worker
DM-worker executes specific data migration tasks.

• Persisting the binlog data to the local storage
• Storing the configuration information of the data migration subtasks
• Orchestrating the operation of the data migration subtasks

61



• Monitoring the running state of the data migration subtasks

For more details of DM-worker, see DM-worker Introduction.

1.5.1.3 dmctl
dmctl is a command line tool used to control the DM cluster.

• Creating, updating, or dropping data migration tasks
• Checking the state of data migration tasks
• Handling errors of data migration tasks
• Verifying the configuration correctness of data migration tasks

1.5.2 Architecture features

1.5.2.1 High availability
When you deploy multiple DM-master nodes, all DM-master nodes use the embedded

etcd to form a cluster. The DM-master cluster is used to store metadata such as cluster node
information and task configuration. The leader node elected through etcd is used to provide
services such as cluster management and data migration task management. Therefore, if the
number of available DM-master nodes exceeds half of the deployed nodes, the DM cluster
can normally provide services.

When the number of deployed DM-worker nodes exceeds the number of upstream
MySQL/MariaDB nodes, the extra DM-worker nodes are idle by default. If a DM-worker
node goes offline or is isolated from the DM-master leader, DM-master automatically
schedules data migration tasks of the original DM-worker node to other idle DM-worker
nodes. (If a DM-worker node is isolated, it automatically stops the data migration tasks on
it); if there are no available idle DM-worker nodes, the data migration tasks of the original
DM-worker are temporarily hung until one DM-worker node becomes idle, and then the
tasks are automatically resumed.

Note:
When the data migration task is in the process of full export or import, the
migration task does not support high availability. Here are the main reasons:

• For the full export, MySQL does not support exporting from a specific
snapshot point yet. This means that after the data migration task is
rescheduled or restarted, the export cannot resume from the previous
interruption point.

62



• For the full import, DM-worker does not support reading exported full
data across the nodes yet. This means that after the data migration task
is scheduled to a new DM-worker node, you cannot read the exported
full data on the original DM-worker node before the scheduling happens.

1.6 DM 5.3.0 Benchmark Report

This benchmark report describes the test purpose, environment, scenario, and results for
DM 5.3.0.

1.6.1 Test purpose

The purpose of this test is to evaluate the performance of DM full import and incremental
replication and to conclude recommended configurations for DM migration tasks based on
the test results.

1.6.2 Test environment

1.6.2.1 Machine information
System information:

Machine IP Operating System Kernel version File system type
172.16.6.1 CentOS Linux release 7.8.2003 3.10.0-957.el7.x86_64 ext4
172.16.6.2 CentOS Linux release 7.8.2003 3.10.0-957.el7.x86_64 ext4
172.16.6.3 CentOS Linux release 7.8.2003 3.10.0-957.el7.x86_64 ext4

Hardware information:

Type Specification
CPU Intel(R) Xeon(R) Silver 4214R @ 2.40GHz, 48 Cores

Memory 192G, 12 * 16GB DIMM DDR4 2133 MHz
Disk Intel SSDPE2KX040T8 4TB

Network card 10 Gigabit Ethernet

Others:

• Network rtt between servers: rtt min/avg/max/mdev = 0.045/0.064/0.144/0.024 ms

1.6.2.2 Cluster topology

63



Machine IP Deployed instance
172.16.6.1 PD1, TiDB1, TiKV1, MySQL1, DM-master1
172.16.6.2 PD2, TiDB2, TiKV2, DM-worker1
172.16.6.3 PD3, TiDB3, TiKV3

1.6.2.3 Version information

• MySQL version: 5.7.36-log
• TiDB version: v5.2.1
• DM version: v5.3.0
• Sysbench version: 1.1.0

1.6.3 Test scenario

You can use a simple data migration flow, that is, MySQL1 (172.16.6.1) -> DM-
worker(172.16.6.2) -> TiDB(load balance) (172.16.6.4), to do the test. For detailed test
scenario description, see performance test.

1.6.3.1 Full import benchmark case
For detailed full import test method, see Full Import Benchmark Case.

1.6.3.1.1 Full import benchmark results
To enable multi-thread concurrent data export via Dumpling, you can configure the

threads parameter in the mydumpers configuration item. This speeds up data export.

Item Data size (GB) Threads Rows Statement-size Time (s) Dump speed (MB/s)
dump data 38.1 32 320000 1000000 45 846

Item

Data
size
(GB)

Pool
size

Statement per
TXN

Max latency
of TXN

execution (s) Time (s)

Import
speed
(MB/s)

load
data

38.1 32 4878 76 2740 13.9

1.6.3.1.2 Benchmark results with different pool sizes in load unit
In this test, the full amount of data imported using sysbench is 3.78 GB. The following

is detailed information of the test data:

64



load unit pool size

Max latency of
TXN execution

(s)
Import
time (s)

Import Speed
(MB/s)

TiDB 99 duration
(s)

2 0.71 397 9.5 0.61
4 1.21 363 10.4 1.03
8 3.30 279 13.5 2.11
16 5.56 200 18.9 3.04
32 6.92 218 17.3 6.56
64 8.59 231 16.3 8.62

1.6.3.1.3 Benchmark results with different row count per statement
In this test, the full amount of imported data is 3.78 GB and the pool-size of load unit

is set to 32. The statement count is controlled by statement-size, rows, or extra-args
parameters in the mydumpers configuration item.

Row count per
statement

mydumpers
extra-args

Max
latency of

TXN
execution

(s)
Import
time (s)

Import
speed
(MB/s)

TiDB 99
duration (s)

7506 -s 1500000 -r
320000

8.34 229 16.5 10.64

5006 -s 1000000 -r
320000

6.12 218 17.3 7.23

2506 -s 500000 -r
320000

4.27 232 16.2 3.24

1256 -s 250000 -r
320000

2.25 235 16.0 1.92

629 -s 125000 -r
320000

1.03 246 15.3 0.91

315 -s 62500 -r
320000

0.63 249 15.1 0.44

1.6.3.2 Incremental replication benchmark case
For detailed incremental replication test method, see Incremental Replication Benchmark

Case.

1.6.3.2.1 Incremental replication benchmark result
In this test, the worker-count of sync unit is set to 32 and batch is set to 100.

65



Items QPS TPS 95% latency
MySQL 40.65k 40.65k 1.10ms

DM binlog
replication

unit

29.1k (The number of
binlog events received per
unit of time, not including

skipped events)

- 92ms (txn
execution
time)

TiDB 32.0k (Begin/Commit 1.5
Insert 29.72k)

3.52k 95%: 6.2ms
99%: 8.3ms

1.6.3.2.2 Benchmark results with different sync unit concurrency

sync unit worker-count DM QPS
Max DM execution

latency (ms)
TiDB
QPS

TiDB 99
duration (ms)

4 10.2 40 10.5k 4
8 17.6k 64 18.9k 5
16 29.5k 80 30.5k 7
32 29.1k 92 32.0k 9
64 27.4k 88 37.7k 14

1024 22.9k 85 57.5k 25

1.6.3.2.3 Benchmark results with different SQL distribution

Sysbench type DM QPS Max DM execution latency (ms) TiDB QPS TiDB 99 duration (ms)
insert_only 29.1k 64 32.0k 8
write_only 23.5k 296 24.2k 18

1.6.4 Recommended parameter configuration

1.6.4.1 dump unit
We recommend that the statement size be 200 KB~1 MB, and row count in each state-

ment be approximately 1000~5000, which is based on the actual row size in your scenario.

1.6.4.2 load unit
We recommend that you set pool-size to 16~32.

1.6.4.3 sync unit
We recommend that you set batch to 100 and worker-count to 16~32.

66



2 Quick Start

2.1 Quick Start Guide for TiDB Data Migration

This document describes how to migrate data from MySQL to TiDB using TiDB Data
Migration (DM).

If you need to deploy DM in the production environment, refer to the following docu-
ments:

• Deploy a DM cluster Using TiUP
• Create a Data Source
• Create a Data Migration Task

2.1.1 Sample scenario

Suppose you deploy DM-master and DM-worker instances in an on-premise environment,
and migrate data from an upstream MySQL instance to a downstream TiDB instance.

The detailed information of each instance is as follows:

Instance Server Address Port
DM-master 127.0.0.1 8261, 8291 (Internal port)
DM-worker 127.0.0.1 8262
MySQL-3306 127.0.0.1 3306
TiDB 127.0.0.1 4000

2.1.2 Deploy DM using the binary package

2.1.2.1 Download DM binary package
Download DM latest binary package or compile the package manually.

2.1.2.1.1 Method 1: Download the latest version of binary package
wget http://download.pingcap.org/dm-nightly-linux-amd64.tar.gz
tar -xzvf dm-nightly-linux-amd64.tar.gz
cd dm-nightly-linux-amd64

2.1.2.1.2 Method 2: Compile the latest version of binary package
git clone https://github.com/pingcap/dm.git
cd dm
make

67

https://github.com/pingcap/dm
https://github.com/pingcap/dm


2.1.2.2 Deploy DM-master
Execute the following command to start the DM-master:

nohup bin/dm-master --master-addr='127.0.0.1:8261' --log-file=/tmp/dm-
↪→ master.log --name="master1" >> /tmp/dm-master.log 2>&1 &

2.1.2.3 Deploy DM-worker
Execute the following command to start the DM-worker:

nohup bin/dm-worker --worker-addr='127.0.0.1:8262' --log-file=/tmp/dm-
↪→ worker.log --join='127.0.0.1:8261' --name="worker1" >> /tmp/dm-worker
↪→ .log 2>&1 &

2.1.2.4 Check deployment status
To check whether the DM cluster has been deployed successfully, execute the following

command:
bin/dmctl --master-addr=127.0.0.1:8261 list-member

A normal DM cluster returns the following information:
{

"result": true,
"msg": "",
"members": [

{
"leader": {

"msg": "",
"name": "master1",
"addr": "127.0.0.1:8261"

}
},
{

"master": {
"msg": "",
"masters": [

{
"name": "master1",
"memberID": "11007177379717700053",
"alive": true,
"peerURLs": [

"http://127.0.0.1:8291"
],
"clientURLs": [

68



"http://127.0.0.1:8261"
]

}
]

}
},
{

"worker": {
"msg": "",
"workers": [

{
"name": "worker1",
"addr": "127.0.0.1:8262",
"stage": "free",
"source": ""

}
]

}
}

]
}

2.1.3 Migrate data from MySQL to TiDB

2.1.3.1 Prepare sample data
Before using DM, insert the following sample data to MySQL-3306:

drop database if exists `testdm`;
create database `testdm`;
use `testdm`;
create table t1 (id bigint, uid int, name varchar(80), info varchar(100),

↪→ primary key (`id`), unique key(`uid`)) DEFAULT CHARSET=utf8mb4;
create table t2 (id bigint, uid int, name varchar(80), info varchar(100),

↪→ primary key (`id`), unique key(`uid`)) DEFAULT CHARSET=utf8mb4;
insert into t1 (id, uid, name) values (1, 10001, 'Gabriel García Márquez'),

↪→ (2, 10002, 'Cien años de soledad');
insert into t2 (id, uid, name) values (3, 20001, 'José Arcadio Buendía'),

↪→ (4, 20002, 'Úrsula Iguarán'), (5, 20003, 'José Arcadio');

2.1.3.2 Load data source configurations
Before running a data migration task, you need to first load the configuration file of the

corresponding data source (that is, MySQL-3306 in the example) to DM.

69



2.1.3.2.1 Encrypt the data source password

Note:

• You can skip this step if the data source does not have a password.
• You can use the plaintext password to configure the data source infor-

mation in DM v2.0 and later versions.

For safety reasons, it is recommended to configure and use encrypted passwords for data
sources. Suppose the password is “123456”:
./bin/dmctl --encrypt "123456"

fCxfQ9XKCezSzuCD0Wf5dUD+LsKegSg=

Save this encrypted value, and use it for creating a MySQL data source in the following
steps.

2.1.3.2.2 Edit the source configuration file of the MySQL instance
Write the following configurations to conf/source1.yaml.

## MySQL1 Configuration.
source-id: "mysql-replica-01"
from:
host: "127.0.0.1"
user: "root"
password: "fCxfQ9XKCezSzuCD0Wf5dUD+LsKegSg="
port: 3306

2.1.3.2.3 Load data source configuration file
To load the data source configuration file of MySQL to the DM cluster using dmctl, run

the following command in the terminal:
./bin/dmctl --master-addr=127.0.0.1:8261 operate-source create conf/source1

↪→ .yaml

The following is an example of the returned results:
{

"result": true,
"msg": "",

70



"sources": [
{

"result": true,
"msg": "",
"source": "mysql-replica-01",
"worker": "worker1"

}
]

}

Now you successfully add the data source MySQL-3306 to the DM cluster.

2.1.3.3 Create a data migration task
After inserting the sample data into MySQL-3306, take the following steps to migrate the

tables testdm.t1 and testdm.t2 to the downstream TiDB instance:

1. Create a task configuration file testdm-task.yaml, and add the following configura-
tions to the file.
---
name: testdm
task-mode: all
target-database:
host: "127.0.0.1"
port: 4000
user: "root"
password: "" # If the password is not null, it is recommended to use

↪→ password encrypted with dmctl.
mysql-instances:
- source-id: "mysql-replica-01"
block-allow-list: "ba-rule1"

block-allow-list:
ba-rule1:
do-dbs: ["testdm"]

2. Load the task configuration file using dmctl:
./bin/dmctl --master-addr 127.0.0.1:8261 start-task testdm-task.yaml

The following is an example of the returned results:
{

"result": true,
"msg": "",
"sources": [

71



{
"result": true,
"msg": "",
"source": "mysql-replica-01",
"worker": "worker1"

}
]

}

Now you successfully create a data migration task that migrates data from MySQL-3306
to the downstream TiDB instance.

2.1.3.4 Check status of the data migration task
After the data migration task is created, you can use dmtcl query-status to check the

status of the task. See the following example:
./bin/dmctl --master-addr 127.0.0.1:8261 query-status

The following is an example of the returned results:
{

"result": true,
"msg": "",
"tasks": [

{
"taskName": "testdm",
"taskStatus": "Running",
"sources": [

"mysql-replica-01"
]

}
]

}

2.2 Deploy a DM Cluster Using TiUP

TiUP is a cluster operation and maintenance tool introduced in TiDB 4.0. TiUP pro-
vides TiUP DM, a cluster management component written in Golang. By using TiUP DM,
you can easily perform daily TiDB Data Migration (DM) operations, including deploying,
starting, stopping, destroying, scaling, and upgrading a DM cluster, and manage DM cluster
parameters.

TiUP supports deploying DM v2.0 or later DM versions. This document introduces how
to deploy DM clusters of different topologies.

72

https://github.com/pingcap/tiup


Note:
If your target machine’s operating system supports SELinux, make sure that
SELinux is disabled.

2.2.1 Prerequisites

When DM performs a full data replication task, the DM-worker is bound with only one
upstream database. The DM-worker first exports the full amount of data locally, and then
imports the data into the downstream database. Therefore, the worker’s host needs sufficient
storage space (The storage path is specified later when you create the task).

In addition, you need to meet the hardware and software requirements when deploying
a DM cluster.

2.2.2 Step 1: Install TiUP on the control machine

Log in to the control machine using a regular user account (take the tidb user as an
example). All the following TiUP installation and cluster management operations can be
performed by the tidb user.

1. Install TiUP by executing the following command:
curl --proto '=https' --tlsv1.2 -sSf https://tiup-mirrors.pingcap.com/

↪→ install.sh | sh

After the installing, ~/.bashrc has been modified to add TiUP to PATH, so you need to
open a new terminal or redeclare the global environment variables source ~/.bashrc
to use it.

2. Install the TiUP DM component:
tiup install dm dmctl

2.2.3 Step 2: Edit the initialization configuration file

According to the intended cluster topology, you need to manually create and edit the
cluster initialization configuration file.

You need to create a YAML configuration file (named topology.yaml for example)
according to the configuration file template. For other scenarios, edit the configuration
accordingly.

73

https://github.com/pingcap/tiup/blob/master/embed/examples/dm/topology.example.yaml


You can use the command tiup dm template > topology.yaml to generate a configu-
ration file template quickly.

The configuration of deploying three DM-masters, three DM-workers, and one monitoring
component instance is as follows:
## The global variables apply to all other components in the configuration.

↪→ If one specific value is missing in the component instance, the
↪→ corresponding global variable serves as the default value.

global:
user: "tidb"
ssh_port: 22
deploy_dir: "/dm-deploy"
data_dir: "/dm-data"

server_configs:
master:
log-level: info
# rpc-timeout: "30s"
# rpc-rate-limit: 10.0
# rpc-rate-burst: 40

worker:
log-level: info

master_servers:
- host: 10.0.1.11
name: master1
ssh_port: 22
port: 8261
# peer_port: 8291
# deploy_dir: "/dm-deploy/dm-master-8261"
# data_dir: "/dm-data/dm-master-8261"
# log_dir: "/dm-deploy/dm-master-8261/log"
# numa_node: "0,1"
# The following configs are used to overwrite the `server_configs.master

↪→ ` values.
config:
log-level: info
# rpc-timeout: "30s"
# rpc-rate-limit: 10.0
# rpc-rate-burst: 40

- host: 10.0.1.18
name: master2
ssh_port: 22
port: 8261

- host: 10.0.1.19

74



name: master3
ssh_port: 22
port: 8261

## If you do not need to ensure high availability of the DM cluster, deploy
↪→ only one DM-master node, and the number of deployed DM-worker nodes
↪→ must be no less than the number of upstream MySQL/MariaDB instances
↪→ to be migrated.

## To ensure high availability of the DM cluster, it is recommended to
↪→ deploy three DM-master nodes, and the number of deployed DM-worker
↪→ nodes must exceed the number of upstream MySQL/MariaDB instances to
↪→ be migrated (for example, the number of DM-worker nodes is two more
↪→ than the number of upstream instances).

worker_servers:
- host: 10.0.1.12
ssh_port: 22
port: 8262
# deploy_dir: "/dm-deploy/dm-worker-8262"
# log_dir: "/dm-deploy/dm-worker-8262/log"
# numa_node: "0,1"
# The following configs are used to overwrite the `server_configs.worker

↪→ ` values.
config:
log-level: info

- host: 10.0.1.19
ssh_port: 22
port: 8262

monitoring_servers:
- host: 10.0.1.13
ssh_port: 22
port: 9090
# deploy_dir: "/tidb-deploy/prometheus-8249"
# data_dir: "/tidb-data/prometheus-8249"
# log_dir: "/tidb-deploy/prometheus-8249/log"

grafana_servers:
- host: 10.0.1.14
port: 3000
# deploy_dir: /tidb-deploy/grafana-3000

alertmanager_servers:
- host: 10.0.1.15
ssh_port: 22
web_port: 9093
# cluster_port: 9094

75



# deploy_dir: "/tidb-deploy/alertmanager-9093"
# data_dir: "/tidb-data/alertmanager-9093"
# log_dir: "/tidb-deploy/alertmanager-9093/log"

Note:

• It is not recommended to run too many DM-workers on one host. Each
DM-worker should be allocated at least 2 core CPU and 4 GiB memory.

• Make sure that the ports among the following components are intercon-
nected:

– The peer_port (8291 by default) among the DM-master nodes are
interconnected.

– Each DM-master node can connect to the port of all DM-worker
nodes (8262 by default).

– Each DM-worker node can connect to the port of all DM-master
nodes (8261 by default).

– The TiUP nodes can connect to the port of all DM-master nodes
(8261 by default).

– The TiUP nodes can connect to the port of all DM-worker nodes
(8262 by default).

For more master_servers.host.config parameter description, refer to master parame-
ter. For more worker_servers.host.config parameter description, refer to worker param-
eter.

2.2.4 Step 3: Execute the deployment command

Note:
You can use secret keys or interactive passwords for security authentication
when you deploy TiDB using TiUP:

• If you use secret keys, you can specify the path of the keys through -i
or --identity_file;

• If you use passwords, add the -p flag to enter the password interaction
window;

• If password-free login to the target machine has been configured, no
authentication is required.

76

https://github.com/pingcap/dm/blob/master/dm/master/dm-master.toml
https://github.com/pingcap/dm/blob/master/dm/master/dm-master.toml
https://github.com/pingcap/dm/blob/master/dm/worker/dm-worker.toml
https://github.com/pingcap/dm/blob/master/dm/worker/dm-worker.toml


tiup dm deploy ${name} ${version} ./topology.yaml -u ${ssh_user} [-p] [-i /
↪→ home/root/.ssh/gcp_rsa]

The parameters used in this step are as follows.

ParameterDescription
$
↪→ {
↪→ name
↪→ }
↪→

The
name
of
the
DM
clus-
ter,
eg:
dm-
test

$
↪→ {
↪→ version
↪→ }
↪→

The
ver-
sion
of
the
DM
clus-
ter.
You
can
see
other
sup-
ported
ver-
sions
by
run-
ning
tiup
↪→
↪→ list
↪→
↪→ dm
↪→ -
↪→ master
↪→ .

77



ParameterDescription
./
↪→ topology
↪→ .
↪→ yaml
↪→

The
path
of
the
topol-
ogy
con-
fig-
u-
ra-
tion
file.

78



ParameterDescription
-
↪→ u
↪→
or
--
↪→ user
↪→

Log
in
to
the
tar-
get
ma-
chine
as
the
root
user
or
other
user
ac-
count
with
ssh
and
sudo
priv-
i-
leges
to
com-
plete
the
clus-
ter
de-
ploy-
ment.

79



ParameterDescription
-
↪→ p
↪→
or
--
↪→ password
↪→

The
pass-
word
of
tar-
get
hosts.
If
spec-
i-
fied,
pass-
word
au-
then-
ti-
ca-
tion
is
used.

80



ParameterDescription
-
↪→ i
↪→
or
--
↪→ identity_file
↪→

The
path
of
the
SSH
iden-
tity
file.
If
spec-
i-
fied,
pub-
lic
key
au-
then-
ti-
ca-
tion
is
used
(de-
fault
“/root/.ssh/id_rsa”).

At the end of the output log, you will see Deployed cluster `dm-test` successfully.
This indicates that the deployment is successful.

2.2.5 Step 4: Check the clusters managed by TiUP

tiup dm list

TiUP supports managing multiple DM clusters. The command above outputs informa-
tion of all the clusters currently managed by TiUP, including the name, deployment user,
version, and secret key information:
Name User Version Path PrivateKey
---- ---- ------- ---- ----------
dm-test tidb v2.0.3 /root/.tiup/storage/dm/clusters/dm-test /root/.tiup/

↪→ storage/dm/clusters/dm-test/ssh/id_rsa

81



2.2.6 Step 5: Check the status of the deployed DM cluster

To check the status of the dm-test cluster, execute the following command:
tiup dm display dm-test

Expected output includes the instance ID, role, host, listening port, and status (because
the cluster is not started yet, so the status is Down/inactive), and directory information.

2.2.7 Step 6: Start the TiDB cluster

tiup dm start dm-test

If the output log includes Started cluster `dm-test` successfully, the start is suc-
cessful.

2.2.8 Step 7: Verify the running status of the TiDB cluster

Check the DM cluster status using TiUP:
tiup dm display dm-test

If the Status is Up in the output, the cluster status is normal.

2.2.9 Step 8: Managing migration tasks using dmctl

dmctl is a command-line tool used to control DM clusters. You are recommended to use
dmctl via TiUP.

dmctl supports both the command mode and the interactive mode. For details, see
Maintain DM Clusters Using dmctl.

2.3 Create a Data Source

Note:
Before creating a data source, you need to Deploy a DM Cluster Using TiUP。

The document describes how to create a data source for the data migration task of TiDB
Data Migration (DM).

A data source contains the information for accessing the upstream migration task. Be-
cause a data migration task requires referring its corresponding data source to obtain the

82



configuration information of access, you need to create the data source of a task before creat-
ing a data migration task. For specific data source management commands, refer to Manage
Data Source Configurations.

2.3.1 Step 1: Configure the data source

1. (optional) Encrypt the data source password
In DM configuration files, it is recommended to use the password encrypted with dmctl.
You can follow the example below to obtain the encrypted password of the data source,
which can be used to write the configuration file later.
tiup dmctl encrypt 'abc!@#123'

MKxn0Qo3m3XOyjCnhEMtsUCm83EhGQDZ/T4=

2. Write the configuration file of the data source
For each data source, you need an individual configuration file to create it. You can
follow the example below to create a data source whose ID is “mysql-01”. First create
the configuration file ./source-mysql-01.yaml：
source-id: "mysql-01" # The ID of the data source, you can refer this

↪→ source-id in the task configuration and dmctl command to
↪→ associate the corresponding data source.

from:
host: "127.0.0.1"
port: 3306
user: "root"
password: "MKxn0Qo3m3XOyjCnhEMtsUCm83EhGQDZ/T4=" # The user password

↪→ of the upstream data source. It is recommended to use the
↪→ password encrypted with dmctl.

security: # The TLS configuration of
↪→ the upstream data source. If not necessary, it can be deleted.

ssl-ca: "/path/to/ca.pem"
ssl-cert: "/path/to/cert.pem"
ssl-key: "/path/to/key.pem"

2.3.2 Step 2: Create a data source

You can use the following command to create a data source:
tiup dmctl --master-addr <master-addr> operate-source create ./source-mysql

↪→ -01.yaml

83



For other configuration parameters, refer to Upstream Database Configuration File.
The returned results are as follows:

{
"result": true,
"msg": "",
"sources": [

{
"result": true,
"msg": "",
"source": "mysql-01",
"worker": "dm-worker-1"

}
]

}

2.3.3 Step 3: Query the data source you created

After creating a data source, you can use the following command to query the data
source:

• If you konw the source-id of the data source, you can use the dmctl get-config
↪→ source <source-id> command to directly check the configuration of the data
source:
tiup dmctl --master-addr <master-addr> get-config source mysql-01

{
"result": true,
"msg": "",
"cfg": "enable-gtid: false
flavor: mysql
source-id: mysql-01
from:
host: 127.0.0.1
port: 3306
user: root
password: '******'

}

• If you do not know the source-id, you can use the dmctl operate-source show
command to check the source database list, from which you can find the corresponding
data source.
tiup dmctl --master-addr <master-addr> operate-source show

84



{
"result": true,
"msg": "",
"sources": [

{
"result": true,
"msg": "source is added but there is no free worker to bound

↪→ ",
"source": "mysql-02",
"worker": ""

},
{

"result": true,
"msg": "",
"source": "mysql-01",
"worker": "dm-worker-1"

}
]

}

2.4 Data Migration Scenarios

2.4.1 Data Migration Scenario Overview

Note:
Before creating a data migration task, you need to perform the following
operations:

1. Deploy a DM Cluster Using TiUP。
2. Create a Data Source。

This document introduces how to configure a data migration task in different scenarios.
You can choose suitable documents to create your data migration task according to the
specific scenario.

In addition to scenario-based documents, you can also refer to the following ones:

• For a complete example of data migration task configuration, refer to DM Advanced
Task Configuration File.

• For a data migration task configuration guide, refer to Data Migration Task Configu-
ration Guide.

85



2.4.1.1 Migrate Data from Multiple Data Sources to TiDB
If you need to migrate data from multiple data sources to TiDB, and to rename tables

to avoid migration conflicts caused by duplicate table names in different data sources, or
to disable some DDL/DML operations in some tables, refer to Migrate Data from Multiple
Data Sources to TiDB.

2.4.1.2 Migrate Sharded Schemas and Sharded Tables to TiDB
If you need to migrate sharded schemas and sharded tables to TiDB, refer to Data

Migration Shard Merge Scenario.

2.4.1.3 Migrate Incremental Data to TiDB
If you have already migrated full data using other tools like TiDB Lightning and you

need to migrate incremental data, refer to Migrate Incremental Data to TiDB.

2.4.1.4 Migration when the Downstream Table Has More Columns
If you need to customize your table schema in TiDB to include not only all the columns

from the source but also additional columns, refer to Migration when the Downstream Table
Has More Columns.

2.4.2 Using Migrate Data from Multiple Data Sources to TiDB

This document shows how to use Data Migration (DM) in a simple data migration
scenario where the data of three data source MySQL instances needs to be migrated to a
downstream TiDB cluster (no sharding data).

2.4.2.1 Data source instances
Assume that the data sources are as follows:

• Instance 1

Schema Tables
user information, log
store store_bj, store_tj
log messages

• Instance 2

Schema Tables
user information, log
store store_sh, store_sz

86



Schema Tables
log messages

• Instance 3

Schema Tables
user information, log
store store_gz, store_sz
log messages

2.4.2.2 Migration requirements

1. Do not merge the user schema.

1. Migrate the user schema of instance 1 to the user_north of TiDB.
2. Migrate the user schema of instance 2 to the user_east of TiDB.
3. Migrate the user schema of instance 3 to the user_south of TiDB.
4. Never delete the table log.

2. Migrate the upstream store schema to the downstream store schema without merging
tables.

1. store_sz exists in both instances 2 and 3, which is migrated to store_suzhou
and store_shenzhen respectively.

2. Never delete store.

3. The log schema needs to be filtered out.

2.4.2.3 Downstream instances
Assume that the schemas migrated to the downstream are as follows:

Schema Tables
user_north information, log
user_east information, log
user_south information, log
store store_bj, store_tj, store_sh, store_suzhou, store_gz, store_shenzhen

2.4.2.4 Migration solution

• To satisfy migration Requirements #1-i, #1-ii and #1-iii, configure the table routing
rules as follows:
routes:

87



...
instance-1-user-rule:
schema-pattern: "user"
target-schema: "user_north"

instance-2-user-rule:
schema-pattern: "user"
target-schema: "user_east"

instance-3-user-rule:
schema-pattern: "user"
target-schema: "user_south"

• To satisfy the migration Requirement #2-i, configure the table routing rules as follows:
routes:
...
instance-2-store-rule:
schema-pattern: "store"
table-pattern: "store_sz"
target-schema: "store"
target-table: "store_suzhou"

instance-3-store-rule:
schema-pattern: "store"
table-pattern: "store_sz"
target-schema: "store"
target-table: "store_shenzhen"

• To satisfy the migration Requirement #1-iv, configure the binlog filtering rules as
follows:
filters:
...
log-filter-rule:
schema-pattern: "user"
table-pattern: "log"
events: ["truncate table", "drop table", "delete"]
action: Ignore

user-filter-rule:
schema-pattern: "user"
events: ["drop database"]
action: Ignore

• To satisfy the migration Requirement #2-ii, configure the binlog filtering rule as follows:
filters:
...

88



store-filter-rule:
schema-pattern: "store"
events: ["drop database", "truncate table", "drop table", "delete"]
action: Ignore

Note:
store-filter-rule is different from log-filter-rule & user-filter
↪→ -rule. store-filter-rule is a rule for the whole store schema,
while log-filter-rule and user-filter-rule are rules for the log
table in the user schema.

• To satisfy the migration Requirement #3, configure the block and allow lists as follows:
block-allow-list: # Use black-white-list if the DM version is earlier

↪→ than or equal to v2.0.0-beta.2.
log-ignored:
ignore-dbs: ["log"]

2.4.2.5 Migration task configuration
The complete migration task configuration is shown below. For more details, see data

migration task configuration guide.
name: "one-tidb-secondary"
task-mode: all
meta-schema: "dm_meta"

target-database:
host: "192.168.0.1"
port: 4000
user: "root"
password: ""

mysql-instances:
-
source-id: "instance-1"
route-rules: ["instance-1-user-rule"]
filter-rules: ["log-filter-rule", "user-filter-rule", "store-filter-rule

↪→ "]
block-allow-list: "log-ignored" # Use black-white-list if the DM version

↪→ is earlier than or equal to v2.0.0-beta.2.
mydumper-config-name: "global"
loader-config-name: "global"

89



syncer-config-name: "global"
-
source-id: "instance-2"
route-rules: ["instance-2-user-rule", instance-2-store-rule]
filter-rules: ["log-filter-rule", "user-filter-rule", "store-filter-rule

↪→ "]
block-allow-list: "log-ignored" # Use black-white-list if the DM version

↪→ is earlier than or equal to v2.0.0-beta.2.
mydumper-config-name: "global"
loader-config-name: "global"
syncer-config-name: "global"

-
source-id: "instance-3"
route-rules: ["instance-3-user-rule", instance-3-store-rule]
filter-rules: ["log-filter-rule", "user-filter-rule", "store-filter-rule

↪→ "]
block-allow-list: "log-ignored" # Use black-white-list if the DM version

↪→ is earlier than or equal to v2.0.0-beta.2.
mydumper-config-name: "global"
loader-config-name: "global"
syncer-config-name: "global"

### other common configs shared by all instances

routes:
instance-1-user-rule:
schema-pattern: "user"
target-schema: "user_north"

instance-2-user-rule:
schema-pattern: "user"
target-schema: "user_east"

instance-3-user-rule:
schema-pattern: "user"
target-schema: "user_south"

instance-2-store-rule:
schema-pattern: "store"
table-pattern: "store_sz"
target-schema: "store"
target-table: "store_suzhou"

instance-3-store-rule:
schema-pattern: "store"
table-pattern: "store_sz"
target-schema: "store"
target-table: "store_shenzhen"

90



filters:
log-filter-rule:
schema-pattern: "user"
table-pattern: "log"
events: ["truncate table", "drop table", "delete"]
action: Ignore

user-filter-rule:
schema-pattern: "user"
events: ["drop database"]
action: Ignore

store-filter-rule:
schema-pattern: "store"
events: ["drop database", "truncate table", "drop table", "delete"]
action: Ignore

block-allow-list: # Use black-white-list if the DM version is earlier than
↪→ or equal to v2.0.0-beta.2.

log-ignored:
ignore-dbs: ["log"]

mydumpers:
global:
threads: 4
chunk-filesize: 64

loaders:
global:
pool-size: 16
dir: "./dumped_data"

syncers:
global:
worker-count: 16
batch: 100
max-retry: 100

2.4.3 Data Migration Shard Merge Scenario

This document shows how to use Data Migration (DM) to migrate data to the down-
stream TiDB in the shard merge scenario.

The example used in this document is a simple scenario where sharded schemas and
sharded tables of two data source MySQL instances need to be migrated to a downstream
TiDB cluster.

91



For other scenarios, you can refer to Best Practices of Data Migration in the Shard Merge
Scenario.

2.4.3.1 Data source instances
Assume that the data source structures are as follows:

• Instance 1

Schema Tables
user information, log_bak
store_01 sale_01, sale_02
store_02 sale_01, sale_02

• Instance 2

Schema Tables
user information, log_bak
store_01 sale_01, sale_02
store_02 sale_01, sale_02

2.4.3.2 Migration requirements

1. Merge the user.information tables to the downstream user.information table in
TiDB.

2. Merge the store_{01|02}.sale_{01|02} tables in the above instances to the down-
stream store.sale table in TiDB.

3. Replicate user and store_{01|02} schemas but do not replicate the user.log_bak
tables in the above instances.

4. Filter out all the delete operations in the store_{01|02}.sale_{01|02} table of the
above instances and filter out the drop database operation in shemas.

The expected downstream schema after migration is as follows:

Schema Tables
user information
store sale

2.4.3.3 Conflict check across sharded tables
Because migration requirements #1 and #2 involve the DM Shard Merge feature, data

from multiple tables might cause conflicts between the primary keys or the unique keys. You

92



need to check these sharded tables. For details, refer to Handle conflicts between primary
keys or unique indexes across multiple sharded tables. In this example:

The table schema of user.information is
CREATE TABLE `information` (
`id` bigint(20) NOT NULL AUTO_INCREMENT,
`uid` bigint(20) DEFAULT NULL,
`name` varchar(255) DEFAULT NULL,
`data` varchar(255) DEFAULT NULL,
PRIMARY KEY (`id`),
UNIQUE KEY `uid` (`uid`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

In the above structure, column id is the primary key and column uid is the unique index.
Column id has auto-increment attribute and if the ranges of tables overlap, data conflicts
might occur. Column uid can ensure only a unique index exists globally. So, you can avoid
column id by following the steps in the section Remove the PRIMARY KEY attribute from the
column.

The table schema of store_{01|02}.sale_{01|02} is
CREATE TABLE `sale_01` (
`sid` bigint(20) NOT NULL,
`pid` bigint(20) NOT NULL,
`comment` varchar(255) DEFAULT NULL,
PRIMARY KEY (`sid`),
KEY `pid` (`pid`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

In the above structure, sid is the shard key, which can ensure that the same sid only
exists in one sharded table. So no data conflict is caused and you do not need to perform
extra operations.

2.4.3.4 Migration solution

• To satisfy the migration requirements #1, you do not need to configure the table
routing rule. You need to manually create a table based on the requirements in the
section Remove the PRIMARY KEY attribute from the column:
CREATE TABLE `information` (
`id` bigint(20) NOT NULL AUTO_INCREMENT,
`uid` bigint(20) DEFAULT NULL,
`name` varchar(255) DEFAULT NULL,
`data` varchar(255) DEFAULT NULL,
INDEX (`id`),
UNIQUE KEY `uid` (`uid`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

93



And skip precheck in the configuration file:
ignore-checking-items: ["auto_increment_ID"]

• To satisfy the migration requirement #2, configure the table routing rule as follows:
routes:
...
store-route-rule:
schema-pattern: "store_*"
target-schema: "store"

sale-route-rule:
schema-pattern: "store_*"
table-pattern: "sale_*"
target-schema: "store"
target-table: "sale"

• To satisfy the migration requirements #3, configure the Block and allow table lists as
follows:
block-allow-list:
log-bak-ignored:
do-dbs: ["user", "store_*"]
ignore-tables:
- db-name: "user"
tbl-name: "log_bak"

• To satisfy the migration requirement #4, configure the binlog event filter rule as follows:
filters:
...
sale-filter-rule: # filter out all deletion operations of all tables

↪→ under store_* schema
schema-pattern: "store_*"
table-pattern: "sale_*"
events: ["truncate table", "drop table", "delete"]
action: Ignore

store-filter-rule: # filter out the deletion operation of store_*
↪→ schema

schema-pattern: "store_*"
events: ["drop database"]
action: Ignore

2.4.3.5 Migration task configuration
The complete configuration of the migration task is shown as follows. For more details,

see Data Migration Task Configuration Guide.

94



name: "shard_merge"
task-mode: all # full data migration + incremental data

↪→ migration
meta-schema: "dm_meta"
ignore-checking-items: ["auto_increment_ID"]

target-database:
host: "192.168.0.1"
port: 4000
user: "root"
password: ""

mysql-instances:
-
source-id: "instance-1" # The ID of the data source and can be obtained

↪→ from the data source configuration
route-rules: ["store-route-rule", "sale-route-rule"] # Applies to the

↪→ table route rules of this data source
filter-rules: ["store-filter-rule" , "sale-filter-rule"] # Applies to

↪→ the binlog event filter rules of this data source
block-allow-list: "log-bak-ignored" # Applies to the block and allow

↪→ lists of this data source
-
source-id: "instance-2"
route-rules: ["store-route-rule", "sale-route-rule"]
filter-rules: ["store-filter-rule", "sale-filter-rule"]
block-allow-list: "log-bak-ignored"

### Other common configs shared by all instances

routes:
store-route-rule:
schema-pattern: "store_*"
target-schema: "store"

sale-route-rule:
schema-pattern: "store_*"
table-pattern: "sale_*"
target-schema: "store"
target-table: "sale"

filters:
sale-filter-rule:
schema-pattern: "store_*"
table-pattern: "sale_*"

95



events: ["truncate table", "drop table", "delete"]
action: Ignore

store-filter-rule:
schema-pattern: "store_*"
events: ["drop database"]
action: Ignore

block-allow-list:
log-bak-ignored:
do-dbs: ["user", "store_*"]
ignore-tables:
- db-name: "user"
tbl-name: "log_bak"

2.4.4 Incremental Data Migration Scenario

This document describes how to use Data Migration (DM) to replicate the Binlog from
a specified position in the source database to the downstream TiDB. The scenario is based
on an example of migrating a data source MySQL instance to TiDB.

2.4.4.1 Data source table
Assume the data source instance is:

Schema Tables
user information, log
store store_bj, store_tj
log messages

2.4.4.2 Migration requirements
Only replicate the data change from a specified position in the source database log to

the TiDB cluster.

2.4.4.3 Incremental data migration operations
This section provides you data migration steps, which helps you use DM to replicate

data changes from the log database to the TiDB cluster.

2.4.4.3.1 Determines the start position of incremental replication
First you need to determine the replication position of the binlog where you start to

migrate data. If you have determined the position of binlog, skip this step.

96



By following the steps below, you can obtain the position of binlog where you start
migrating data in the source data:

• Use Dumpling/Mydumper for full data export. Then use other tools, such as TiDB
Lightning, for full data import. After that, you can obtain the replication position by
inspecting the metadata files.

file Started dump at: 2020-11-10 10:40:19 SHOW MASTER STATUS: Log:
↪→ mysql-bin.000001 Pos: 2022 GTID: 09bec856-ba95-11ea-850a-58
↪→ f2b4af5188:1-9 Finished dump at: 2020-11-10 10:40:20

• Use SHOW BINLOG EVENTS, or use the mysqlbinlog tool to check binlog and select an
appropriate position.

• If you want to start replicating binlog at the current time, use SHOW MASTER STATUS
to check the current position:

sql MySQL [log]> SHOW MASTER STATUS; +------------------+----------+--------------+------------------+------------------------------------------+
↪→ | File | Position | Binlog_Do_DB | Binlog_Ignore_DB | Executed_Gtid_Set
↪→ | +------------------+----------+--------------+------------------+------------------------------------------+
↪→ | mysql-bin.000001 | 2022 | | | 09bec856-ba95-11ea-850a-58
↪→ f2b4af5188:1-9 | +------------------+----------+--------------+------------------+------------------------------------------+
↪→ 1 row in set (0.000 sec)

This example starts replicating data changes from binlog position=(mysql-bin
↪→ .000001, 2022), gtid=09bec856-ba95-11ea-850a-58f2b4af5188:1-9.

2.4.4.3.2 Create tables manually downstream
Because the table SQL statements are created before replication starting point, this

incremental replication task does not automatically create tables downstream. So you need
to manually create a table schema at the corresponding starting point in the downstream
TiDB. The detailed steps are as follows:
CREATE TABLE `messages` (
`id` int(11) NOT NULL,
`message` varchar(255) DEFAULT NULL,
PRIMARY KEY (`id`)

)

2.4.4.3.3 Create a replication task

1. Create task configuration task.yaml to configure incremental replication mode and
replication starting point for each data source. The complete task configuration exam-
ple is as follows:

97

https://docs.pingcap.com/zh/tidb/stable/dumpling-overview#%E8%BE%93%E5%87%BA%E6%96%87%E4%BB%B6%E6%A0%BC%E5%BC%8F


“‘yaml name: task-test # The name of the task. Should be globally unique. task-mode:
incremental # The mode of the task. For “incremental”, only incremental data is migrated.

## Configure the access information of TiDB database instance: target-database: #
Downstream database instance configuration. host: “127.0.0.1” port: 4000 user: “root”
password: “” # If password is not empty, it is recommended to use dmctl encrypted password.

## Use block-allow-list to configure tables that require sync: block-allow-list: # The
filter rule set of the matched table of the data source database instance. Use black-white-list
if the DM version is earlier than or equal to v2.0.0-beta.2. bw-rule-1: # The name of the
block and allow list rule. do-dbs: [“log”]# The databases to be migrated.

## (Optional) If incremental data migration needs to remigrate the data that has al-
ready been migrated during full data migration process, you need to enable safe mode to
avoid incremental migration errors. ## This scenario usually happens when the full mi-
grated data is not a consistent snapshot of the data source. You need to start migrating
incremental data at a position before the full data migration starting point. syncers: # The
configuration parameters of sync unit. global: # The name of the configuration. safe-mode:
true # If you set safe-mode to true, INSERT from data sources is rewritten to REPLACE and
UPDATE is rewritten to DELETE and REPLACE. This is to ensure that when primary keys or
unique keys exist in table structure, you can re-import DML when migrating data.

## Configure the data source mysql-instances: - source-id: “mysql-01” # The ID of data
source. You can obtain it from the configuration of the data source. block-allow-list: “bw-
rule-1” # To import the block-allow-list configuration above. syncer-config-name: “global”
# To import the incremental data migration configuration of syncers. meta: # If task-mode
is incremental and the checkpoint in the downstream database does not exist, meta is the
starting point of binlog; If checkpoint exists, base it on checkpoint. binlog-name: “mysql-
bin. 00001” binlog-pos: 2022 binlog-gtid: “09bec856-ba95-11ea-850a-58f2b4af5188:1-9” “‘

2. Create a replication task using the start-task command:

bash tiup dmctl --master-addr <master-addr> start-task task.yaml

{ "result": true, "msg": "", "sources": [ {
↪→ "result": true, "msg": "", "source
↪→ ": "mysql-01", "worker": "127.0.0.1:8262" } ] }

3. Check the replication task using the query-status command to ensure that no error
message occurs:

bash tiup dmctl --master-addr <master-addr> query-status test

{ "result": true, "msg": "", "sources": [ {
↪→ "result": true, "msg": "", "sourceStatus
↪→ ": { "source": "mysql-01", "worker": "127.0.0.1:8262",
↪→ "result": null, "relayStatus": null },

98



↪→ "subTaskStatus": [ { "
↪→ name": "task-test", "stage": "Running", "
↪→ unit": "Sync", "result": null, "
↪→ unresolvedDDLLockID": "", "sync": { "
↪→ totalEvents": "0", "totalTps": "0", "
↪→ recentTps": "0", "masterBinlog": "(mysql-bin.000001,
↪→ 2022)", "masterBinlogGtid": "09bec856-ba95-11ea-850a
↪→ -58f2b4af5188:1-9", "syncerBinlog": "(mysql-bin.000001,
↪→ 2022)", "syncerBinlogGtid": "", "
↪→ blockingDDLs": [ ], "unresolvedGroups
↪→ ": [ ], "synced": true,
↪→ "binlogType": "remote" } }
↪→ ] } ] }

2.4.4.4 Test replication tasks
Insert new data in the source database:

MySQL [log]> INSERT INTO messages VALUES (4, 'msg4'), (5, 'msg5');
Query OK, 2 rows affected (0.010 sec)
Records: 2 Duplicates: 0 Warnings: 0

Currently, the source data is:
MySQL [log]> SELECT * FROM messages;
+----+---------+
| id | message |
+----+---------+
| 1 | msg1 |
| 2 | msg2 |
| 3 | msg3 |
| 4 | msg4 |
| 5 | msg5 |
+----+---------+
5 rows in set (0.001 sec)

If you query data in the downstream, you can find that the data after (3, 'msg3') is
replicated successfully:
MySQL [log]> SELECT * FROM messages;
+----+---------+
| id | message |
+----+---------+
| 4 | msg4 |
| 5 | msg5 |
+----+---------+
2 rows in set (0.001 sec)

99



2.4.5 Migration when There Are More Columns in the Downstream TiDB Table

This document describes how to migrate tables using DM when there are more columns
in the downstream TiDB table schema than the upstream table schema.

2.4.5.1 The table shcema of the data source
This document uses the follwing data source example:

Schema Tables
user information, log
store store_bj, store_tj
log messages

2.4.5.2 Migration requirements
Create a customized table log.messages in TiDB. Its schema contains not only all the

columns in the log.messages table of the data source, but also additional columns. In this
case, migrate the table log.messages of the data source to the table log.messages of the
TiDB cluster.

Note:

• The columns that only exist in the downstream TiDB must be given a
default value or allowed to be NULL.

• For tables that are being migrated by DM, you can directly add new
columns in the downstream TiDB that are given a default value or al-
lowed to be NULL. Adding such new columns does not affect the data
migration.

2.4.5.3 Only migrate incremental data to TiDB and the downstream TiDB table
has more columns

If your migration task contains full data migration, the task can operate normally. If
you have already used other tools to do full data migration and this migration task only uses
DM to replicate incremental data, refer to Migrate Incremental Data to TiDB to create a
data migration task. At the same time, you need to manually configure the table schema in
DM for MySQL binlog parsing.

Otherwise, after creating the task, the following data migration errors occur when you
execute the query-status‘ command:
"errors": [

100



{
"ErrCode": 36027,
"ErrClass": "sync-unit",
"ErrScope": "internal",
"ErrLevel": "high",
"Message": "startLocation: [position: (mysql-bin.000001, 2022), gtid-

↪→ set:09bec856-ba95-11ea-850a-58f2b4af5188:1-9 ], endLocation: [
↪→ position: (mysql-bin.000001, 2022), gtid-set: 09bec856-ba95-11
↪→ ea-850a-58f2b4af5188:1-9]: gen insert sqls failed, schema: log
↪→ , table: messages: Column count doesn't match value count: 3 (
↪→ columns) vs 2 (values)",

"RawCause": "",
"Workaround": ""

}
]

The reason for the above errors is that when DM migrates the binlog event, if DM has
not maintained internally the table schema corresponding to that table, DM tries to use
the current table schema in the downstream to parse the binlog event and generate the
corresponding DML statement. If the number of columns in the binlog event is inconsistent
with the number of columns in the downstream table schema, the above error might occur.

In such cases, you can execute the operate-schema command to specify for the table
a table schema that matches the binlog event. If you are migrating sharded tables, you
need to configure the table schema in DM for parsing MySQL binlog for each sharded tables
according to the following steps:

1. Specify the table schema for the table log.messages to be migrated in the data source.
The table schema needs to correspond to the data of the binlog event to be replicated
by DM. Then save the CREATE TABLE table schema statement in a file. For example,
save the following table schema in the log.messages.sql file:
CREATE TABLE `messages` (
`id` int(11) NOT NULL,
`message` varchar(255) DEFAULT NULL,
PRIMARY KEY (`id`)

)

2. Execute the operate-schema command to set the table schema. At this time, the task
should be in the Paused state because of the above error.
tiup dmctl --master-addr <master-addr> operate-schema set -s mysql-01

↪→ task-test -d log -t message log.message.sql

3. Execute the resume-task command to resume the Paused task.

101



4. Execute the query-status command to check whether the data migration task is
running normally.

3 Deploy

3.1 Software and Hardware Requirements

TiDB Data Migration (DM) supports mainstream Linux operating systems. See the
following table for specific version requirements:

Linux OS Platform Version
Red Hat Enterprise Linux 7.3 or later
CentOS 7.3 or later
Oracle Enterprise Linux 7.3 or later
Ubuntu LTS 16.04 or later

DM can be deployed and run on Intel architecture servers and mainstream virtualization
environments.

3.1.1 Recommended server requirements

DM can be deployed and run on a 64-bit generic hardware server platform (Intel x86-64
architecture). For servers used in the development, testing, and production environments,
this section illustrates recommended hardware configurations (these do not include the re-
sources used by the operating system).

3.1.1.1 Development and test environments

ComponentCPU Memory

Local
Stor-
age Network

Number
of
In-
stances
(Min-
i-
mum
Re-
quire-
ment)

DM-
master

4
core+

8
GB+

SAS,
200
GB+

Gigabit
net-
work
card

1

102



ComponentCPU Memory

Local
Stor-
age Network

Number
of
In-
stances
(Min-
i-
mum
Re-
quire-
ment)

DM-
worker

8
core+

16
GB+

SAS,
200
GB+
(Greater
than
the
size
of
the
mi-
grated
data)

Gigabit
net-
work
card

The
num-
ber
of
up-
stream
MySQL
in-
stances

Note:

• In the test environment, DM-master and DM-worker used for functional
verification can be deployed on the same server.

• To prevent interference with the accuracy of the performance test results,
it is not recommended to use low-performance storage and network
hardware configurations.

• If you need to verify the function only, you can deploy a DM-master on
a single machine. The number of DM-worker deployed must be greater
than or equal to the number of upstream MySQL instances. To ensure
high availability, it is recommended to deploy more DM-workers.

• DM-worker stores full data in the dump and load phases. Therefore, the
disk space for DM-worker needs to be greater than the total amount of
data to be migrated. If the relay log is enabled for the migration task,
DM-worker needs additional disk space to store upstream binlog data.

3.1.1.2 Production environment

103



ComponentCPU Memory

Hard
Disk
Type Network

Number
of
In-
stances
(Min-
i-
mum
Re-
quire-
ment)

DM-
master

4
core+

8
GB+

SAS,
200
GB+

Gigabit
net-
work
card

3

DM-
worker

16
core+

32
GB+

SSD,
200
GB+
(Greater
than
the
size
of
the
mi-
grated
data)

10
Gi-
ga-
bit
net-
work
card

Greater
than
the
num-
ber
of
up-
stream
MySQL
in-
stances

Monitor8
core+

16
GB+

SAS,
200
GB+

Gigabit
net-
work
card

1

Note:

• In the production environment, it is not recommended to deploy and
run DM-master and DM-worker on the same server, because when DM-
worker writes data to disks, it might interfere with the use of disks by
DM-master’s high availability component.

• If a performance issue occurs, you are recommended to modify the task
configuration file according to the Optimize Configuration of DM doc-
ument. If the performance is not effectively optimized by tuning the
configuration file, you can try to upgrade the hardware of your server.

104



3.2 Deploy a DM Cluster

3.2.1 Deploy a DM Cluster Using TiUP

TiUP is a cluster operation and maintenance tool introduced in TiDB 4.0. TiUP pro-
vides TiUP DM, a cluster management component written in Golang. By using TiUP DM,
you can easily perform daily TiDB Data Migration (DM) operations, including deploying,
starting, stopping, destroying, scaling, and upgrading a DM cluster, and manage DM cluster
parameters.

TiUP supports deploying DM v2.0 or later DM versions. This document introduces how
to deploy DM clusters of different topologies.

Note:
If your target machine’s operating system supports SELinux, make sure that
SELinux is disabled.

3.2.1.1 Prerequisites
When DM performs a full data replication task, the DM-worker is bound with only one

upstream database. The DM-worker first exports the full amount of data locally, and then
imports the data into the downstream database. Therefore, the worker’s host needs sufficient
storage space (The storage path is specified later when you create the task).

In addition, you need to meet the hardware and software requirements when deploying
a DM cluster.

3.2.1.2 Step 1: Install TiUP on the control machine
Log in to the control machine using a regular user account (take the tidb user as an

example). All the following TiUP installation and cluster management operations can be
performed by the tidb user.

1. Install TiUP by executing the following command:
curl --proto '=https' --tlsv1.2 -sSf https://tiup-mirrors.pingcap.com/

↪→ install.sh | sh

After the installing, ~/.bashrc has been modified to add TiUP to PATH, so you need to
open a new terminal or redeclare the global environment variables source ~/.bashrc
to use it.

2. Install the TiUP DM component:
tiup install dm dmctl

105

https://github.com/pingcap/tiup


3.2.1.3 Step 2: Edit the initialization configuration file
According to the intended cluster topology, you need to manually create and edit the

cluster initialization configuration file.
You need to create a YAML configuration file (named topology.yaml for example)

according to the configuration file template. For other scenarios, edit the configuration
accordingly.

You can use the command tiup dm template > topology.yaml to generate a configu-
ration file template quickly.

The configuration of deploying three DM-masters, three DM-workers, and one monitoring
component instance is as follows:
### The global variables apply to all other components in the configuration.

↪→ If one specific value is missing in the component instance, the
↪→ corresponding global variable serves as the default value.

global:
user: "tidb"
ssh_port: 22
deploy_dir: "/dm-deploy"
data_dir: "/dm-data"

server_configs:
master:
log-level: info
# rpc-timeout: "30s"
# rpc-rate-limit: 10.0
# rpc-rate-burst: 40

worker:
log-level: info

master_servers:
- host: 10.0.1.11
name: master1
ssh_port: 22
port: 8261
# peer_port: 8291
# deploy_dir: "/dm-deploy/dm-master-8261"
# data_dir: "/dm-data/dm-master-8261"
# log_dir: "/dm-deploy/dm-master-8261/log"
# numa_node: "0,1"
# The following configs are used to overwrite the `server_configs.master

↪→ ` values.
config:
log-level: info
# rpc-timeout: "30s"

106

https://github.com/pingcap/tiup/blob/master/embed/examples/dm/topology.example.yaml


# rpc-rate-limit: 10.0
# rpc-rate-burst: 40

- host: 10.0.1.18
name: master2
ssh_port: 22
port: 8261

- host: 10.0.1.19
name: master3
ssh_port: 22
port: 8261

### If you do not need to ensure high availability of the DM cluster, deploy
↪→ only one DM-master node, and the number of deployed DM-worker nodes
↪→ must be no less than the number of upstream MySQL/MariaDB instances
↪→ to be migrated.

### To ensure high availability of the DM cluster, it is recommended to
↪→ deploy three DM-master nodes, and the number of deployed DM-worker
↪→ nodes must exceed the number of upstream MySQL/MariaDB instances to
↪→ be migrated (for example, the number of DM-worker nodes is two more
↪→ than the number of upstream instances).

worker_servers:
- host: 10.0.1.12
ssh_port: 22
port: 8262
# deploy_dir: "/dm-deploy/dm-worker-8262"
# log_dir: "/dm-deploy/dm-worker-8262/log"
# numa_node: "0,1"
# The following configs are used to overwrite the `server_configs.worker

↪→ ` values.
config:
log-level: info

- host: 10.0.1.19
ssh_port: 22
port: 8262

monitoring_servers:
- host: 10.0.1.13
ssh_port: 22
port: 9090
# deploy_dir: "/tidb-deploy/prometheus-8249"
# data_dir: "/tidb-data/prometheus-8249"
# log_dir: "/tidb-deploy/prometheus-8249/log"

grafana_servers:
- host: 10.0.1.14
port: 3000

107



# deploy_dir: /tidb-deploy/grafana-3000

alertmanager_servers:
- host: 10.0.1.15
ssh_port: 22
web_port: 9093
# cluster_port: 9094
# deploy_dir: "/tidb-deploy/alertmanager-9093"
# data_dir: "/tidb-data/alertmanager-9093"
# log_dir: "/tidb-deploy/alertmanager-9093/log"

Note:

• It is not recommended to run too many DM-workers on one host. Each
DM-worker should be allocated at least 2 core CPU and 4 GiB memory.

• Make sure that the ports among the following components are intercon-
nected:

– The peer_port (8291 by default) among the DM-master nodes are
interconnected.

– Each DM-master node can connect to the port of all DM-worker
nodes (8262 by default).

– Each DM-worker node can connect to the port of all DM-master
nodes (8261 by default).

– The TiUP nodes can connect to the port of all DM-master nodes
(8261 by default).

– The TiUP nodes can connect to the port of all DM-worker nodes
(8262 by default).

For more master_servers.host.config parameter description, refer to master parame-
ter. For more worker_servers.host.config parameter description, refer to worker param-
eter.

3.2.1.4 Step 3: Execute the deployment command

Note:
You can use secret keys or interactive passwords for security authentication
when you deploy TiDB using TiUP:

108

https://github.com/pingcap/dm/blob/master/dm/master/dm-master.toml
https://github.com/pingcap/dm/blob/master/dm/master/dm-master.toml
https://github.com/pingcap/dm/blob/master/dm/worker/dm-worker.toml
https://github.com/pingcap/dm/blob/master/dm/worker/dm-worker.toml


• If you use secret keys, you can specify the path of the keys through -i
or --identity_file;

• If you use passwords, add the -p flag to enter the password interaction
window;

• If password-free login to the target machine has been configured, no
authentication is required.

tiup dm deploy ${name} ${version} ./topology.yaml -u ${ssh_user} [-p] [-i /
↪→ home/root/.ssh/gcp_rsa]

The parameters used in this step are as follows.

ParameterDescription
$
↪→ {
↪→ name
↪→ }
↪→

The
name
of
the
DM
clus-
ter,
eg:
dm-
test

109



ParameterDescription
$
↪→ {
↪→ version
↪→ }
↪→

The
ver-
sion
of
the
DM
clus-
ter.
You
can
see
other
sup-
ported
ver-
sions
by
run-
ning
tiup
↪→
↪→ list
↪→
↪→ dm
↪→ -
↪→ master
↪→ .

./
↪→ topology
↪→ .
↪→ yaml
↪→

The
path
of
the
topol-
ogy
con-
fig-
u-
ra-
tion
file.

110



ParameterDescription
-
↪→ u
↪→
or
--
↪→ user
↪→

Log
in
to
the
tar-
get
ma-
chine
as
the
root
user
or
other
user
ac-
count
with
ssh
and
sudo
priv-
i-
leges
to
com-
plete
the
clus-
ter
de-
ploy-
ment.

111



ParameterDescription
-
↪→ p
↪→
or
--
↪→ password
↪→

The
pass-
word
of
tar-
get
hosts.
If
spec-
i-
fied,
pass-
word
au-
then-
ti-
ca-
tion
is
used.

112



ParameterDescription
-
↪→ i
↪→
or
--
↪→ identity_file
↪→

The
path
of
the
SSH
iden-
tity
file.
If
spec-
i-
fied,
pub-
lic
key
au-
then-
ti-
ca-
tion
is
used
(de-
fault
“/root/.ssh/id_rsa”).

At the end of the output log, you will see Deployed cluster `dm-test` successfully.
This indicates that the deployment is successful.

3.2.1.5 Step 4: Check the clusters managed by TiUP
tiup dm list

TiUP supports managing multiple DM clusters. The command above outputs informa-
tion of all the clusters currently managed by TiUP, including the name, deployment user,
version, and secret key information:
Name User Version Path PrivateKey
---- ---- ------- ---- ----------
dm-test tidb v2.0.3 /root/.tiup/storage/dm/clusters/dm-test /root/.tiup/

↪→ storage/dm/clusters/dm-test/ssh/id_rsa

113



3.2.1.6 Step 5: Check the status of the deployed DM cluster
To check the status of the dm-test cluster, execute the following command:

tiup dm display dm-test

Expected output includes the instance ID, role, host, listening port, and status (because
the cluster is not started yet, so the status is Down/inactive), and directory information.

3.2.1.7 Step 6: Start the TiDB cluster
tiup dm start dm-test

If the output log includes Started cluster `dm-test` successfully, the start is suc-
cessful.

3.2.1.8 Step 7: Verify the running status of the TiDB cluster
Check the DM cluster status using TiUP:

tiup dm display dm-test

If the Status is Up in the output, the cluster status is normal.

3.2.1.9 Step 8: Managing migration tasks using dmctl
dmctl is a command-line tool used to control DM clusters. You are recommended to use

dmctl via TiUP.
dmctl supports both the command mode and the interactive mode. For details, see

Maintain DM Clusters Using dmctl.

3.2.2 Deploy a DM Cluster Offline Using TiUP (Experimental)

Warning:
Using TiUP to deploy a DM cluster offline is still an experimental feature. It
is NOT recommended to use this feature in production.

This document describes how to deploy a DM cluster offline using TiUP.

114



3.2.2.1 Step 1: Prepare the TiUP offline component package

• Install the TiUP package manager online.

1. Install the TiUP tool:
curl --proto '=https' --tlsv1.2 -sSf https://tiup-mirrors.pingcap.

↪→ com/install.sh | sh

2. Redeclare the global environment variables:
source .bash_profile

3. Confirm whether TiUP is installed:
which tiup

• Pull the mirror using TiUP

1. Pull the needed components on a machine that has access to the Internet:
export version=v2.0.3 # You can modify it to the needed version.
tiup mirror clone tidb-dm-${version}-linux-amd64 --os=linux --arch=

↪→ amd64 \
--dm-master=${version} --dm-worker=${version} --dmctl=${version

↪→ } \
--alertmanager=v0.17.0 --grafana=v4.0.3 --prometheus=v4.0.3 \
--tiup=v$(tiup --version|grep 'tiup'|awk -F ' ' '{print $1}')

↪→ --dm=v$(tiup --version|grep 'tiup'|awk -F ' ' '{print $1
↪→ }')

The command above creates a directory named tidb-dm-${version}-linux-
↪→ amd64 in the current directory, which contains the component package man-
aged by TiUP.

2. Pack the component package by using the tar command and send the package
to the control machine in the isolated environment:
tar czvf tidb-dm-${version}-linux-amd64.tar.gz tidb-dm-${version}-

↪→ linux-amd64

tidb-dm-${version}-linux-amd64.tar.gz is an independent offline environ-
ment package.

115



3.2.2.2 Step 2: Deploy the offline TiUP component
After sending the package to the control machine of the target cluster, install the TiUP

component by running the following command:
export version=v2.0.3 # You can modify it to the needed version.
tar xzvf tidb-dm-${version}-linux-amd64.tar.gz
sh tidb-dm-${version}-linux-amd64/local_install.sh
source /home/tidb/.bash_profile

The local_install.sh script automatically executes the tiup mirror set tidb-dm-
↪→ ${version}-linux-amd64 command to set the current mirror address to tidb-dm-${
↪→ version}-linux-amd64.

To switch the mirror to another directory, manually execute the tiup mirror set
↪→ <mirror-dir> command. If you want to switch back to the official mirror, execute
tiup mirror set https://tiup-mirrors.pingcap.com.

3.2.2.3 Step 3: Edit the initialization configuration file
You need to edit the cluster initialization configuration file according to different cluster

topologies.
For the full configuration template, refer to the TiUP configuration parameter template.

Create a configuration file topology.yaml. In other combined scenarios, edit the configura-
tion file as needed according to the templates.

The configuration of deploying three DM-masters, three DM-workers, and one monitoring
component instance is as follows:
---
global:
user: "tidb"
ssh_port: 22
deploy_dir: "/home/tidb/dm/deploy"
data_dir: "/home/tidb/dm/data"
# arch: "amd64"

master_servers:
- host: 172.19.0.101
- host: 172.19.0.102
- host: 172.19.0.103

worker_servers:
- host: 172.19.0.101
- host: 172.19.0.102
- host: 172.19.0.103

116

https://github.com/pingcap/tiup/blob/master/embed/examples/dm/topology.example.yaml


monitoring_servers:
- host: 172.19.0.101

grafana_servers:
- host: 172.19.0.101

alertmanager_servers:
- host: 172.19.0.101

Note:

• If you do not need to ensure high availability of the DM cluster, de-
ploy only one DM-master node, and the number of deployed DM-worker
nodes must be no less than the number of upstream MySQL/MariaDB
instances to be migrated.

• To ensure high availability of the DM cluster, it is recommended to
deploy three DM-master nodes, and the number of deployed DM-worker
nodes must be greater than the number of upstream MySQL/MariaDB
instances to be migrated (for example, the number of DM-worker nodes
is two more than the number of upstream instances).

• For parameters that should be globally effective, configure these parame-
ters of corresponding components in the server_configs section of the
configuration file.

• For parameters that should be effective on a specific node, configure
these parameters in config of this node.

• Use . to indicate the subcategory of the configuration, such as log.slow
↪→ -threshold. For more formats, see TiUP configuration template.

• For more parameter description, see master config.toml.example and
worker config.toml.example.

• Make sure that the ports among the following components are intercon-
nected:

– The peer_port (8291 by default) among the DM-master nodes are
interconnected.

– Each DM-master node can connect to the port of all DM-worker
nodes (8262 by default).

– Each DM-worker node can connect to the port of all DM-master
nodes (8261 by default).

– The TiUP nodes can connect to the port of all DM-master nodes
(8261 by default).

– The TiUP nodes can connect to the port of all DM-worker nodes
(8262 by default).

117

https://github.com/pingcap/tiup/blob/master/embed/examples/dm/topology.example.yaml
https://github.com/pingcap/dm/blob/master/dm/master/dm-master.toml
https://github.com/pingcap/dm/blob/master/dm/worker/dm-worker.toml


3.2.2.4 Step 4: Execute the deployment command

Note:
You can use secret keys or interactive passwords for security authentication
when you deploy DM using TiUP:

• If you use secret keys, you can specify the path of the keys through -i
or --identity_file;

• If you use passwords, add the -p flag to enter the password interaction
window;

• If password-free login to the target machine has been configured, no
authentication is required.

tiup dm deploy dm-test ${version} ./topology.yaml --user root [-p] [-i /home
↪→ /root/.ssh/gcp_rsa]

In the above command:

• The name of the deployed DM cluster is dm-test.
• The version of the DM cluster is ${version}. You can view the latest versions sup-

ported by TiUP by running tiup list dm-master.
• The initialization configuration file is topology.yaml.
• --user root: Log in to the target machine through the root key to complete the

cluster deployment, or you can use other users with ssh and sudo privileges to complete
the deployment.

• [-i] and [-p]: optional. If you have configured login to the target machine without
password, these parameters are not required. If not, choose one of the two parameters.
[-i] is the private key of the root user (or other users specified by --user) that has
access to the target machine. [-p] is used to input the user password interactively.

• TiUP DM uses the embedded SSH client. If you want to use the SSH client native
to the control machine system, edit the configuration according to using the system’s
native SSH client to connect to the cluster.

At the end of the output log, you will see Deployed cluster `dm-test` successfully.
This indicates that the deployment is successful.

3.2.2.5 Step 5: Check the clusters managed by TiUP
tiup dm list

118



TiUP supports managing multiple DM clusters. The command above outputs informa-
tion of all the clusters currently managed by TiUP, including the name, deployment user,
version, and secret key information:
Name User Version Path PrivateKey
---- ---- ------- ---- ----------
dm-test tidb v2.0.3 /root/.tiup/storage/dm/clusters/dm-test /root/.tiup/

↪→ storage/dm/clusters/dm-test/ssh/id_rsa

3.2.2.6 Step 6: Check the status of the deployed DM cluster
To check the status of the dm-test cluster, execute the following command:

tiup dm display dm-test

Expected output includes the instance ID, role, host, listening port, and status (because
the cluster is not started yet, so the status is Down/inactive), and directory information of
the dm-test cluster.

3.2.2.7 Step 7: Start the cluster
tiup dm start dm-test

If the output log includes Started cluster `dm-test` successfully, the start is suc-
cessful.

3.2.2.8 Step 8: Verify the running status of the cluster
Check the DM cluster status using TiUP:

tiup dm display dm-test

If the Status is Up in the output, the cluster status is normal.

3.2.3 Deploy Data Migration Using DM Binary

This document introduces how to quickly deploy the Data Migration (DM) cluster using
DM binary.

Note:
In the production environment, it is recommended to use TiUP to deploy a
DM cluster.

119



3.2.3.1 Preparations
Download the official binary using the download link in the following table:

Package
name OS Architecture

SHA256
check-
sum

https
↪→ ://
↪→ download
↪→ .
↪→ pingcap
↪→ .
↪→ org
↪→ /
↪→ dm
↪→ -{
↪→ version
↪→ }-
↪→ linux
↪→ -
↪→ amd64
↪→ .
↪→ tar
↪→ .
↪→ gz
↪→

Linux amd64 https
↪→ ://
↪→ download
↪→ .
↪→ pingcap
↪→ .
↪→ org
↪→ /
↪→ dm
↪→ -{
↪→ version
↪→ }-
↪→ linux
↪→ -
↪→ amd64
↪→ .
↪→ sha256
↪→

Note:
{version} in the above download link indicates the version number of TiDB.
For example, the download link for v1.0.1 is https://download.pingcap.
↪→ org/dm-v1.0.1-linux-amd64.tar.gz. You can check the published DM
versions in the DM Release page.

The downloaded files have two subdirectories, bin and conf. The bin directory contains
the binary files of DM-master, DM-worker, and dmctl. The conf directory contains the
sample configuration files.

3.2.3.2 Sample scenario
Suppose that you deploy a DM cluster based on this sample scenario:

120

https://github.com/pingcap/tiflow/releases


Two DM-worker nodes and three DM-master nodes are deployed on five servers.
Here is the address of each node:

Instance Server address Port
DM-master1 192.168.0.4 8261
DM-master2 192.168.0.5 8261
DM-master3 192.168.0.6 8261
DM-worker1 192.168.0.7 8262
DM-worker2 192.168.0.8 8262

Based on this scenario, the following sections describe how to deploy the DM cluster.

Note:

• If you deploy multiple DM-master or DM-worker instances in a single
server, the port and working directory of each instance must be unique.

• If you do not need to ensure high availability of the DM cluster, de-
ploy only one DM-master node, and the number of deployed DM-worker
nodes must be no less than the number of upstream MySQL/MariaDB
instances to be migrated.

• To ensure high availability of the DM cluster, it is recommended to
deploy three DM-master nodes, and the number of deployed DM-worker
nodes must be greater than the number of upstream MySQL/MariaDB
instances to be migrated (for example, the number of DM-worker nodes
is two more than the number of upstream instances).

• Make sure that the ports among the following components are intercon-
nected:

– The 8291 ports among the DM-master nodes are interconnected.
– Each DM-master node can connect to the 8262 ports of all DM-

worker nodes.
– Each DM-worker node can connect to the 8261 port of all DM-

master nodes.

3.2.3.2.1 Deploy DM-master
You can configure DM-master by using command-line parameters or the configuration

file.
DM-master command-line parameters
The following is the description of DM-master command-line parameters:

121



./bin/dm-master --help

Usage of dm-master:
-L string

log level: debug, info, warn, error, fatal (default "info")
-V prints version and exit
-advertise-addr string

advertise address for client traffic (default "${master-addr}")
-advertise-peer-urls string

advertise URLs for peer traffic (default "${peer-urls}")
-config string

path to config file
-data-dir string

path to the data directory (default "default.${name}")
-initial-cluster string

initial cluster configuration for bootstrapping, e.g. dm-master=http
↪→ ://127.0.0.1:8291

-join string
join to an existing cluster (usage: cluster's "${master-addr}" list,

↪→ e.g. "127.0.0.1:8261,127.0.0.1:18261"
-log-file string

log file path
-master-addr string

master API server and status addr
-name string

human-readable name for this DM-master member
-peer-urls string

URLs for peer traffic (default "http://127.0.0.1:8291")
-print-sample-config

print sample config file of dm-worker

Note:
In some situations, you cannot use the above method to configure DM-master
because some configurations are not exposed to the command line. In such
cases, use the configuration file instead.

DM-master configuration file
The following is the configuration file of DM-master. It is recommended that you con-

figure DM-master by using this method.

122



1. Write the following configuration to conf/dm-master1.toml:
“‘toml # Master Configuration. name = “master1”
# Log configurations. log-level = “info” log-file = “dm-master.log”
# The listening address of DM-master. master-addr = “192.168.0.4:8261”
# The peer URLs of DM-master. peer-urls = “192.168.0.4:8291”
# The value of initial-cluster is the combination of the advertise-peer-
↪→ urls value of all DM-master nodes in the initial cluster. initial-cluster = “mas-
ter1=http://192.168.0.4:8291,master2=http://192.168.0.5:8291,master3=http://192.168.0.6:8291”
“‘

2. Execute the following command in the terminal to run DM-master:
bash ./bin/dm-master -config conf/dm-master1.toml

Note:
The console does not output logs after this command is executed. If you
want to view the runtime log, you can execute tail -f dm-master.log.

3. For DM-master2 and DM-master3, change name in the configuration file to master2
↪→ and master3 respectively, and change peer-urls to 192.168.0.5:8291 and
192.168.0.6:8291 respectively. Then repeat Step 2.

3.2.3.2.2 Deploy DM-worker
You can configure DM-worker by using command-line parameters or the configuration

file.
DM-worker command-line parameters
The following is the description of the DM-worker command-line parameters:

./bin/dm-worker --help

Usage of worker:
-L string

log level: debug, info, warn, error, fatal (default "info")
-V prints version and exit
-advertise-addr string

advertise address for client traffic (default "${worker-addr}")
-config string

path to config file
-join string

join to an existing cluster (usage: dm-master cluster's "${master-
↪→ addr}")

123



-keepalive-ttl int
dm-worker's TTL for keepalive with etcd (in seconds) (default 10)

-log-file string
log file path

-name string
human-readable name for DM-worker member

-print-sample-config
print sample config file of dm-worker

-worker-addr string
listen address for client traffic

Note:
In some situations, you cannot use the above method to configure DM-worker
because some configurations are not exposed to the command line. In such
cases, use the configuration file instead.

DM-worker configuration file
The following is the DM-worker configuration file. It is recommended that you configure

DM-worker by using this method.

1. Write the following configuration to conf/dm-worker1.toml:
“‘toml # Worker Configuration. name = “worker1”
# Log configuration. log-level = “info” log-file = “dm-worker.log”
# DM-worker address. worker-addr = “:8262”
# The master-addr configuration of the DM-master nodes in the cluster. join =
“192.168.0.4:8261,192.168.0.5:8261,192.168.0.6:8261” “‘

2. Execute the following command in the terminal to run DM-worker:
bash ./bin/dm-worker -config conf/dm-worker1.toml

3. For DM-worker2, change name in the configuration file to worker2. Then repeat Step
2.

Now, a DM cluster is successfully deployed.

3.2.4 Use Kubernetes

3.3 Migrate Data Using Data Migration

This guide shows how to migrate data using the Data Migration (DM) tool.

124

https://docs.pingcap.com/tidb-in-kubernetes/dev/deploy-tidb-dm


3.3.1 Step 1: Deploy the DM cluster

It is recommended to deploy the DM cluster using TiUP. You can also deploy the DM
cluster using binary for trial or test.

Note:

• For database passwords in all the DM configuration files, it is recom-
mended to use the passwords encrypted by dmctl. If a database pass-
word is empty, it is unnecessary to encrypt it. See Encrypt the database
password using dmctl.

• The user of the upstream and downstream databases must have the
corresponding read and write privileges.

3.3.2 Step 2: Check the cluster information

After the DM cluster is deployed using TiUP, the configuration information is like what
is listed below.

• The configuration information of related components in the DM cluster:

Component Host Port
dm_worker1 172.16.10.72 8262
dm_worker2 172.16.10.73 8262
dm_master 172.16.10.71 8261

• The information of upstream and downstream database instances:

Database instance Host Port Username Encrypted password
Upstream MySQL-1 172.16.10.81 3306 root VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=
Upstream MySQL-2 172.16.10.82 3306 root VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=
Downstream TiDB 172.16.10.83 4000 root

The list of privileges needed on the MySQL host can be found in the precheck documen-
tation.

3.3.3 Step 3: Create data source

1. Write MySQL-1 related information to conf/source1.yaml:

125



# MySQL1 Configuration.

source-id: "mysql-replica-01"
# This indicates that whether DM-worker uses Global Transaction

↪→ Identifier (GTID) to pull binlog. Before you use this
↪→ configuration item, make sure that the GTID mode is enabled in
↪→ the upstream MySQL.

enable-gtid: false

from:
host: "172.16.10.81"
user: "root"
password: "VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU="
port: 3306

2. Execute the following command in the terminal, and use tiup dmctl to load the
MySQL-1 data source configuration to the DM cluster:
tiup dmctl --master-addr 172.16.10.71:8261 operate-source create conf/

↪→ source1.yaml

3. For MySQL-2, modify the relevant information in the configuration file and execute
the same dmctl command.

3.3.4 Step 4: Configure the data migration task

The following example assumes that you need to migrate all the test_table table data
in the test_db database of both the upstream MySQL-1 and MySQL-2 instances, to the
downstream test_table table in the test_db database of TiDB, in the full data plus incre-
mental data mode.

Edit the task.yaml task configuration file as below:
## The task name. You need to use a different name for each of the multiple

↪→ tasks that
## run simultaneously.
name: "test"
## The full data plus incremental data (all) migration mode.
task-mode: "all"
## The downstream TiDB configuration information.
target-database:
host: "172.16.10.83"
port: 4000
user: "root"
password: ""

126



## Configuration of all the upstream MySQL instances required by the current
↪→ data migration task.

mysql-instances:
-
# The ID of upstream instances or the migration group. You can refer to

↪→ the configuration of `source_id` in the "inventory.ini" file or in
↪→ the "dm-master.toml" file.

source-id: "mysql-replica-01"
# The configuration item name of the block and allow lists of the name of

↪→ the
# database/table to be migrated, used to quote the global block and allow
# lists configuration that is set in the global block-allow-list below.
block-allow-list: "global" # Use black-white-list if the DM version is

↪→ earlier than or equal to v2.0.0-beta.2.
# The configuration item name of the dump processing unit, used to quote

↪→ the global configuration of the dump unit.
mydumper-config-name: "global"

-
source-id: "mysql-replica-02"
block-allow-list: "global" # Use black-white-list if the DM version is

↪→ earlier than or equal to v2.0.0-beta.2.
mydumper-config-name: "global"

## The global configuration of block and allow lists. Each instance can
↪→ quote it by the

## configuration item name.
block-allow-list: # Use black-white-list if the DM version

↪→ is earlier than or equal to v2.0.0-beta.2.
global:
do-tables: # The allow list of upstream tables to be

↪→ migrated.
- db-name: "test_db" # The database name of the table to be

↪→ migrated.
tbl-name: "test_table" # The name of the table to be migrated.

## The global configuration of the dump unit. Each instance can quote it by
↪→ the configuration item name.

mydumpers:
global:
extra-args: ""

127



3.3.5 Step 5: Start the data migration task

To detect possible errors of data migration configuration in advance, DM provides the
precheck feature:

• DM automatically checks the corresponding privileges and configuration while starting
the data migration task.

• You can also use the check-task command to manually precheck whether the upstream
MySQL instance configuration satisfies the DM requirements.

For details about the precheck feature, see Precheck the upstream MySQL instance
configuration.

Note:
Before starting the data migration task for the first time, you should have
got the upstream configured. Otherwise, an error is reported while you start
the task.

Run the tiup dmctl command to start the data migration tasks. task.yaml is the
configuration file that is edited above.
tiup dmctl --master-addr 172.16.10.71:8261 start-task ./task.yaml

• If the above command returns the following result, it indicates the task is successfully
started.
{

"result": true,
"msg": "",
"workers": [

{
"result": true,
"worker": "172.16.10.72:8262",
"msg": ""

},
{

"result": true,
"worker": "172.16.10.73:8262",
"msg": ""

}
]

}

128



• If you fail to start the data migration task, modify the configuration according to the
returned prompt and then run the start-task task.yaml command to restart the
task.

3.3.6 Step 6: Check the data migration task

If you need to check the task state or whether a certain data migration task is running
in the DM cluster, run the following command in tiup dmctl:
tiup dmctl --master-addr 172.16.10.71:8261 query-status

3.3.7 Step 7: Stop the data migration task

If you do not need to migrate data any more, run the following command in tiup dmctl
to stop the task:
tiup dmctl --master-addr 172.16.10.71:8261 stop-task test

test is the task name that you set in the name configuration item of the task.yaml
configuration file.

3.3.8 Step 8: Monitor the task and check logs

Assuming that Prometheus, Alertmanager, and Grafana are successfully deployed along
with the DM cluster deployment using TiUP, and the Grafana address is 172.16.10.71. To
view the alert information related to DM, you can open http://172.16.10.71:9093 in a browser
and enter into Alertmanager; to check monitoring metrics, go to http://172.16.10.71:3000,
and choose the DM dashboard.

While the DM cluster is running, DM-master, DM-worker, and dmctl output the moni-
toring metrics information through logs. The log directory of each component is as follows:

• DM-master log directory: It is specified by the --log-file DM-master process param-
eter. If DM is deployed using TiUP, the log directory is {log_dir} in the DM-master
node.

• DM-worker log directory: It is specified by the --log-file DM-worker process param-
eter. If DM is deployed using TiUP, the log directory is {log_dir} in the DM-worker
node.

3.4 DM Cluster Performance Test

This document describes how to build a test scenario to do a performance test on the
DM cluster, including the speed test and latency test regarding data migration.

129

http://172.16.10.71:9093
http://172.16.10.71:3000


3.4.1 Migration data flow

You can use a simple migration data flow, that is, MySQL -> DM -> TiDB, to test the
data migration performance of the DM cluster.

3.4.2 Deploy test environment

• Deploy the TiDB test cluster using TiUP, with all default configurations.
• Deploy the MySQL service. Enable the ROW mode for binlog, and use default configu-

rations for other configuration items.
• Deploy a DM cluster, with a DM-worker and a DM-master.

3.4.3 Performance test

3.4.3.1 Table schema
Use tables with the following schema for the performance test:

CREATE TABLE `sbtest` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`k` int(11) NOT NULL DEFAULT '0',
`c` char(120) CHARSET utf8mb4 COLLATE utf8mb4_bin NOT NULL DEFAULT '',
`pad` char(60) CHARSET utf8mb4 COLLATE utf8mb4_bin NOT NULL DEFAULT '',
PRIMARY KEY (`id`),
KEY `k_1` (`k`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin

3.4.3.2 Full import benchmark case

3.4.3.2.1 Generate test data
Use sysbench to create test tables upstream and generate test data for full import.

Execute the following sysbench command to generate test data:
sysbench --test=oltp_insert --tables=4 --mysql-host=172.16.4.40 --mysql-

↪→ port=3306 --mysql-user=root --mysql-db=dm_benchmark --db-driver=mysql
↪→ --table-size=50000000 prepare

3.4.3.2.2 Create a data migration task

1. Create an upstream MySQL source and set source-id to source-1. For details, see
Load the Data Source Configurations.

2. Create a migration task (in fullmode). The following is a task configuration template:

130



“‘yaml
name: test-full
task-mode: full

# Configure the migration task using the TiDB information of your actual test environ-
ment. target-database: host: “192.168.0.1” port: 4000 user: “root” password: “”

mysql-instances: - source-id: “source-1” block-allow-list: “instance” mydumper-config-
name: “global” loader-thread: 16

# Configure the name of the database where sysbench generates data. block-allow-list:
instance: do-dbs: [“dm_benchmark”]

mydumpers: global: rows: 32000 threads: 32 “‘
For details about how to create a migration task, see Create a Data Migration Task.

Note:

• To enable concurrently exporting data from a single table using multi-
thread, you can use the rows option in the mydumpers configuration
item. This speeds up data export.

• To test the performance under different configurations, you can tune
loader-thread in the mysql-instances configuration, as well as rows
and threads in the mydumpers configuration item.

3.4.3.2.3 Get test results
Observe the DM-worker log. When you see all data files have been finished, it

means that full data has been imported. In this case, you can see the time consumed to
import data. The sample log is as follows:
[INFO] [loader.go:604] ["all data files have been finished"] [task=test] [

↪→ unit=load] ["cost time"=52.439796ms]

According to the size of the test data and the time consumed to import data, you can
calculate the migration speed of the full data.

3.4.3.3 Incremental replication benchmark case

3.4.3.3.1 Initialize tables
Use sysbench to create test tables in the upstream.

131



3.4.3.3.2 Create a data migration task

1. Create the source of the upstream MySQL. Set source-id to source-1 (if the source
has been created in the full import benchmark case, you do not need to create it again).
For details, see Load the Data Source Configurations.

2. Create a DM migration task (in all mode). The following is an example of the task
configuration file:

“‘yaml
name: test-all
task-mode: all

# Configure the migration task using the TiDB information of your actual test environ-
ment. target-database: host: “192.168.0.1” port: 4000 user: “root” password: “”

mysql-instances: - source-id: “source-1” block-allow-list: “instance” syncer-config-name:
“global”

# Configure the name of the database where sysbench generates data. block-allow-list:
instance: do-dbs: [“dm_benchmark”]

syncers: global: worker-count: 16 batch: 100 “‘
For details about how to create a data migration task, see Create a Data Migration Task.

Note:
To test the performance under different configurations, you can tune worker
↪→ -count and batch in the syncers configuration item.

3.4.3.3.3 Generate incremental data
To continuously generate incremental data in the upstream, run the sysbench command:

sysbench --test=oltp_insert --tables=4 --num-threads=32 --mysql-host
↪→ =172.17.4.40 --mysql-port=3306 --mysql-user=root --mysql-db=
↪→ dm_benchmark --db-driver=mysql --report-interval=10 --time=1800 run

Note:

132



You can test the data migration performance under different scenarios by
using different sysbench statements.

3.4.3.3.4 Get test results
To observe the migration status of DM, you can run the query-status command. To

observe the monitoring metrics of DM, you can use Grafana. Here the monitoring metrics
refer to finished sqls jobs (the number of jobs finished per unit time), etc. For more
information, see Binlog Migration Monitoring Metrics.

4 Maintain

4.1 Tools

4.1.1 Maintain a DM Cluster Using TiUP

This document introduces how to maintain a DM cluster using the TiUP DM component.
If you have not deployed a DM cluster yet, you can refer to Deploy a DM Cluster Using

TiUP for instructions.

Note:

• Make sure that the ports among the following components are intercon-
nected

– The peer_port (8291 by default) among the DM-master nodes are
interconnected.

– Each DM-master node can connect to the port of all DM-worker
nodes (8262 by default).

– Each DM-worker node can connect to the port of all DM-master
nodes (8261 by default).

– The TiUP nodes can connect to the port of all DM-master nodes
(8261 by default).

– The TiUP nodes can connect to the port of all DM-worker nodes
(8262 by default).

For the help information of the TiUP DM component, run the following command:
tiup dm --help

133



Deploy a DM cluster for production

Usage:
tiup dm [flags]
tiup dm [command]

Available Commands:
deploy Deploy a DM cluster for production
start Start a DM cluster
stop Stop a DM cluster
restart Restart a DM cluster
list List all clusters
destroy Destroy a specified DM cluster
audit Show audit log of cluster operation
exec Run shell command on host in the dm cluster
edit-config Edit DM cluster config
display Display information of a DM cluster
reload Reload a DM cluster's config and restart if needed
upgrade Upgrade a specified DM cluster
patch Replace the remote package with a specified package and restart

↪→ the service
scale-out Scale out a DM cluster
scale-in Scale in a DM cluster
import Import an exist DM 1.0 cluster from dm-ansible and re-deploy

↪→ 2.0 version
help Help about any command

Flags:
-h, --help help for tiup-dm

--native-ssh Use the native SSH client installed on local system
↪→ instead of the build-in one.

--ssh-timeout int Timeout in seconds to connect host via SSH, ignored
↪→ for operations that don't need an SSH connection. (default 5)

-v, --version version for tiup-dm
--wait-timeout int Timeout in seconds to wait for an operation to

↪→ complete, ignored for operations that don't fit. (default 60)
-y, --yes Skip all confirmations and assumes 'yes'

4.1.1.1 View the cluster list
After the cluster is successfully deployed, view the cluster list by running the following

command:
tiup dm list

134



Name User Version Path PrivateKey
---- ---- ------- ---- ----------
prod-cluster tidb v2.0.3 /root/.tiup/storage/dm/clusters/test /root/.tiup/

↪→ storage/dm/clusters/test/ssh/id_rsa

4.1.1.2 Start the cluster
After the cluster is successfully deployed, start the cluster by running the following

command:
tiup dm start prod-cluster

If you forget the name of your cluster, view the cluster list by running tiup dm list.

4.1.1.3 Check the cluster status
TiUP provides the tiup dm display command to view the status of each component

in the cluster. With this command, you do not have to log in to each machine to see the
component status. The usage of the command is as follows:
tiup dm display prod-cluster

dm Cluster: prod-cluster
dm Version: v2.0.3
ID Role Host Ports OS/Arch Status

↪→ Data Dir Deploy Dir
-- ---- ---- ----- ------- ------

↪→ -------- ----------
172.19.0.101:9093 alertmanager 172.19.0.101 9093/9094 linux/x86_64 Up /

↪→ home/tidb/data/alertmanager-9093 /home/tidb/deploy/alertmanager-9093
172.19.0.101:8261 dm-master 172.19.0.101 8261/8291 linux/x86_64 Healthy|L /

↪→ home/tidb/data/dm-master-8261 /home/tidb/deploy/dm-master-8261
172.19.0.102:8261 dm-master 172.19.0.102 8261/8291 linux/x86_64 Healthy /

↪→ home/tidb/data/dm-master-8261 /home/tidb/deploy/dm-master-8261
172.19.0.103:8261 dm-master 172.19.0.103 8261/8291 linux/x86_64 Healthy /

↪→ home/tidb/data/dm-master-8261 /home/tidb/deploy/dm-master-8261
172.19.0.101:8262 dm-worker 172.19.0.101 8262 linux/x86_64 Free /

↪→ home/tidb/data/dm-worker-8262 /home/tidb/deploy/dm-worker-8262
172.19.0.102:8262 dm-worker 172.19.0.102 8262 linux/x86_64 Free /

↪→ home/tidb/data/dm-worker-8262 /home/tidb/deploy/dm-worker-8262
172.19.0.103:8262 dm-worker 172.19.0.103 8262 linux/x86_64 Free /

↪→ home/tidb/data/dm-worker-8262 /home/tidb/deploy/dm-worker-8262
172.19.0.101:3000 grafana 172.19.0.101 3000 linux/x86_64 Up -

↪→ /home/tidb/deploy/grafana-3000

135



172.19.0.101:9090 prometheus 172.19.0.101 9090 linux/x86_64 Up /
↪→ home/tidb/data/prometheus-9090 /home/tidb/deploy/prometheus-9090

The Status column uses Up or Down to indicate whether the service is running normally.
For the DM-master component, |L might be appended to a status, which indicates that

the DM-master node is a Leader. For the DM-worker component, Free indicates that the
current DM-worker node is not bound to an upstream.

4.1.1.4 Scale in a cluster
Scaling in a cluster means making some node(s) offline. This operation removes the

specified node(s) from the cluster and deletes the remaining data files.
When you scale in a cluster, DM operations on DM-master and DM-worker components

are performed in the following order:

1. Stop component processes.
2. Call the API for DM-master to delete the member.
3. Clean up the data files related to the node.

The basic usage of the scale-in command:
tiup dm scale-in <cluster-name> -N <node-id>

To use this command, you need to specify at least two arguments: the cluster name and
the node ID. The node ID can be obtained by using the tiup dm display command in the
previous section.

For example, to scale in the DM-worker node on 172.16.5.140 (similar to scaling in
DM-master), run the following command:
tiup dm scale-in prod-cluster -N 172.16.5.140:8262

4.1.1.5 Scale out a cluster
The scale-out operation has an inner logic similar to that of deployment: the TiUP DM

component first ensures the SSH connection of the node, creates the required directories on
the target node, then executes the deployment operation, and starts the node service.

For example, to scale out a DM-worker node in the prod-cluster cluster, take the
following steps (scaling out DM-master has similar steps):

1. Create a scale.yaml file and add information of the new worker node:

136



Note:
You need to create a topology file, which includes only the description of
the new nodes, not the existing nodes. For more configuration items (such
as the deployment directory), refer to this TiUP configuration parameter
example.

---

worker_servers:
- host: 172.16.5.140

2. Perform the scale-out operation. TiUP DM adds the corresponding nodes to the cluster
according to the port, directory, and other information described in scale.yaml.
tiup dm scale-out prod-cluster scale.yaml

After the command is executed, you can check the status of the scaled-out cluster by
running tiup dm display prod-cluster.

4.1.1.6 Rolling upgrade

Note:
Since v2.0.5, dmctl support Export and Import Data Sources and Task Con-
figuration of Clusters。
Before upgrading, you can use config export to export the configuration
files of clusters. After upgrading, if you need to downgrade to an earlier
version, you can first redeploy the earlier cluster and then use config import
to import the previous configuration files.
For clusters earlier than v2.0.5, you can use dmctl v2.0.5 or later to export
and import the data source and task configuration files.
For clusters later than v2.0.2, currently, it is not supported to automatically
import the configuration related to relay worker. You can use start-relay
command to manually start relay log.

The rolling upgrade process is made as transparent as possible to the application, and
does not affect the business. The operations vary with different nodes.

137

https://github.com/pingcap/tiup/blob/master/embed/examples/dm/topology.example.yaml
https://github.com/pingcap/tiup/blob/master/embed/examples/dm/topology.example.yaml


4.1.1.6.1 Upgrade command
You can run the tiup dm upgrade command to upgrade a DM cluster. For example,

the following command upgrades the cluster to v2.0.1:
tiup dm upgrade prod-cluster v2.0.1

4.1.1.7 Update configuration
If you want to dynamically update the component configurations, the TiUP DM compo-

nent saves a current configuration for each cluster. To edit this configuration, execute the
tiup dm edit-config <cluster-name> command. For example:
tiup dm edit-config prod-cluster

TiUP DM opens the configuration file in the vi editor. If you want to use other editors,
use the EDITOR environment variable to customize the editor, such as export EDITOR=nano
↪→ . After editing the file, save the changes. To apply the new configuration to the cluster,
execute the following command:
tiup dm reload prod-cluster

The command sends the configuration to the target machine and restarts the cluster to
make the configuration take effect.

4.1.1.8 Update component
For normal upgrade, you can use the upgrade command. But in some scenarios, such as

debugging, you might need to replace the currently running component with a temporary
package. To achieve this, use the patch command:
tiup dm patch --help

Replace the remote package with a specified package and restart the service

Usage:
tiup dm patch <cluster-name> <package-path> [flags]

Flags:
-h, --help help for patch
-N, --node strings Specify the nodes

--overwrite Use this package in the future scale-out
↪→ operations

-R, --role strings Specify the role
--transfer-timeout int Timeout in seconds when transferring dm-master

↪→ leaders (default 300)

138



Global Flags:
--native-ssh Use the native SSH client installed on local system

↪→ instead of the build-in one.
--ssh-timeout int Timeout in seconds to connect host via SSH, ignored

↪→ for operations that don't need an SSH connection. (default 5)
--wait-timeout int Timeout in seconds to wait for an operation to

↪→ complete, ignored for operations that don't fit. (default 60)
-y, --yes Skip all confirmations and assumes 'yes'

If a DM-master hotfix package is in /tmp/dm-master-hotfix.tar.gz and you want to
replace all the DM-master packages in the cluster, run the following command:
tiup dm patch prod-cluster /tmp/dm-master-hotfix.tar.gz -R dm-master

You can also replace only one DM-master package in the cluster:
tiup dm patch prod-cluster /tmp/dm--hotfix.tar.gz -N 172.16.4.5:8261

4.1.1.9 Import and upgrade a DM 1.0 cluster deployed using DM-Ansible

Note:

• TiUP does not support importing the DM Portal component in a DM
1.0 cluster.

• You need to stop the original cluster before importing.
• Don’t run stop-task for tasks that need to be upgraded to 2.0.
• TiUP only supports importing to a DM cluster of v2.0.0-rc.2 or a later

version.
• The import command is used to import data from a DM 1.0 cluster

to a new DM 2.0 cluster. If you need to import DM migration tasks
to an existing DM 2.0 cluster, refer to Manually Upgrade TiDB Data
Migration from v1.0.x to v2.0+.

• The deployment directories of some components are different from those
of the original cluster. You can execute the display command to view
the details.

• Run tiup update --self && tiup update dm before importing to
make sure that the TiUP DM component is the latest version.

• Only one DM-master node exists in the cluster after importing. Refer
to Scale out a cluster to scale out the DM-master.

Before TiUP is released, DM-Ansible is often used to deploy DM clusters. To enable
TiUP to take over the DM 1.0 cluster deployed by DM-Ansible, use the import command.

139



For example, to import a cluster deployed using DM Ansible:
tiup dm import --dir=/path/to/dm-ansible --cluster-version v2.0.3

Execute tiup list dm-master to view the latest cluster version supported by TiUP.
The process of using the import command is as follows:

1. TiUP generates a topology file topology.yml based on the DM cluster previously
deployed using DM-Ansible.

2. After confirming that the topology file has been generated, you can use it to deploy
the DM cluster of v2.0 or later versions.

After the deployment is completed, you can execute the tiup dm start command to
start the cluster and begin the process of upgrading the DM kernel.

4.1.1.10 View the operation log
To view the operation log, use the audit command. The usage of the audit command

is as follows:
Usage:
tiup dm audit [audit-id] [flags]

Flags:
-h, --help help for audit

If the [audit-id] argument is not specified, the command shows a list of commands
that have been executed. For example:
tiup dm audit

ID Time Command
-- ---- -------
4D5kQY 2020-08-13T05:38:19Z tiup dm display test
4D5kNv 2020-08-13T05:36:13Z tiup dm list
4D5kNr 2020-08-13T05:36:10Z tiup dm deploy -p prod-cluster v2.0.3 ./examples

↪→ /dm/minimal.yaml

The first column is audit-id. To view the execution log of a certain command, pass the
audit-id argument as follows:
tiup dm audit 4D5kQY

140

https://github.com/pingcap/tiup/blob/master/embed/examples/dm/topology.example.yaml


4.1.1.11 Run commands on a host in the DM cluster
To run commands on a host in the DM cluster, use the exec command. The usage of

the exec command is as follows:
Usage:
tiup dm exec <cluster-name> [flags]

Flags:
--command string the command run on cluster host (default "ls")

-h, --help help for exec
-N, --node strings Only exec on host with specified nodes
-R, --role strings Only exec on host with specified roles

--sudo use root permissions (default false)

For example, to execute ls /tmp on all DM nodes, run the following command:
tiup dm exec prod-cluster --command='ls /tmp'

4.1.1.12 dmctl
TiUP integrates the DM cluster controller dmctl.
Run the following command to use dmctl:

tiup dmctl [args]

Specify the version of dmctl:
tiup dmctl:v2.0.3 [args]

The previous dmctl command to add a source is dmctl --master-addr master1:8261
↪→ operate-source create /tmp/source1.yml. After dmctl is integrated into TiUP, the
command is:
tiup dmctl --master-addr master1:8261 operate-source create /tmp/source1.

↪→ yml

4.1.1.13 Use the system’s native SSH client to connect to cluster
All operations above performed on the cluster machine use the SSH client embedded in

TiUP to connect to the cluster and execute commands. However, in some scenarios, you
might also need to use the SSH client native to the control machine system to perform such
cluster operations. For example:

• To use a SSH plug-in for authentication
• To use a customized SSH client

141



Then you can use the --native-ssh command-line flag to enable the system-native
command-line tool:

• Deploy a cluster: tiup dm deploy <cluster-name> <version> <topo> --native-
↪→ ssh

• Start a cluster: tiup dm start <cluster-name> --native-ssh
• Upgrade a cluster: tiup dm upgrade ... --native-ssh

You can add --native-ssh in all cluster operation commands above to use the system’s
native SSH client.

To avoid adding such a flag in every command, you can use the TIUP_NATIVE_SSH system
variable to specify whether to use the local SSH client:
export TIUP_NATIVE_SSH=true
### or
export TIUP_NATIVE_SSH=1
### or
export TIUP_NATIVE_SSH=enable

If you specify this environment variable and --native-ssh at the same time, --native
↪→ -ssh has higher priority.

Note:
During the process of cluster deployment, if you need to use a password for
connection or passphrase is configured in the key file, you must ensure that
sshpass is installed on the control machine; otherwise, a timeout error is
reported.

4.1.2 Maintain DM Clusters Using dmctl

Note:
For DM clusters deployed using TiUP, you are recommended to directly use
tiup dmctl to maintain the clusters.

dmctl is a command line tool used to maintain DM clusters. It supports both the
interactive mode and the command mode.

142



4.1.2.1 Interactive mode
Enter the interactive mode to interact with DM-master:

Note:
The interactive mode does not support Bash features. For example, you need
to directly pass string flags instead of passing them in quotes.

./dmctl --master-addr 172.16.30.14:8261

Welcome to dmctl
Release Version: v2.0.3
Git Commit Hash: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Git Branch: release-2.0
UTC Build Time: yyyy-mm-dd hh:mm:ss
Go Version: go version go1.13 linux/amd64

» help
DM control

Usage:
dmctl [command]

Available Commands:
check-task Checks the configuration file of the task.
config Commands to import/export config.
get-config Gets the configuration.
handle-error `skip`/`replace`/`revert` the current error event or a

↪→ specific binlog position (binlog-pos) event.
help Gets help about any command.
list-member Lists member information.
offline-member Offlines member which has been closed.
operate-leader `evict`/`cancel-evict` the leader.
operate-schema `get`/`set`/`remove` the schema for an upstream table.
operate-source `create`/`stop`/`show` upstream MySQL/MariaDB source.
pause-relay Pauses DM-worker's relay unit.
pause-task Pauses a specified running task.
purge-relay Purges relay log files of the DM-worker according to the

↪→ specified filename.
query-status Queries task status.
resume-relay Resumes DM-worker's relay unit.
resume-task Resumes a specified paused task.

143



show-ddl-locks Shows un-resolved DDL locks.
start-task Starts a task as defined in the configuration file.
stop-task Stops a specified task.
unlock-ddl-lock Unlocks DDL lock forcefully.

Flags:
-h, --help Help for dmctl.
-s, --source strings MySQL Source ID.

Use "dmctl [command] --help" for more information about a command.

4.1.2.2 Command mode
The command mode differs from the interactive mode in that you need to append the

task operation right after the dmctl command. The parameters of the task operation in the
command mode are the same as those in the interactive mode.

Note:

• A dmctl command must be followed by only one task operation.
• Starting from v2.0.4, DM supports reading the -master-addr parameter

from the environment variable DM_MASTER_ADDR.

./dmctl --master-addr 172.16.30.14:8261 start-task task.yaml

./dmctl --master-addr 172.16.30.14:8261 stop-task task

./dmctl --master-addr 172.16.30.14:8261 query-status

export DM_MASTER_ADDR="172.16.30.14:8261"
./dmctl query-status

Available Commands:
check-task check-task <config-file> [--error count] [--warn count]
config commands to import/export config
get-config get-config <task | master | worker | source> <name> [--

↪→ file filename]
handle-error handle-error <task-name | task-file> [-s source ...] [-

↪→ b binlog-pos] <skip/replace/revert> [replace-sql1;replace-sql2;]
list-member list-member [--leader] [--master] [--worker] [--name

↪→ master-name/worker-name ...]
offline-member offline-member <--master/--worker> <--name master-name/

↪→ worker-name>

144



operate-leader operate-leader <operate-type>
operate-schema operate-schema <operate-type> <-s source ...> <task-

↪→ name | task-file> <-d database> <-t table> [schema-file]
operate-source operate-source <operate-type> [config-file ...] [--

↪→ print-sample-config]
pause-relay pause-relay <-s source ...>
pause-task pause-task [-s source ...] <task-name | task-file>
purge-relay purge-relay <-s source> <-f filename> [--sub-dir

↪→ directory]
query-status query-status [-s source ...] [task-name | task-file]

↪→ [--more]
resume-relay resume-relay <-s source ...>
resume-task resume-task [-s source ...] <task-name | task-file>
show-ddl-locks show-ddl-locks [-s source ...] [task-name | task-file]
start-task start-task [-s source ...] [--remove-meta] <config-file

↪→ >
stop-task stop-task [-s source ...] <task-name | task-file>
unlock-ddl-lock unlock-ddl-lock <lock-ID>

Special Commands:
--encrypt Encrypts plaintext to ciphertext.
--decrypt Decrypts ciphertext to plaintext.

Global Options:
--V Prints version and exit.
--config Path to configuration file.
--master-addr Master API server addr.
--rpc-timeout RPC timeout, default is 10m.
--ssl-ca Path of file that contains list of trusted SSL CAs for connection

↪→ .
--ssl-cert Path of file that contains X509 certificate in PEM format for

↪→ connection.
--ssl-key Path of file that contains X509 key in PEM format for connection

↪→ .

4.1.3 Maintain DM Clusters Using OpenAPI

Warning:
DM OpenAPI is still an experimental feature and disabled by default. It is
not recommended to use it in a production environment.

145



DM provides the OpenAPI feature for querying and operating the DM cluster, which is
similar to the feature of dmctl tools. If you need to enable this feature, add the following
configuration in the DM-master configuration file:
[experimental]
openapi = true

Note:

• DM provides the specification document that meets the OpenAPI 3.0.0
standard. This document contains all the request parameters and re-
turned values. You can copy the document yaml and preview it in Swag-
ger Editor.

• After you deploy the DM-master nodes, you can access http://{master
↪→ -addr}/api/v1/docs to preview the documentation online.

You can use the APIs to perform the following maintenance operations on the DM
cluster:

4.1.3.1 APIs for managing clusters

• Get the information of a DM-master node
• Stop a DM-master node
• Get the information of a DM-worker node
• Stop a DM-worker node

4.1.3.2 APIs for managing data sources

• Create a data source
• Get the data source list
• Delete the data source
• Get the information of a data source
• Start the relay-log feature for data sources
• Stop the relay-log feature for data sources
• Pause the relay-log feature for data sources
• Resume the relay-log feature for data sources
• Change the bindings between the data source and DM-workers
• Get the list of schema names of a data source
• Get the list of table names of a specified schema in a data source

146

https://github.com/pingcap/tiflow/blob/master/dm/openapi/spec/dm.yaml
https://editor.swagger.io/
https://editor.swagger.io/


4.1.3.3 APIs for managing replication tasks

• Create a replication task
• Get the replication task list
• Stop a replication task
• Get the information of a replication task
• Pause a replication task
• Resume a replication task
• Get the list of schema names of the data source that is associated with a replication

task
• Get the list of table names of a specified schema in the data source that is associated

with a replication task
• Get the CREATE statement for schemas of the data source that is associated with a

replication task
• Update the CREATE statement for schemas of the data source that is associated with

a replication task
• Delete a schema of the data source that is associated with a replication task

The following sections describe the specific usage of the APIs.

4.1.3.4 API error message template
After sending an API request, if an error occurs, the returned error message is in the

following format:
{

"error_msg": "",
"error_code": ""

}

From the above JSON output, error_msg describes the error message and error_code
is the corresponding error code.

4.1.3.5 Get the information of a DM-master node
This API is a synchronous interface. If the request is successful, the information of the

corresponding node is returned.

4.1.3.5.1 Request URI
GET /api/v1/cluster/masters

147



4.1.3.5.2 Example
curl -X 'GET' \
'http://127.0.0.1:8261/api/v1/cluster/masters' \
-H 'accept: application/json'

{
"total": 1,
"data": [
{
"name": "master1",
"alive": true,
"leader": true,
"addr": "127.0.0.1:8261"

}
]

}

4.1.3.6 Stop a DM-master node
This API is a synchronous interface. If the request is successful, the status code of the

returned body is 204.

4.1.3.6.1 Request URI
DELETE /api/v1/cluster/masters/{master-name}

4.1.3.6.2 Example
curl -X 'DELETE' \
'http://127.0.0.1:8261/api/v1/cluster/masters/master1' \
-H 'accept: */*'

4.1.3.7 Get the information of a DM-worker node
This API is a synchronous interface. If the request is successful, the information of the

corresponding node is returned.

4.1.3.7.1 Request URI
GET /api/v1/cluster/workers

148



4.1.3.7.2 Example
curl -X 'GET' \
'http://127.0.0.1:8261/api/v1/cluster/workers' \
-H 'accept: application/json'

{
"total": 1,
"data": [
{
"name": "worker1",
"addr": "127.0.0.1:8261",
"bound_stage": "bound",
"bound_source_name": "mysql-01"

}
]

}

4.1.3.8 Stop a DM-worker node
This API is a synchronous interface. If the request is successful, the status code of the

returned body is 204.

4.1.3.8.1 Request URI
DELETE /api/v1/cluster/workers/{worker-name}

4.1.3.8.2 Example
curl -X 'DELETE' \
'http://127.0.0.1:8261/api/v1/cluster/workers/worker1' \
-H 'accept: */*'

4.1.3.9 Create a data source
This API is a synchronous interface. If the request is successful, the information of the

corresponding data source is returned.

4.1.3.9.1 Request URI
POST /api/v1/sources

149



4.1.3.9.2 Example
curl -X 'POST' \
'http://127.0.0.1:8261/api/v1/sources' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"source_name": "mysql-01",
"host": "127.0.0.1",
"port": 3306,
"user": "root",
"password": "123456",
"enable_gtid": false,
"security": {
"ssl_ca_content": "",
"ssl_cert_content": "",
"ssl_key_content": "",
"cert_allowed_cn": [
"string"

]
},
"purge": {
"interval": 3600,
"expires": 0,
"remain_space": 15

}
}'

{
"source_name": "mysql-01",
"host": "127.0.0.1",
"port": 3306,
"user": "root",
"password": "123456",
"enable_gtid": false,
"security": {
"ssl_ca_content": "",
"ssl_cert_content": "",
"ssl_key_content": "",
"cert_allowed_cn": [
"string"

]
},
"purge": {
"interval": 3600,

150



"expires": 0,
"remain_space": 15

},
"status_list": [
{
"source_name": "mysql-replica-01",
"worker_name": "worker-1",
"relay_status": {
"master_binlog": "(mysql-bin.000001, 1979)",
"master_binlog_gtid": "e9a1fc22-ec08-11e9-b2ac-0242ac110003:1-7849",
"relay_dir": "./sub_dir",
"relay_binlog_gtid": "e9a1fc22-ec08-11e9-b2ac-0242ac110003:1-7849",
"relay_catch_up_master": true,
"stage": "Running"

},
"error_msg": "string"

}
]

}

4.1.3.10 Get the data source list
This API is a synchronous interface. If the request is successful, the data source list is

returned.

4.1.3.10.1 Request URI
GET /api/v1/sources

4.1.3.10.2 Example
curl -X 'GET' \
'http://127.0.0.1:8261/api/v1/sources?with_status=true' \
-H 'accept: application/json'

{
"data": [
{
"enable_gtid": false,
"host": "127.0.0.1",
"password": "******",
"port": 3306,
"purge": {
"expires": 0,
"interval": 3600,

151



"remain_space": 15
},
"security": null,
"source_name": "mysql-01",
"user": "root"

},
{
"enable_gtid": false,
"host": "127.0.0.1",
"password": "******",
"port": 3307,
"purge": {
"expires": 0,
"interval": 3600,
"remain_space": 15

},
"security": null,
"source_name": "mysql-02",
"user": "root"

}
],
"total": 2

}

4.1.3.11 Delete the data source
This API is a synchronous interface. If the request is successful, the status code of the

returned body is 204.

4.1.3.11.1 Request URI
DELETE /api/v1/sources/{source-name}

4.1.3.11.2 Example
curl -X 'DELETE' \
'http://127.0.0.1:8261/api/v1/sources/mysql-01?force=true' \
-H 'accept: application/json'

4.1.3.12 Get the information of a data source
This API is a synchronous interface. If the request is successful, the information of the

corresponding node is returned.

152



4.1.3.12.1 Request URI
GET /api/v1/sources/{source-name}/status

4.1.3.12.2 Example
curl -X 'GET' \
'http://127.0.0.1:8261/api/v1/sources/mysql-replica-01/status' \
-H 'accept: application/json'

{
"total": 1,
"data": [
{
"source_name": "mysql-replica-01",
"worker_name": "worker-1",
"relay_status": {
"master_binlog": "(mysql-bin.000001, 1979)",
"master_binlog_gtid": "e9a1fc22-ec08-11e9-b2ac-0242ac110003:1-7849",
"relay_dir": "./sub_dir",
"relay_binlog_gtid": "e9a1fc22-ec08-11e9-b2ac-0242ac110003:1-7849",
"relay_catch_up_master": true,
"stage": "Running"

},
"error_msg": "string"

}
]

}

4.1.3.13 Start the relay-log feature for data sources
This API is an asynchronous interface. If the request is successful, the status code of

the returned body is 200. To learn about its latest status, You can get the information of a
data source.

4.1.3.13.1 Request URI
PATCH /api/v1/sources/{source-name}/start-relay

4.1.3.13.2 Example
curl -X 'PATCH' \
'http://127.0.0.1:8261/api/v1/sources/mysql-01/start-relay' \
-H 'accept: */*' \
-H 'Content-Type: application/json' \

153



-d '{
"worker_name_list": [
"worker-1"

],
"relay_binlog_name": "mysql-bin.000002",
"relay_binlog_gtid": "e9a1fc22-ec08-11e9-b2ac-0242ac110003:1-7849",
"relay_dir": "./relay_log"

}'

4.1.3.14 Stop the relay-log feature for data sources
This API is an asynchronous interface. If the request is successful, the status code of

the returned body is 200. To learn about its latest status, You can get the information of a
data source.

4.1.3.14.1 Request URI
PATCH /api/v1/sources/{source-name}/stop-relay

4.1.3.14.2 Example
curl -X 'PATCH' \
'http://127.0.0.1:8261/api/v1/sources/mysql-01/stop-relay' \
-H 'accept: */*' \
-H 'Content-Type: application/json' \
-d '{
"worker_name_list": [
"worker-1"

]
}'

4.1.3.15 Pause the relay-log feature for data sources
This API is an asynchronous interface. If the request is successful, the status code of

the returned body is 200. To learn about its latest status, You can get the information of a
data source.

4.1.3.15.1 Request URI
PATCH /api/v1/sources/{source-name}/pause-relay

4.1.3.15.2 Example

154



curl -X 'PATCH' \
'http://127.0.0.1:8261/api/v1/sources/mysql-01/pause-relay' \
-H 'accept: */*'

4.1.3.16 Resume the relay-log feature for data sources
This API is an asynchronous interface. If the request is successful, the status code of

the returned body is 200. To learn about its latest status, You can get the information of a
data source.

4.1.3.16.1 Request URI
PATCH /api/v1/sources/{source-name}/resume-relay

4.1.3.16.2 Example
curl -X 'PATCH' \
'http://127.0.0.1:8261/api/v1/sources/mysql-01/resume-relay' \
-H 'accept: */*'

4.1.3.17 Change the bindings between the data source and DM-workers
This API is an asynchronous interface. If the request is successful, the status code of

the returned body is 200. To learn about its latest status, You can get the information of a
DM-worker node.

4.1.3.17.1 Request URI
PATCH /api/v1/sources/{source-name}/transfer

4.1.3.17.2 Example
curl -X 'PATCH' \
'http://127.0.0.1:8261/api/v1/sources/mysql-01/transfer' \
-H 'accept: */*' \
-H 'Content-Type: application/json' \
-d '{
"worker_name": "worker-1"

}'

4.1.3.18 Get the list of schema names of a data source
This API is a synchronous interface. If the request is successful, the corresponding list

is returned.

155



4.1.3.18.1 Request URI
GET /api/v1/sources/{source-name}/schemas

4.1.3.18.2 Example
curl -X 'GET' \
'http://127.0.0.1:8261/api/v1/sources/source-1/schemas' \
-H 'accept: application/json'

[
"db1"

]

4.1.3.19 Get the list of table names of a specified schema in a data source
This API is a synchronous interface. If the request is successful, the corresponding list

is returned.

4.1.3.19.1 Request URI
GET /api/v1/sources/{source-name}/schemas/{schema-name}

4.1.3.19.2 Example
curl -X 'GET' \
'http://127.0.0.1:8261/api/v1/sources/source-1/schemas/db1' \
-H 'accept: application/json'

[
"table1"

]

4.1.3.20 Create a replication task
This API is an asynchronous interface. If the request is successful, the status code of

the returned body is 200. To learn about its latest status, You can get the information of a
replication task.

4.1.3.20.1 Request URI
POST /api/v1/tasks

156



4.1.3.20.2 Example
curl -X 'POST' \
'http://127.0.0.1:8261/api/v1/tasks' \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{
"remove_meta": false,
"task": {
"name": "task-1",
"task_mode": "all",
"shard_mode": "pessimistic",
"meta_schema": "dm-meta",
"enhance_online_schema_change": true,
"on_duplicate": "overwrite",
"target_config": {
"host": "127.0.0.1",
"port": 3306,
"user": "root",
"password": "123456",
"security": {
"ssl_ca_content": "",
"ssl_cert_content": "",
"ssl_key_content": "",
"cert_allowed_cn": [
"string"

]
}

},
"binlog_filter_rule": {
"rule-1": {
"ignore_event": [
"all dml"

],
"ignore_sql": [
"^Drop"

]
},
"rule-2": {
"ignore_event": [
"all dml"

],
"ignore_sql": [
"^Drop"

]

157



},
"rule-3": {
"ignore_event": [
"all dml"

],
"ignore_sql": [
"^Drop"

]
}

},
"table_migrate_rule": [
{
"source": {
"source_name": "source-name",
"schema": "db-*",
"table": "tb-*"

},
"target": {
"schema": "db1",
"table": "tb1"

},
"binlog_filter_rule": [
"rule-1",
"rule-2",
"rule-3",

]
}

],
"source_config": {
"full_migrate_conf": {
"export_threads": 4,
"import_threads": 16,
"data_dir": "./exported_data",
"consistency": "auto"

},
"incr_migrate_conf": {
"repl_threads": 16,
"repl_batch": 100

},
"source_conf": [
{
"source_name": "mysql-replica-01",
"binlog_name": "binlog.000001",
"binlog_pos": 4,
"binlog_gtid": "03fc0263-28c7-11e7-a653-6c0b84d59f30

158



↪→ :1-7041423,05474d3c-28c7-11e7-8352-203db246dd3d:1-170"
}

]
}

},
"source_name_list": [
"source-1"

]
}'

{
"name": "task-1",
"task_mode": "all",
"shard_mode": "pessimistic",
"meta_schema": "dm-meta",
"enhance_online_schema_change": true,
"on_duplicate": "overwrite",
"target_config": {
"host": "127.0.0.1",
"port": 3306,
"user": "root",
"password": "123456",
"security": {
"ssl_ca_content": "",
"ssl_cert_content": "",
"ssl_key_content": "",
"cert_allowed_cn": [
"string"

]
}

},
"binlog_filter_rule": {
"rule-1": {
"ignore_event": [
"all dml"

],
"ignore_sql": [
"^Drop"

]
},
"rule-2": {
"ignore_event": [
"all dml"

],
"ignore_sql": [

159



"^Drop"
]

},
"rule-3": {
"ignore_event": [
"all dml"

],
"ignore_sql": [
"^Drop"

]
}

},
"table_migrate_rule": [
{
"source": {
"source_name": "source-name",
"schema": "db-*",
"table": "tb-*"

},
"target": {
"schema": "db1",
"table": "tb1"

},
"binlog_filter_rule": [
"rule-1",
"rule-2",
"rule-3",

]
}

],
"source_config": {
"full_migrate_conf": {
"export_threads": 4,
"import_threads": 16,
"data_dir": "./exported_data",
"consistency": "auto"

},
"incr_migrate_conf": {
"repl_threads": 16,
"repl_batch": 100

},
"source_conf": [
{
"source_name": "mysql-replica-01",
"binlog_name": "binlog.000001",

160



"binlog_pos": 4,
"binlog_gtid": "03fc0263-28c7-11e7-a653-6c0b84d59f30:1-7041423,05474

↪→ d3c-28c7-11e7-8352-203db246dd3d:1-170"
}

]
}

}

4.1.3.21 Get the replication task list
This API is a synchronous interface. If the request is successful, the information of the

corresponding replication task is returned.

4.1.3.21.1 Request URI
GET /api/v1/tasks

4.1.3.21.2 Example
curl -X 'GET' \
'http://127.0.0.1:8261/api/v1/tasks' \
-H 'accept: application/json'

{
"total": 2,
"data": [
{
"name": "task-1",
"task_mode": "all",
"shard_mode": "pessimistic",
"meta_schema": "dm-meta",
"enhance_online_schema_change": true,
"on_duplicate": "overwrite",
"target_config": {
"host": "127.0.0.1",
"port": 3306,
"user": "root",
"password": "123456",
"security": {
"ssl_ca_content": "",
"ssl_cert_content": "",
"ssl_key_content": "",
"cert_allowed_cn": [
"string"

]

161



}
},
"binlog_filter_rule": {
"rule-1": {
"ignore_event": [
"all dml"

],
"ignore_sql": [
"^Drop"

]
},
"rule-2": {
"ignore_event": [
"all dml"

],
"ignore_sql": [
"^Drop"

]
},
"rule-3": {
"ignore_event": [
"all dml"

],
"ignore_sql": [
"^Drop"

]
}

},
"table_migrate_rule": [
{
"source": {
"source_name": "source-name",
"schema": "db-*",
"table": "tb-*"

},
"target": {
"schema": "db1",
"table": "tb1"

},
"binlog_filter_rule": [
"rule-1",
"rule-2",
"rule-3",

]
}

162



],
"source_config": {
"full_migrate_conf": {
"export_threads": 4,
"import_threads": 16,
"data_dir": "./exported_data",
"consistency": "auto"

},
"incr_migrate_conf": {
"repl_threads": 16,
"repl_batch": 100

},
"source_conf": [
{
"source_name": "mysql-replica-01",
"binlog_name": "binlog.000001",
"binlog_pos": 4,
"binlog_gtid": "03fc0263-28c7-11e7-a653-6c0b84d59f30

↪→ :1-7041423,05474d3c-28c7-11e7-8352-203db246dd3d:1-170"
}

]
}

}
]

}

4.1.3.22 Stop a replication task
This API is an asynchronous interface. If the request is successful, the status code of

the returned body is 204. To learn about its latest status, You can get the information of a
replication task.

4.1.3.22.1 Request URI
DELETE /api/v1/tasks/{task-name}

4.1.3.22.2 Example
curl -X 'DELETE' \
'http://127.0.0.1:8261/api/v1/tasks/task-1' \
-H 'accept: */*'

4.1.3.23 Get the information of a replication task

163



This API is a synchronous interface. If the request is successful, the information of the
corresponding node is returned.

4.1.3.23.1 Request URI
GET /api/v1/tasks/task-1/status

4.1.3.23.2 Example
curl -X 'GET' \
'http://127.0.0.1:8261/api/v1/tasks/task-1/status?stage=running' \
-H 'accept: application/json'

{
"total": 1,
"data": [
{
"name": "string",
"source_name": "string",
"worker_name": "string",
"stage": "runing",
"unit": "sync",
"unresolved_ddl_lock_id": "string",
"load_status": {
"finished_bytes": 0,
"total_bytes": 0,
"progress": "string",
"meta_binlog": "string",
"meta_binlog_gtid": "string"

},
"sync_status": {
"total_events": 0,
"total_tps": 0,
"recent_tps": 0,
"master_binlog": "string",
"master_binlog_gtid": "string",
"syncer_binlog": "string",
"syncer_binlog_gtid": "string",
"blocking_ddls": [
"string"

],
"unresolved_groups": [
{
"target": "string",
"ddl_list": [

164



"string"
],
"first_location": "string",
"synced": [
"string"

],
"unsynced": [
"string"

]
}

],
"synced": true,
"binlog_type": "string",
"seconds_behind_master": 0

}
}

]
}

4.1.3.24 Pause a replication task
This API is an asynchronous interface. If the request is successful, the status code of

the returned body is 200. To learn about its latest status, You can get the information of a
replication task.

4.1.3.24.1 Request URI
PATCH /api/v1/tasks/task-1/pause

4.1.3.24.2 Example
curl -X 'PATCH' \
'http://127.0.0.1:8261/api/v1/tasks/task-1/pause' \
-H 'accept: */*' \
-H 'Content-Type: application/json' \
-d '[
"source-1"

]'

4.1.3.25 Resume a replication task
This API is an asynchronous interface. If the request is successful, the status code of

the returned body is 200. To learn about its latest status, You can get the information of a
replication task.

165



4.1.3.25.1 Request URI
PATCH /api/v1/tasks/task-1/resume

4.1.3.25.2 Example
curl -X 'PATCH' \
'http://127.0.0.1:8261/api/v1/tasks/task-1/resume' \
-H 'accept: */*' \
-H 'Content-Type: application/json' \
-d '[
"source-1"

]'

4.1.3.26 Get the list of schema names of the data source that is associated with
a replication task

This API is a synchronous interface. If the request is successful, the corresponding list
is returned.

4.1.3.26.1 Request URI
GET /api/v1/tasks/{task-name}/sources/{source-name}/schemas

4.1.3.26.2 Example
curl -X 'GET' \
'http://127.0.0.1:8261/api/v1/tasks/task-1/sources/source-1/schemas' \
-H 'accept: application/json'

[
"db1"

]

4.1.3.27 Get the list of table names of a specified schema in the data source
that is associated with a replication task

This API is a synchronous interface. If the request is successful, the corresponding list
is returned.

4.1.3.27.1 Request URI
GET /api/v1/tasks/{task-name}/sources/{source-name}/schemas/{schema-name

↪→ }

166



4.1.3.27.2 Example
curl -X 'GET' \
'http://127.0.0.1:8261/api/v1/tasks/task-1/sources/source-1/schemas/db1' \
-H 'accept: application/json'

[
"table1"

]

4.1.3.28 Get the CREATE statement for schemas of the data source that is
associated with a replication task

This API is a synchronous interface. If the request is successful, the corresponding
CREATE statement is returned.

4.1.3.28.1 Request URI
GET /api/v1/tasks/{task-name}/sources/{source-name}/schemas/{schema-name

↪→ }/{table-name}

4.1.3.28.2 Example
curl -X 'GET' \
'http://127.0.0.1:8261/api/v1/tasks/task-1/sources/source-1/schemas/db1/

↪→ table1' \
-H 'accept: application/json'

{
"schema_name": "db1",
"table_name": "table1",
"schema_create_sql": "CREATE TABLE `t1` (`id` int(11) NOT NULL

↪→ AUTO_INCREMENT,PRIMARY KEY (`id`) /*T![clustered_index] CLUSTERED
↪→ */) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_bin"

}

4.1.3.29 Update the CREATE statement for schemas of the data source that is
associated with a replication task

This API is a synchronous interface. If the request is successful, the status code of the
returned body is 200.

4.1.3.29.1 Request URI
PATCH /api/v1/tasks/{task-name}/sources/{source-name}/schemas/{schema-

↪→ name}/{table-name}

167



4.1.3.29.2 Example
curl -X 'PUT' \
'http://127.0.0.1:8261/api/v1/tasks/task-1/sources/task-1/schemas/db1/

↪→ table1' \
-H 'accept: */*' \
-H 'Content-Type: application/json' \
-d '{
"sql_content": "CREATE TABLE `t1` ( `c1` int(11) DEFAULT NULL, `c2` int

↪→ (11) DEFAULT NULL, `c3` int(11) DEFAULT NULL) ENGINE=InnoDB DEFAULT
↪→ CHARSET=utf8mb4 COLLATE=utf8mb4_bin;",

"flush": true,
"sync": true

}'

4.1.3.30 Delete a schema of the data source that is associated with a replication
task

This API is a synchronous interface. If the request is successful, the status code of the
returned body is 200.

4.1.3.30.1 Request URI
DELETE /api/v1/tasks/{task-name}/sources/{source-name}/schemas/{schema-

↪→ name}/{table-name}

4.1.3.30.2 Example
curl -X 'DELETE' \
'http://127.0.0.1:8261/api/v1/tasks/task-1/sources/source-1/schemas/db1/

↪→ table1' \
-H 'accept: */*'

4.2 Cluster Upgrade

4.2.1 Manually Upgrade TiDB Data Migration from v1.0.x to v2.0+

This document introduces how to manually upgrade the TiDB DM tool from v1.0.x to
v2.0+. The main idea is to use the global checkpoint information in v1.0.x to start a new
data migration task in the v2.0+ cluster.

For how to automatically upgrade the TiDB DM tool from v1.0.x to v2.0+, refer to
Using TiUP to automatically import the 1.0 cluster deployed by DM-Ansible.

168



Note:

• Currently, upgrading DM from v1.0.x to v2.0+ is not supported when
the data migration task is in the process of full export or full import.

• As the gRPC protocol used for interaction between the components of
the DM cluster is updated greatly, you need to make sure that the DM
components (including dmctl) use the same version before and after the
upgrade.

• Because the metadata storage of the DM cluster (such as checkpoint,
shard DDL lock status and online DDL metadata, etc.) is updated
greatly, the metadata of v1.0.x cannot be reused automatically in v2.0+.
So you need to make sure the following requirements are satisfied before
performing the upgrade operation:

– All data migration tasks are not in the process of shard DDL coor-
dination.

– All data migration tasks are not in the process of online DDL coor-
dination.

The steps for manual upgrade are as follows.

4.2.1.1 Step 1: Prepare v2.0+ configuration file
The prepared configuration files of v2.0+ include the configuration files of the upstream

database and the configuration files of the data migration task.

4.2.1.1.1 Upstream database configuration file
In v2.0+, the upstream database configuration file is separated from the process configu-

ration of the DM-worker, so you need to obtain the source configuration based on the v1.0.x
DM-worker configuration.

Note:
If enable-gtid in the source configuration is enabled during the upgrade
from v1.0.x to v2.0+, you need to parse the binlog or relay log file to obtain
the GTID sets corresponding to the binlog position.

Upgrade a v1.0.x cluster deployed by DM-Ansible

169

https://docs.pingcap.com/tidb-data-migration/stable/dm-worker-configuration-file
https://docs.pingcap.com/tidb-data-migration/stable/dm-worker-configuration-file


Assume that the v1.0.x DM cluster is deployed by DM-Ansible, and the following
dm_worker_servers configuration is in the inventory.ini file:
[dm_master_servers]
dm_worker1 ansible_host=172.16.10.72 server_id=101 source_id="mysql-replica

↪→ -01" mysql_host=172.16.10.81 mysql_user=root mysql_password='
↪→ VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=' mysql_port=3306

dm_worker2 ansible_host=172.16.10.73 server_id=102 source_id="mysql-replica
↪→ -02" mysql_host=172.16.10.82 mysql_user=root mysql_password='
↪→ VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=' mysql_port=3306

Then you can convert it to the following two source configuration files:
### The source configuration corresponding to the original dm_worker1. For

↪→ example, it is named as source1.yaml.
server-id: 101 # Corresponds to the original `

↪→ server_id`.
source-id: "mysql-replica-01" # Corresponds to the original `

↪→ source_id`.
from:
host: "172.16.10.81" # Corresponds to the original `

↪→ mysql_host`.
port: 3306 # Corresponds to the original `

↪→ mysql_port`.
user: "root" # Corresponds to the original `

↪→ mysql_user`.
password: "VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=" # Corresponds to the original

↪→ `mysql_password`.

### The source configuration corresponding to the original dm_worker2. For
↪→ example, it is named as source2.yaml.

server-id: 102 # Corresponds to the original `
↪→ server_id`.

source-id: "mysql-replica-02" # Corresponds to the original `
↪→ source_id`.

from:
host: "172.16.10.82" # Corresponds to the original `

↪→ mysql_host`.
port: 3306 # Corresponds to the original `

↪→ mysql_port`.
user: "root" # Corresponds to the original `

↪→ mysql_user`.
password: "VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=" # Corresponds to the original

↪→ `mysql_password`.

Upgrade a v1.0.x cluster deployed by binary

170



Assume that the v1.0.x DM cluster is deployed by binary, and the corresponding DM-
worker configuration is as follows:
log-level = "info"
log-file = "dm-worker.log"
worker-addr = ":8262"
server-id = 101
source-id = "mysql-replica-01"
flavor = "mysql"
[from]
host = "172.16.10.81"
user = "root"
password = "VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU="
port = 3306

Then you can convert it to the following source configuration file:
server-id: 101 # Corresponds to the original `

↪→ server-id`.
source-id: "mysql-replica-01" # Corresponds to the original `

↪→ source-id`.
flavor: "mysql" # Corresponds to the original `

↪→ flavor`.
from:
host: "172.16.10.81" # Corresponds to the original `

↪→ from.host`.
port: 3306 # Corresponds to the original `

↪→ from.port`.
user: "root" # Corresponds to the original `

↪→ from.user`.
password: "VjX8cEeTX+qcvZ3bPaO4h0C80pe/1aU=" # Corresponds to the original

↪→ `from.password`.

4.2.1.1.2 Data migration task configuration file
For data migration task configuration guide, v2.0+ is basically compatible with v1.0.x.

You can directly copy the configuration of v1.0.x.

4.2.1.2 Step 2: Deploy the v2.0+ cluster

Note:
Skip this step if you have other v2.0+ clusters available.

171



Use TiUP to deploy a new v2.0+ cluster according to the required number of nodes.

4.2.1.3 Step 3：Stop the v1.0.x cluster
If the original v1.0.x cluster is deployed by DM-Ansible, you need to use DM-Ansible to

stop the v1.0.x cluster.
If the original v1.0.x cluster is deployed by binary, you can stop the DM-worker and

DM-master processes directly.

4.2.1.4 Step 4: Upgrade data migration task

1. Use the operate-source command to load the upstream database source configuration
from step 1 into the v2.0+ cluster.

2. In the downstream TiDB cluster, obtain the corresponding global checkpoint informa-
tion from the incremental checkpoint table of the v1.0.x data migration task.

• Assume that the v1.0.x data migration configuration does not specify meta-
↪→ schema (or specify its value as the default dm_meta), and the correspond-
ing task name is task_v1, the corresponding checkpoint information is in the
`dm_meta`.`task_v1_syncer_checkpoint` table of the downstream TiDB.

• Use the following SQL statements to obtain the global checkpoint information of
all upstream database sources corresponding to the data migration task.
> SELECT `id`, `binlog_name`, `binlog_pos` FROM `dm_meta`.`

↪→ task_v1_syncer_checkpoint` WHERE `is_global`=1;
+------------------+-------------------------+------------+
| id | binlog_name | binlog_pos |
+------------------+-------------------------+------------+
| mysql-replica-01 | mysql-bin|000001.000123 | 15847 |
| mysql-replica-02 | mysql-bin|000001.000456 | 10485 |
+------------------+-------------------------+------------+

3. Update the v1.0.x data migration task configuration file to start a new v2.0+ data
migration task.

• If the data migration task configuration file of v1.0.x is task_v1.yaml, copy it
and rename it to task_v2.yaml.

• Make the following changes to task_v2.yaml:
– Modify name to a new name, such as task_v2.
– Change task-mode to incremental.
– Set the starting point of incremental replication for each source according to

the global checkpoint information obtained in step 2. For example:

172

https://docs.pingcap.com/tidb-data-migration/v1.0/cluster-operations#stop-a-cluster
https://docs.pingcap.com/tidb-data-migration/v1.0/cluster-operations#stop-a-cluster


mysql-instances:
- source-id: "mysql-replica-01" # Corresponds to the `id`

↪→ of the checkpoint information.
meta:
binlog-name: "mysql-bin.000123" # Corresponds to the `

↪→ binlog_name` in the checkpoint information,
↪→ excluding the part of `|000001`.

binlog-pos: 15847 # Corresponds to `
↪→ binlog_pos` in the checkpoint information.

- source-id: "mysql-replica-02"
meta:
binlog-name: "mysql-bin.000456"
binlog-pos: 10485

Note:
If enable-gtid is enabled in the source configuration, currently
you need to parse the binlog or relay log file to obtain the GTID
sets corresponding to the binlog position, and set it to binlog-
↪→ gtid in the meta.

4. Use the start-task command to start the upgraded data migration task through the
v2.0+ data migration task configuration file.

5. Use the query-status command to confirm whether the data migration task is running
normally.

If the data migration task runs normally, it indicates that the DM upgrade to v2.0+ is
successful.

4.3 Manage Data Source Configurations

This document introduces how to manage data source configurations, including encrypt-
ing the MySQL password, operating the data source, and changing the bindings between
upstream MySQL instances and DM-workers using dmctl.

4.3.1 Encrypt the database password

In DM configuration files, it is recommended to use the password encrypted with dmctl.
For one original password, the encrypted password is different after each encryption.
./dmctl -encrypt 'abc!@#123'

173



MKxn0Qo3m3XOyjCnhEMtsUCm83EhGQDZ/T4=

4.3.2 Operate data source

You can use the operate-source command to load, list or remove the data source
configurations to the DM cluster.
help operate-source

`create`/`stop`/`show` upstream MySQL/MariaDB source.

Usage:
dmctl operate-source <operate-type> [config-file ...] [--print-sample-

↪→ config] [flags]

Flags:
-h, --help help for operate-source
-p, --print-sample-config print sample config file of source

Global Flags:
-s, --source strings MySQL Source ID

4.3.2.1 Flags description

• create: Creates one or more upstream database source(s). When creating multiple
data sources fails, DM rolls back to the state where the command was not executed.

• stop: Stops one or more upstream database source(s). When stopping multiple data
sources fails, some data sources might be stopped.

• show: Shows the added data source and the corresponding DM-worker.

• config-file: Specifies the file path of source.yaml and can pass multiple file paths.

• --print-sample-config: Prints the sample configuration file. This parameter ignores
other parameters.

4.3.2.2 Usage example
Use the following operate-source command to create a source configuration file:

operate-source create ./source.yaml

174



For the configuration of source.yaml, refer to Upstream Database Configuration File
Introduction.

The following is an example of the returned result:
{

"result": true,
"msg": "",
"sources": [

{
"result": true,
"msg": "",
"source": "mysql-replica-01",
"worker": "dm-worker-1"

}
]

}

4.3.2.3 Check data source configurations

Note:
The get-config command is only supported in DM v2.0.1 and later versions.

If you know the source-id, you can run dmctl --master-addr <master-addr> get-
↪→ config source <source-id> to get the data source configuration.
get-config source mysql-replica-01

{
"result": true,
"msg": "",
"cfg": "enable-gtid: false
flavor: mysql
source-id: mysql-replica-01
from:
host: 127.0.0.1
port: 8407
user: root
password: '******'

}

175



If you don’t know the source-id, you can run dmctl --master-addr <master-addr>
↪→ operate-source show to list all data sources first.
operate-source show

{
"result": true,
"msg": "",
"sources": [

{
"result": true,
"msg": "source is added but there is no free worker to bound",
"source": "mysql-replica-02",
"worker": ""

},
{

"result": true,
"msg": "",
"source": "mysql-replica-01",
"worker": "dm-worker-1"

}
]

}

4.3.3 Change the bindings between upstream MySQL instances and DM-
workers

You can use the transfer-source command to change the bindings between upstream
MySQL instances and DM-workers.
help transfer-source

Transfers an upstream MySQL/MariaDB source to a free worker.
Usage:
dmctl transfer-source <source-id> <worker-id> [flags]

Flags:
-h, --help help for transfer-source

Global Flags:
-s, --source strings MySQL Source ID.

Before transferring, DM checks whether the worker to be unbound still has running tasks.
If the worker has any running tasks, you need to pause the tasks first, change the binding,
and then resume the tasks.

176



4.3.3.1 Usage example
If you do not know the bindings of DM-workers, you can run dmctl --master-addr <

↪→ master-addr> list-member --worker to list the current bindings of all workers.
list-member --worker

{
"result": true,
"msg": "",
"members": [

{
"worker": {

"msg": "",
"workers": [

{
"name": "dm-worker-1",
"addr": "127.0.0.1:8262",
"stage": "bound",
"source": "mysql-replica-01"

},
{

"name": "dm-worker-2",
"addr": "127.0.0.1:8263",
"stage": "free",
"source": ""

}
]

}
}

]
}

In the above example, mysql-replica-01 is bound to dm-worker-1. The below com-
mand transfers the binding worker of mysql-replica-01 to dm-worker-2.
transfer-source mysql-replica-01 dm-worker-2

{
"result": true,
"msg": ""

}

Check whether the command takes effect by running dmctl --master-addr <master-
↪→ addr> list-member --worker.
list-member --worker

177



{
"result": true,
"msg": "",
"members": [

{
"worker": {

"msg": "",
"workers": [

{
"name": "dm-worker-1",
"addr": "127.0.0.1:8262",
"stage": "free",
"source": ""

},
{

"name": "dm-worker-2",
"addr": "127.0.0.1:8263",
"stage": "bound",
"source": "mysql-replica-01"

}
]

}
}

]
}

4.4 Manage a Data Migration Task

4.4.1 Data Migration Task Configuration Guide

This document introduces how to configure a data migration task in Data Migration
(DM).

4.4.1.1 Configure data sources to be migrated
Before configuring the data sources to be migrated for the task, you need to first make

sure that DM has loaded the configuration files of the corresponding data sources. The
following are some operation references:

• To view the data source, you can refer to Check the data source configuration.
• To create a data source, you can refer to Create data source.
• To generate a data source configuration file, you can refer to Source configuration file

introduction.

178



The following example of mysql-instances shows how to configure data sources that
need to be migrated for the data migration task:
---

#### ********* Basic configuration *********
name: test # The name of the task. Should be globally unique.

#### ******** Data source configuration **********
mysql-instances:
- source-id: "mysql-replica-01" # Migrate data from the data source whose

↪→ `source-id` is `mysql-replica-01`.
- source-id: "mysql-replica-02" # Migrate data from the data source whose

↪→ `source-id` is `mysql-replica-02`.

4.4.1.2 Configure the downstream TiDB cluster
The following example of target-database shows how to configure the target TiDB

cluster to be migrated to for the data migration task:
---

#### ********* Basic configuration *********
name: test # The name of the task. Should be globally unique.

#### ******** Data source configuration **********
mysql-instances:
- source-id: "mysql-replica-01" # Migrate data from the data source whose

↪→ `source-id` is `mysql-replica-01`.
- source-id: "mysql-replica-02" # Migrate data from the data source whose

↪→ `source-id` is `mysql-replica-02`.

#### ******** Downstream TiDB database configuration **********
target-database: # Configuration of target TiDB database.
host: "127.0.0.1"
port: 4000
user: "root"
password: "" # If the password is not null, it is recommended to use

↪→ a password encrypted with dmctl.

4.4.1.3 Configure tables to be migrated

179



Note:
If you do not need to filter specific tables or migrate specific tables, skip this
configuration.

To configure the block and allow list of data source tables for the data migration task,
perform the following steps:

1. Configure a global filter rule set of the block and allow list in the task configuration
file.
block-allow-list:
bw-rule-1: # The name of the block and allow

↪→ list rule.
do-dbs: ["test.*", "user"] # The allow list of upstream schemas

↪→ to be migrated. Wildcard characters (*?) are supported. You
↪→ only need to configure either `do-dbs` or `ignore-dbs`. If
↪→ both fields are configured, only `do-dbs` takes effect.

# ignore-dbs: ["mysql", "account"] # The block list of upstream
↪→ schemas to be migrated. Wildcard characters (*?) are
↪→ supported.

do-tables: # The allow list of upstream tables
↪→ to be migrated. You only need to configure either `do-tables`
↪→ or `ignore-tables`. If both fields are configured, only `do-
↪→ tables` takes effect.

- db-name: "test.*"
tbl-name: "t.*"

- db-name: "user"
tbl-name: "information"

bw-rule-2: # The name of the block allow list
↪→ rule.

ignore-tables: # The block list of data source tables
↪→ needs to be migrated.

- db-name: "user"
tbl-name: "log"

For detailed configuration rules, see Block and allow table lists.

2. Reference the block and allow list rules in the data source configuration to filter tables
to be migrated.
mysql-instances:
- source-id: "mysql-replica-01" # Migrate data from the data source

↪→ whose `source-id` is `mysql-replica-01`.

180



block-allow-list: "bw-rule-1" # The name of the block and allow
↪→ list rule. If the DM version is earlier than v2.0.0-beta.2,
↪→ use `black-white-list` instead.

- source-id: "mysql-replica-02" # Migrate data from the data source
↪→ whose `source-id` is `mysql-replica-02`.

block-allow-list: "bw-rule-2" # The name of the block and allow
↪→ list rule. If the DM version is earlier than v2.0.0-beta.2,
↪→ use `black-white-list` instead.

4.4.1.4 Configure binlog events to be migrated

Note:
If you do not need to filter specific binlog events of certain schemas or tables,
skip this configuration.

To configure the filters of binlog events for the data migration task, perform the following
steps:

1. Configure a global filter rule set of binlog events in the task configuration file.
filters: # The filter rule set of data

↪→ source binlog events. You can set multiple rules at the same
↪→ time.

filter-rule-1: # The name of the filtering
↪→ rule.

schema-pattern: "test_*" # The pattern of the data
↪→ source schema name. Wildcard characters (*?) are supported.

table-pattern: "t_*" # The pattern of the data
↪→ source table name. Wildcard characters (*?) are supported.

events: ["truncate table", "drop table"] # The event types to be
↪→ filtered out in schemas or tables that match the `schema-
↪→ pattern` or the `table-pattern`.

action: Ignore # Whether to migrate (Do) or
↪→ ignore (Ignore) the binlog that matches the filtering rule.

filter-rule-2:
schema-pattern: "test"
events: ["all dml"]
action: Do

For detailed configuration rules, see Binlog event filter.

181



2. Reference the binlog event filtering rules in the data source configuration to filter
specified binlog events of specified tables or schemas in the data source.
mysql-instances:
- source-id: "mysql-replica-01" # Migrate data from the data source

↪→ whose `source-id` is `mysql-replica-01`.
block-allow-list: "bw-rule-1" # The name of the block and allow

↪→ list rule. If the DM version is earlier than v2.0.0-beta.2,
↪→ use `black-white-list` instead.

filter-rules: ["filter-rule-1"] # The name of the rule that filters
↪→ specific binlog events of the data source. You can configure
↪→ multiple rules here.

- source-id: "mysql-replica-02" # Migrate data from the data source
↪→ whose `source-id` is `mysql-replica-01`.

block-allow-list: "bw-rule-2" # The name of the block and allow
↪→ list rule. If the DM version is earlier than v2.0.0-beta.2,
↪→ use `black-white-list` instead.

filter-rules: ["filter-rule-2"] # The name of the rule that filters
↪→ specific binlog events of the data source. You can configure
↪→ multiple rules here.

4.4.1.5 Configure the mapping of data source tables to downstream TiDB tables

Note:

• If you do not need to migrate a certain table of the data source to the
table with a different name in the downstream TiDB instance, skip this
configuration.

• If it is a shard merge task, you must set mapping rules in the task
configuration file.

To configure the routing mapping rules for migrating data source tables to specified
downstream TiDB tables, perform the following steps:

1. Configure a global routing mapping rule set in the task configuration file.
routes: # The routing mapping rule set between

↪→ the data source tables and downstream TiDB tables. You can set
↪→ multiple rules at the same time.

route-rule-1: # The name of the routing mapping rule.

182



schema-pattern: "test_*" # The pattern of the upstream schema name
↪→ . Wildcard characters (*?) are supported.

table-pattern: "t_*" # The pattern of the upstream table name.
↪→ Wildcard characters (*?) are supported.

target-schema: "test" # The name of the downstream TiDB schema.
target-table: "t" # The name of the downstream TiDB table.

route-rule-2:
schema-pattern: "test_*"
target-schema: "test"

For detailed configuration rules, see Table Routing.

2. Reference the routing mapping rules in the data source configuration to filter tables to
be migrated.
mysql-instances:
- source-id: "mysql-replica-01" # Migrate data from the

↪→ data source whose `source-id` is `mysql-replica-01`.
block-allow-list: "bw-rule-1" # The name of the block

↪→ and allow list rule. If the DM version is earlier than v2
↪→ .0.0-beta.2, use `black-white-list` instead.

filter-rules: ["filter-rule-1"] # The name of the rule
↪→ that filters specific binlog events of the data source. You
↪→ can configure multiple rules here.

route-rules: ["route-rule-1", "route-rule-2"] # The name of the
↪→ routing mapping rule. You can configure multiple rules here.

- source-id: "mysql-replica-02" # Migrate data from the
↪→ data source whose `source-id` is `mysql-replica-02`.

block-allow-list: "bw-rule-2" # The name of the block
↪→ and allow list rule. If the DM version is earlier than v2
↪→ .0.0-beta.2, use `black-white-list` instead.

filter-rules: ["filter-rule-2"] # The name of the rule
↪→ that filters specific binlog events of the data source. You
↪→ can configure multiple rules here.

4.4.1.6 Configure a shard merge task

Note:

• If you need to migrate sharding DDL statements in a shard merge sce-
nario, you must explicitly configure the shard-mode field. Otherwise,
DO NOT configure shard-mode at all.

183



• Migrating sharding DDL statements is likely to cause many issues. Make
sure you understand the principles and restrictions of DM migrating
DDL statements before using this feature, and you must use this feature
with caution.

The following example shows how to configure the task as a shard merge task:
---

#### ********* Basic information *********
name: test # The name of the task. Should be globally

↪→ unique.
shard-mode: "pessimistic" # The shard merge mode. Optional modes are ""/"

↪→ pessimistic"/"optimistic". The "" mode is used by default which means
↪→ sharding DDL merge is disabled. If the task is a shard merge task,
↪→ set it to the "pessimistic" mode. After getting a deep understanding
↪→ of the principles and restrictions of the "optimistic" mode, you can
↪→ set it to the "optimistic" mode.

4.4.1.7 Other configurations
The following is an overall task configuration example of this document. The complete

task configuration template can be found in DM task configuration file full introduction. For
the usage and configuration of other configuration items, refer to Features of Data Migration.
---

#### ********* Basic configuration *********
name: test # The name of the task. Should be globally

↪→ unique.
shard-mode: "pessimistic" # The shard merge mode. Optional modes are ""/"

↪→ pessimistic"/"optimistic". The "" mode is used by default which means
↪→ sharding DDL merge is disabled. If the task is a shard merge task,
↪→ set it to the "pessimistic" mode. After getting a deep understanding
↪→ of the principles and restrictions of the "optimistic" mode, you can
↪→ set it to the "optimistic" mode.

task-mode: all # The task mode. Can be set to `full`(only
↪→ migrates full data)/`incremental`(replicates binlog synchronously)/`
↪→ all` (replicates both full and incremental binlogs).

#### ******** Data source configuration **********
mysql-instances:
- source-id: "mysql-replica-01" # Migrate data from the data

↪→ source whose `source-id` is `mysql-replica-01`.

184



block-allow-list: "bw-rule-1" # The name of the block and
↪→ allow list rule. If the DM version is earlier than v2.0.0-beta.2,
↪→ use `black-white-list` instead.

filter-rules: ["filter-rule-1"] # The name of the rule that
↪→ filters specific binlog events of the data source. You can
↪→ configure multiple rules here.

route-rules: ["route-rule-1", "route-rule-2"] # The name of the routing
↪→ mapping rule. You can configure multiple rules here.

- source-id: "mysql-replica-02" # Migrate data from the data
↪→ source whose `source-id` is `mysql-replica-02`.

block-allow-list: "bw-rule-2" # The name of the block and
↪→ allow list rule. If the DM version is earlier than v2.0.0-beta.2,
↪→ use `black-white-list` instead.

filter-rules: ["filter-rule-2"] # The name of the rule that
↪→ filters specific binlog events of the data source. You can
↪→ configure multiple rules here.

route-rules: ["route-rule-2"] # The name of the routing
↪→ mapping rule. You can configure multiple rules here.

#### ******** Downstream TiDB instance configuration **********
target-database: # Configuration of the downstream database instance.
host: "127.0.0.1"
port: 4000
user: "root"
password: "" # If the password is not null, it is recommended to use

↪→ a password encrypted with dmctl.

#### ******** Feature configuration set **********
### The filter rule set of tables to be migrated from the upstream database

↪→ instance. You can set multiple rules at the same time.
block-allow-list: # Use black-white-list if the DM version

↪→ is earlier than v2.0.0-beta.2.
bw-rule-1: # The name of the block and allow list

↪→ rule.
do-dbs: ["test.*", "user"] # The allow list of upstream schemas to

↪→ be migrated. Wildcard characters (*?) are supported. You only need
↪→ to configure either `do-dbs` or `ignore-dbs`. If both fields are
↪→ configured, only `do-dbs` takes effect.

# ignore-dbs: ["mysql", "account"] # The block list of upstream schemas
↪→ to be migrated. Wildcard characters (*?) are supported.

do-tables: # The allow list of upstream tables to be
↪→ migrated. You only need to configure either `do-tables` or `
↪→ ignore-tables`. If both fields are configured, only `do-tables`
↪→ takes effect.

- db-name: "test.*"

185



tbl-name: "t.*"
- db-name: "user"
tbl-name: "information"

bw-rule-2: # The name of the block allow list rule.
ignore-tables: # The block list of data source tables

↪→ needs to be migrated.
- db-name: "user"
tbl-name: "log"

### The filter rule set of data source binlog events.
filters: # You can set multiple rules at

↪→ the same time.
filter-rule-1: # The name of the filtering rule.
schema-pattern: "test_*" # The pattern of the data source

↪→ schema name. Wildcard characters (*?) are supported.
table-pattern: "t_*" # The pattern of the data source

↪→ table name. Wildcard characters (*?) are supported.
events: ["truncate table", "drop table"] # The event types to be

↪→ filtered out in schemas or tables that match the `schema-pattern`
↪→ or the `table-pattern`.

action: Ignore # Whether to migrate (Do) or
↪→ ignore (Ignore) the binlog that matches the filtering rule.

filter-rule-2:
schema-pattern: "test"
events: ["all dml"]
action: Do

### The routing mapping rule set between the data source and target TiDB
↪→ instance tables.

routes: # You can set multiple rules at the same time.
route-rule-1: # The name of the routing mapping rule.
schema-pattern: "test_*" # The pattern of the data source schema name.

↪→ Wildcard characters (*?) are supported.
table-pattern: "t_*" # The pattern of the data source table name.

↪→ Wildcard characters (*?) are supported.
target-schema: "test" # The name of the downstream TiDB schema.
target-table: "t" # The name of the downstream TiDB table.

route-rule-2:
schema-pattern: "test_*"
target-schema: "test"

186



4.4.2 Precheck the Upstream MySQL Instance Configurations

This document introduces the precheck feature provided by DM. This feature is used
to detect possible errors in the upstream MySQL instance configuration when the data
migration task is started.

4.4.2.1 Command
check-task allows you to precheck whether the upstream MySQL instance configuration

satisfies the DM requirements.

4.4.2.2 Checking items
Upstream and downstream database users must have the corresponding read and write

privileges. DM checks the following privileges and configuration automatically while the
data migration task is started:

• Database version

– MySQL version > 5.5
– MariaDB version >= 10.1.2

Warning:
Support for MySQL 8.0 is an experimental feature of TiDB Data Mi-
gration v2.0. It is NOT recommended that you use it in a production
environment.

• Database configuration

– Whether server_id is configured

• MySQL binlog configuration

– Whether the binlog is enabled (DM requires that the binlog must be enabled)
– Whether binlog_format=ROW (DM only supports migration of the binlog in the

ROW format)
– Whether binlog_row_image=FULL (DM only supports binlog_row_image=FULL)

• The privileges of the upstream MySQL instance users
MySQL users in DM configuration need to have the following privileges at least:

– REPLICATION SLAVE
– REPLICATION CLIENT
– RELOAD

187



– SELECT

• The compatibility of the upstream MySQL table schema
TiDB differs from MySQL in compatibility in the following aspects:

– TiDB does not support the foreign key.
– Character set compatibility differs.

DM will also check whether the primary key or unique key restriction exists in all
upstream tables. This check is introduced in v1.0.7.

• The consistency of the sharded tables in the multiple upstream MySQL instances

– The schema consistency of all sharded tables
* Column size
* Column name
* Column position
* Column type
* Primary key
* Unique index

– The conflict of the auto increment primary keys in the sharded tables
* The check fails in the following two conditions:

· The auto increment primary key exists in the sharded tables and its col-
umn type is not bigint.

· The auto increment primary key exists in the sharded tables and its col-
umn type is bigint, but column mapping is not configured.

* The check succeeds in other conditions except the two above.

4.4.2.2.1 Disable checking items
DM checks items according to the task type, and you can use ignore-checking-items

↪→ in the task configuration file to disable checking items. The list of element options for
ignore-checking-items is as follows:

Element Description
all Disables

all
checks

188

https://pingcap.com/docs/stable/reference/sql/character-set/


Element Description
dump_privilegeDisables

check-
ing
dump-
related
privi-
leges of
the up-
stream
MySQL
in-
stance
user

replication_privilegeDisables
check-
ing
replication-
related
privi-
leges of
the up-
stream
MySQL
in-
stance
user

version Disables
check-
ing the
up-
stream
database
version

server_idDisables
check-
ing the
up-
stream
database
server_id

189



Element Description
binlog_enableDisables

check-
ing
whether
the up-
stream
database
has
binlog
en-
abled

binlog_formatDisables
check-
ing
whether
the
binlog
format
of the
up-
stream
database
is
ROW

binlog_row_imageDisables
check-
ing
whether
the bin-
log_row_image
of the
up-
stream
database
is
FULL

190



Element Description
table_schemaDisables

check-
ing the
com-
patibil-
ity of
the up-
stream
MySQL
table
schema

schema_of_shard_tablesDisables
check-
ing
whether
the
schemas
of up-
stream
MySQL
sharded
tables
are
consis-
tent in
the
multi-
instance
shard-
ing
sce-
nario

191



Element Description
auto_increment_IDDisables

check-
ing the
con-
flicts of
auto-
increment
pri-
mary
keys of
the up-
stream
MySQL
shared
tables
in the
multi-
instance
shard-
ing
sce-
nario

4.4.3 Create a Data Migration Task

You can use the start-task command to create a data migration task. When the data
migration task is started, DM prechecks privileges and configurations.
help start-task

Starts a task as defined in the configuration file
Usage:
dmctl start-task [-s source ...] [--remove-meta] <config-file> [flags]

Flags:
-h, --help Help for start-task

--remove-meta Whether to remove task's metadata
Global Flags:
-s, --source strings MySQL Source ID

4.4.3.1 Usage example
start-task [ -s "mysql-replica-01"] ./task.yaml

192



4.4.3.2 Flags description

• -s: (Optional) Specifies the MySQL source to execute task.yaml. If it is set, the
command only starts the subtasks of the specified task on the MySQL source.

• config-file: (Required) Specifies the file path of task.yaml.
• remove-meta: (Optional) Specifies whether to remove the task’s previous metadata

when starting the task.

4.4.3.3 Returned results
start-task task.yaml

{
"result": true,
"msg": "",
"sources": [

{
"result": true,
"msg": "",
"source": "mysql-replica-01",
"worker": "worker1"

}
]

}

4.4.4 Query Status

This document introduces how to use the query-status command to query the task
status, and the subtask status of DM.

4.4.4.1 Query result
» query-status

{
"result": true, # Whether the query is successful.
"msg": "", # Describes the reason for the unsuccessful query.
"tasks": [ # Migration task list.

{
"taskName": "test", # The task name.
"taskStatus": "Running", # The status of the task.
"sources": [ # The upstream MySQL list.

"mysql-replica-01",
"mysql-replica-02"

193



]
},
{

"taskName": "test2",
"taskStatus": "Paused",
"sources": [

"mysql-replica-01",
"mysql-replica-02"

]
}

]
}

For detailed descriptions of taskStatus under the tasks section, refer to Task status.
It is recommended that you use query-status by the following steps:

1. Use query-status to check whether each on-going task is in the normal state.
2. If any error occurs in a task, use the query-status <taskName> command to see

detailed error information. <taskName> in this command indicates the name of the
task that encounters the error.

4.4.4.2 Task status
The status of a DM migration task depends on the status of each subtask assigned to

DM-worker. For detailed descriptions of subtask status, see Subtask status. The table below
shows how the subtask status is related to task status.

194



Subtask
sta-
tus
in a
task

Task
sta-
tus

One
sub-
task
is in
the
paused
↪→
state
and
error
infor-
ma-
tion
is re-
turned.

Error
↪→
↪→ -
↪→
↪→ Some
↪→
↪→ error
↪→
↪→ occurred
↪→
↪→ in
↪→
↪→ subtask
↪→

195



Subtask
sta-
tus
in a
task

Task
sta-
tus

One
sub-
task
in
the
Sync
phase
is in
the
Running
↪→
state
but
its
Re-
lay
pro-
cess-
ing
unit
is
not
run-
ning
(in
the
Error
↪→ /Paused
↪→ /Stopped
↪→
state).

Error
↪→
↪→ -
↪→
↪→ Relay
↪→
↪→ status
↪→
↪→ is
↪→
↪→ Error
↪→ /
↪→ Paused
↪→ /
↪→ Stopped
↪→

196



Subtask
sta-
tus
in a
task

Task
sta-
tus

One
sub-
task
is in
the
Paused
↪→
state
and
no
error
infor-
ma-
tion
is re-
turned.

Paused
↪→

All
sub-
tasks
are
in
the
New
state.

New

All
sub-
tasks
are
in
the
Finished
↪→
state.

Finished
↪→

197



Subtask
sta-
tus
in a
task

Task
sta-
tus

All
sub-
tasks
are
in
the
Stopped
↪→
state.

Stopped
↪→

Other
situa-
tions

Running
↪→

4.4.4.3 Detailed query result
» query-status test

» query-status
{

"result": true, # Whether the query is successful.
"msg": "", # Describes the cause for the unsuccessful query.
"sources": [ # The upstream MySQL list.

{
"result": true,
"msg": "",
"sourceStatus": { # The information of the upstream

↪→ MySQL databases.
"source": "mysql-replica-01",
"worker": "worker1",
"result": null,
"relayStatus": null

},
"subTaskStatus": [ # The information of all subtasks of

↪→ upstream MySQL databases.
{

"name": "test", # The name of the subtask.
"stage": "Running", # The running status of the subtask,

↪→ including "New", "Running", "Paused", "Stopped", and
↪→ "Finished".

198



"unit": "Sync", # The processing unit of DM,
↪→ including "Check", "Dump", "Load", and "Sync".

"result": null, # Displays the error information if a
↪→ subtask fails.

"unresolvedDDLLockID": "test-`test`.`t_target`", # The
↪→ sharding DDL lock ID, used for manually handling the
↪→ sharding DDL

# lock in the
↪→
↪→ abnormal
↪→
↪→ condition
↪→ .

"sync": { # The replication information of
↪→ the `Sync` processing unit. This information is
↪→ about the

# same component with the current
↪→ processing unit.

"totalEvents": "12", # The total number of binlog
↪→ events that are replicated in this subtask.

"totalTps": "1", # The number of binlog events that
↪→ are replicated in this subtask per second.

"recentTps": "1", # The number of binlog events that
↪→ are replicated in this subtask in the last one
↪→ second.

"masterBinlog": "(bin.000001, 3234)",
↪→ # The binlog position in
↪→ the upstream database.

"masterBinlogGtid": "c0149e17-dff1-11e8-b6a8-0242
↪→ ac110004:1-14", # The GTID information in the
↪→ upstream database.

"syncerBinlog": "(bin.000001, 2525)",
↪→ # The position of the
↪→ binlog that has been replicated

#
↪→
↪→ in
↪→
↪→ the
↪→
↪→ `
↪→ Sync
↪→ `
↪→
↪→ processing

199



↪→
↪→ unit
↪→ .
↪→

"syncerBinlogGtid": "",
↪→ # The binlog
↪→ position replicated using GTID.

"blockingDDLs": [ # The DDL list that is blocked
↪→ currently. It is not empty only when all the
↪→ upstream tables of this

# DM-worker are in the "synced"
↪→ status. In this case, it
↪→ indicates the sharding DDL
↪→ statements to be executed
↪→ or that are skipped.

"USE `test`; ALTER TABLE `test`.`t_target` DROP
↪→ COLUMN `age`;"

],
"unresolvedGroups": [ # The sharding group that is not

↪→ resolved.
{

"target": "`test`.`t_target`", # The
↪→ downstream database table to be
↪→ replicated.

"DDLs": [
"USE `test`; ALTER TABLE `test`.`t_target`

↪→ DROP COLUMN `age`;"
],
"firstPos": "(bin|000001.000001, 3130)", # The

↪→ starting position of the sharding DDL
↪→ statement.

"synced": [ # The
↪→ upstream sharded table whose executed
↪→ sharding DDL statement has been read by
↪→ the `Sync` unit.
"`test`.`t2`"
"`test`.`t3`"
"`test`.`t1`"

],
"unsynced": [ # The

↪→ upstream table that has not executed this
↪→ sharding DDL

#
↪→ statement
↪→ .

200



↪→
↪→ If
↪→
↪→ any
↪→
↪→ upstream
↪→
↪→ tables
↪→
↪→ have
↪→
↪→ not
↪→
↪→ finished
↪→
↪→ replication
↪→ ,
↪→

# `
↪→ blockingDDLs
↪→ `
↪→
↪→ is
↪→
↪→ empty
↪→ .
↪→

]
}

],
"synced": false # Whether the incremental

↪→ replication catches up with the upstream and has
↪→ the same binlog position as that in the

# upstream. The save point is not
↪→ refreshed in real time in
↪→ the `Sync` background, so "
↪→ false" of "synced"

# does not always mean a
↪→ replication delay exits.

}
}

]
},
{

"result": true,

201



"msg": "",
"sourceStatus": {

"source": "mysql-replica-02",
"worker": "worker2",
"result": null,
"relayStatus": null

},
"subTaskStatus": [

{
"name": "test",
"stage": "Running",
"unit": "Load",
"result": null,
"unresolvedDDLLockID": "",
"load": { # The replication information of

↪→ the `Load` processing unit.
"finishedBytes": "115", # The number of bytes that have

↪→ been loaded.
"totalBytes": "452", # The total number of bytes that

↪→ need to be loaded.
"progress": "25.44 %" # The progress of the loading

↪→ process.
}

}
]

},
{

"result": true,
"sourceStatus": {

"source": "mysql-replica-03",
"worker": "worker3",
"result": null,
"relayStatus": null

},
"subTaskStatus": [

{
"name": "test",
"stage": "Paused",
"unit": "Load",
"result": { # The error example.

"isCanceled": false,
"errors": [

{
"Type": "ExecSQL",

202



"msg": "Error 1062: Duplicate entry
↪→ '1155173304420532225' for key 'PRIMARY'\n
↪→ /home/jenkins/workspace/build_dm/go/src/
↪→ github.com/pingcap/tidb-enterprise-tools/
↪→ loader/db.go:160: \n/home/jenkins/
↪→ workspace/build_dm/go/src/github.com/
↪→ pingcap/tidb-enterprise-tools/loader/db.
↪→ go:105: \n/home/jenkins/workspace/
↪→ build_dm/go/src/github.com/pingcap/tidb-
↪→ enterprise-tools/loader/loader.go:138:
↪→ file test.t1.sql"

}
],
"detail": null

},
"unresolvedDDLLockID": "",
"load": {

"finishedBytes": "0",
"totalBytes": "156",
"progress": "0.00 %"

}
}

]
}

]
}

For the status description and status switch relationship of “stage” of “subTaskStatus”
of “sources”, see the subtask status.

For operation details of “unresolvedDDLLockID” of “subTaskStatus” of “sources”, see
Handle Sharding DDL Locks Manually.

4.4.4.4 Subtask status

4.4.4.4.1 Status description

• New:

– The initial status.
– If the subtask does not encounter an error, it is switched to Running; otherwise

it is switched to Paused.

• Running: The normal running status.

203



• Paused:

– The paused status.
– If the subtask encounters an error, it is switched to Paused.
– If you run pause-task when the subtask is in the Running status, the task is

switched to Paused.
– When the subtask is in this status, you can run the resume-task command to

resume the task.

• Stopped:

– The stopped status.
– If you run stop-task when the subtask is in the Running or Paused status, the

task is switched to Stopped.
– When the subtask is in this status, you cannot use resume-task to resume the

task.

• Finished:

– The finished subtask status.
– Only when the full replication subtask is finished normally, the task is switched

to this status.

4.4.4.4.2 Status switch diagram
error occurs

New --------------------------------|
| |
| resume-task |
| |----------------------------| |
| | | |
| | | |
v v error occurs | v

Finished <-------------- Running -----------------------> Paused
^ | or pause-task |
| | |

start task | | stop task |
| | |
| v stop task |

Stopped <-------------------------|

4.4.5 Pause a Data Migration Task

You can use the pause-task command to pause a data migration task.
pause-task differs from stop-task in that:

204



• pause-task only pauses a migration task. You can query the status information
(retained in the memory) of the task using query-status. stop-task terminates a
migration task and removes all information related to this task from the memory. This
means you cannot use query-status to query the status information. dm_meta like
“checkpoint” and data that have been migrated to the downstream are not removed.

• If pause-task is executed to pause the migration task, you cannot start a new task
with the same name, neither can you get the relay log of the paused task removed,
since this task does exist. If stop-task is executed to stop a task, you can start a new
task with the same name, and you can get the relay log of the stopped task removed,
since this task no longer exists.

• pause-task is usually used to pause a task for troubleshooting, while stop-task is to
permanently remove a migration task, or to co-work with start-task to update the
configuration information.

help pause-task

pause a specified running task

Usage:
dmctl pause-task [-s source ...] <task-name | task-file> [flags]

Flags:
-h, --help help for pause-task

Global Flags:
-s, --source strings MySQL Source ID

4.4.5.1 Usage example
pause-task [-s "mysql-replica-01"] task-name

4.4.5.2 Flags description

• -s: (Optional) Specifies the MySQL source where you want to pause the subtasks of
the migration task. If it is set, this command pauses only the subtasks on the specified
MySQL source.

• task-name| task-file: (Required) Specifies the task name or task file path.

4.4.5.3 Returned results
pause-task test

205



{
"op": "Pause",
"result": true,
"msg": "",
"sources": [

{
"result": true,
"msg": "",
"source": "mysql-replica-01",
"worker": "worker1"

}
]

}

4.4.6 Resume a Data Migration Task

You can use the resume-task command to resume a data migration task in the Paused
↪→ state. This is generally used in scenarios where you want to manually resume a data
migration task after handling the error that get the task paused.
help resume-task

resume a specified paused task

Usage:
dmctl resume-task [-s source ...] <task-name | task-file> [flags]

Flags:
-h, --help help for resume-task

Global Flags:
-s, --source strings MySQL Source ID

4.4.6.1 Usage example
resume-task [-s "mysql-replica-01"] task-name

4.4.6.2 Flags description

• -s: (Optional) Specifies the MySQL source where you want to resume the subtask of
the migration task. If it is set, the command resumes only the subtasks on the specified
MySQL source.

• task-name | task-file: (Required) Specifies the task name or task file path.

206



4.4.6.3 Returned results
resume-task test

{
"op": "Resume",
"result": true,
"msg": "",
"sources": [

{
"result": true,
"msg": "",
"source": "mysql-replica-01",
"worker": "worker1"

}
]

}

4.4.7 Stop a Data Migration Task

You can use the stop-task command to stop a data migration task. For differences
between stop-task and pause-task, refer to Pause a Data Migration Task.
help stop-task

stop a specified task

Usage:
dmctl stop-task [-s source ...] <task-name | task-file> [flags]

Flags:
-h, --help help for stop-task

Global Flags:
-s, --source strings MySQL Source ID

4.4.7.1 Usage example
stop-task [-s "mysql-replica-01"] task-name

4.4.7.2 Flags description

• -s: (Optional) Specifies the MySQL source where the subtasks of the migration task
(that you want to stop) run. If it is set, only subtasks on the specified MySQL source
are stopped.

207



• task-name | task-file: (Required) Specifies the task name or task file path.

4.4.7.3 Returned results
stop-task test

{
"op": "Stop",
"result": true,
"msg": "",
"sources": [

{
"result": true,
"msg": "",
"source": "mysql-replica-01",
"worker": "worker1"

}
]

}

4.4.8 Export and Import Data Sources and Task Configuration of Clusters

config command is used to export and import data sources and task configuration of
clusters.

Note:
For clusters earlier than v2.0.5, you can use dmctl v2.0.5 or later to export
and import the data source and task configuration files.

» help config
Commands to import/export config
Usage:
dmctl config [command]

Available Commands:
export Export the configurations of sources and tasks.
import Import the configurations of sources and tasks.

Flags:
-h, --help help for config

Global Flags:
-s, --source strings MySQL Source ID.

Use "dmctl config [command] --help" for more information about a command.

208



4.4.8.1 Export the data source and task configuration of clusters
You can use export command to export the data source and task configuration of clusters

to specified files.
config export [--dir directory]

4.4.8.1.1 Parameter explanation

• dir：

– optional
– specifies the file path for exporting
– the default value is ./configs

4.4.8.1.2 Returned results
config export -d /tmp/configs

export configs to directory `/tmp/configs` succeed

4.4.8.2 import the data source and task configuration of clusters
You can use import command to import the data source and task configuration of

clusters from specified files.
config import [--dir directory]

Note:
For clusters later than v2.0.2, currently, it is not supported to automatically
import the configuration related to relay worker. You can use start-relay
command to manually start relay log.

4.4.8.2.1 Parameter explanation

• dir：

– optional
– specifies the file path for importing
– the default value is ./configs

209



4.4.8.2.2 Returned results
config import -d /tmp/configs

start creating sources
start creating tasks
import configs from directory `/tmp/configs` succeed

4.4.9 Handle Failed DDL Statements

This document introduces how to handle failed DDL statements when you’re using the
TiDB Data Migration (DM) tool to migrate data.

Currently, TiDB is not completely compatible with all MySQL syntax (see the DDL
statements supported by TiDB). Therefore, when DM is migrating data from MySQL to
TiDB and TiDB does not support the corresponding DDL statement, an error might occur
and break the migration process. In this case, you can use the handle-error command of
DM to resume the migration.

4.4.9.1 Restrictions
If it is unacceptable in the actual production environment that the failed DDL statement

is skipped in the downstream TiDB and it cannot be replaced with other DDL statements,
then do not use this command.

For example, DROP PRIMARY KEY. In this scenario, you can only create a new table in the
downstream with the new table schema (after executing the DDL statement), and re-import
all the data into this new table.

4.4.9.2 Supported scenarios
During the migration, the DDL statement unsupported by TiDB is executed in the up-

stream and migrated to the downstream, and as a result, the migration task gets interrupted.

• If it is acceptable that this DDL statement is skipped in the downstream TiDB, then
you can use handle-error <task-name> skip to skip migrating this DDL statement
and resume the migration.

• If it is acceptable that this DDL statement is replaced with other DDL statements,
then you can use handle-error <task-name> replace to replace this DDL statement
and resume the migration.

4.4.9.3 Command
When you use dmctl to manually handle the failed DDL statements, the commonly used

commands include query-status and handle-error.

210

https://pingcap.com/docs/dev/reference/mysql-compatibility/#ddl
https://pingcap.com/docs/dev/reference/mysql-compatibility/#ddl


4.4.9.3.1 query-status
The query-status command is used to query the current status of items such as the

subtask and the relay unit in each MySQL instance. For details, see query status.

4.4.9.3.2 handle-error
The handle-error command is used to handle the failed DDL statements.

4.4.9.3.3 Command usage
» handle-error -h

Usage:
dmctl handle-error <task-name | task-file> [-s source ...] [-b binlog-pos]

↪→ <skip/replace/revert> [replace-sql1;replace-sql2;] [flags]

Flags:
-b, --binlog-pos string position used to match binlog event if matched the

↪→ handler-error operation will be applied. The format like "mysql-bin
↪→ |000001.000003:3270"

-h, --help help for handle-error

Global Flags:
-s, --source strings MySQL Source ID

4.4.9.3.4 Flags descriptions

• task-name:

– Non-flag parameter, string, required
– task-name specifies the name of the task in which the presetted operation is going

to be executed.

• source:

– Flag parameter, string, --source
– source specifies the MySQL instance in which the preset operation is to be exe-

cuted.

• skip: Skip the error

• replace: Replace the failed DDL statement

• revert: Reset the previous skip/replace operation before the error occurs (only reset
it when the previous skip/replace operation has not finally taken effect)

211



• binlog-pos:

– Flag parameter, string, --binlog-pos
– If it is not specified, DM automatically handles the currently failed DDL state-

ment.
– If it is specified, the skip operation is executed when binlog-pos matches with

the position of the binlog event. The format is binlog-filename:binlog-pos,
for example, mysql-bin|000001.000003:3270.

– After the migration returns an error, the binlog position can be obtained from
position in startLocation returned by query-status. Before the migration
returns an error, the binlog position can be obtained by using SHOW BINLOG
↪→ EVENTS in the upstream MySQL instance.

4.4.9.4 Usage examples

4.4.9.4.1 Skip DDL if the migration gets interrupted
Non-shard-merge scenario
Assume that you need to migrate the upstream table db1.tbl1 to the downstream TiDB.

The initial table schema is:
SHOW CREATE TABLE db1.tbl1;

+-------+--------------------------------------------------+
| Table | Create Table |
+-------+--------------------------------------------------+
| tbl1 | CREATE TABLE `tbl1` (
`c1` int(11) NOT NULL,
`c2` decimal(11,3) DEFAULT NULL,
PRIMARY KEY (`c1`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 |
+-------+--------------------------------------------------+

Now, the following DDL statement is executed in the upstream to alter the table schema
(namely, alter DECIMAL(11, 3) of c2 into DECIMAL(10, 3)):
ALTER TABLE db1.tbl1 CHANGE c2 c2 DECIMAL (10, 3);

Because this DDL statement is not supported by TiDB, the migration task of DM gets
interrupted. Execute the query-status <task-name> command, and you can see the fol-
lowing error:
ERROR 8200 (HY000): Unsupported modify column: can't change decimal column

↪→ precision

212

https://dev.mysql.com/doc/refman/5.7/en/show-binlog-events.html
https://dev.mysql.com/doc/refman/5.7/en/show-binlog-events.html


Assume that it is acceptable in the actual production environment that this DDL state-
ment is not executed in the downstream TiDB (namely, the original table schema is retained).
Then you can use handle-error <task-name> skip to skip this DDL statement to resume
the migration. The procedures are as follows:

1. Execute handle-error <task-name> skip to skip the currently failed DDL state-
ment:
» handle-error test skip

{
"result": true,
"msg": "",
"sources": [

{
"result": true,
"msg": "",
"source": "mysql-replica-01",
"worker": "worker1"

}
]

}

2. Execute query-status <task-name> to view the task status:
» query-status test

See the execution result.
{

"result": true,
"msg": "",
"sources": [

{
"result": true,
"msg": "",
"sourceStatus": {

"source": "mysql-replica-01",
"worker": "worker1",
"result": null,
"relayStatus": null

},
"subTaskStatus": [

{
"name": "test",
"stage": "Running",

213



"unit": "Sync",
"result": null,
"unresolvedDDLLockID": "",
"sync": {

"totalEvents": "4",
"totalTps": "0",
"recentTps": "0",
"masterBinlog": "(DESKTOP-T561TSO-bin.000001,

↪→ 2388)",
"masterBinlogGtid": "143bdef3-dd4a-11ea-8b00-00155

↪→ de45f57:1-10",
"syncerBinlog": "(DESKTOP-T561TSO-bin.000001,

↪→ 2388)",
"syncerBinlogGtid": "143bdef3-dd4a-11ea-8b00-00155

↪→ de45f57:1-4",
"blockingDDLs": [
],
"unresolvedGroups": [
],
"synced": true,
"binlogType": "remote"

}
}

]
}

]
}

You can see that the task runs normally and the wrong DDL is skipped.

Shard merge scenario
Assume that you need to merge and migrate the following four tables in the upstream

to one same table `shard_db`.`shard_table` in the downstream. The task mode is “pes-
simistic”.

• MySQL instance 1 contains the shard_db_1 schema, which includes the shard_table_1
↪→ and shard_table_2 tables.

• MySQL instance 2 contains the shard_db_2 schema, which includes the shard_table_1
↪→ and shard_table_2 tables.

The initial table schema is:
SHOW CREATE TABLE shard_db.shard_table;

214



+--
↪→ -----+-----------------------------------------------------------------------------------------------------------+
↪→

| Table | Create Table
↪→
↪→ |

+--
↪→ -----+-----------------------------------------------------------------------------------------------------------+
↪→

| tb | CREATE TABLE `shard_table` (
`id` int(11) DEFAULT NULL,
PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 COLLATE=latin1_bin |
+--

↪→ -----+-----------------------------------------------------------------------------------------------------------+
↪→

Now, execute the following DDL statement to all upstream sharded tables to alter their
character set:
ALTER TABLE `shard_db_*`.`shard_table_*` CHARACTER SET LATIN1 COLLATE

↪→ LATIN1_DANISH_CI;

Because this DDL statement is not supported by TiDB, the migration task of DM gets
interrupted. Execute the query-status command, and you can see the following errors
reported by the shard_db_1.shard_table_1 table in MySQL instance 1 and the shard_db_2
↪→ .shard_table_1 table in MySQL instance 2:
{

"Message": "cannot track DDL: ALTER TABLE `shard_db_1`.`shard_table_1`
↪→ CHARACTER SET UTF8 COLLATE UTF8_UNICODE_CI",

"RawCause": "[ddl:8200]Unsupported modify charset from latin1 to utf8"
}

{
"Message": "cannot track DDL: ALTER TABLE `shard_db_2`.`shard_table_1`

↪→ CHARACTER SET UTF8 COLLATE UTF8_UNICODE_CI",
"RawCause": "[ddl:8200]Unsupported modify charset from latin1 to utf8"

}

Assume that it is acceptable in the actual production environment that this DDL state-
ment is not executed in the downstream TiDB (namely, the original table schema is retained).
Then you can use handle-error <task-name> skip to skip this DDL statement to resume
the migration. The procedures are as follows:

215



1. Execute handle-error <task-name> skip to skip the currently failed DDL state-
ments in MySQL instance 1 and 2:
» handle-error test skip

{
"result": true,
"msg": "",
"sources": [

{
"result": true,
"msg": "",
"source": "mysql-replica-01",
"worker": "worker1"

},
{

"result": true,
"msg": "",
"source": "mysql-replica-02",
"worker": "worker2"

}
]

}

2. Execute the query-status command, and you can see the errors reported by
the shard_db_1.shard_table_2 table in MySQL instance 1 and the shard_db_2
↪→ .shard_table_2 table in MySQL instance 2:
{

"Message": "cannot track DDL: ALTER TABLE `shard_db_1`.`
↪→ shard_table_2` CHARACTER SET UTF8 COLLATE UTF8_UNICODE_CI",

"RawCause": "[ddl:8200]Unsupported modify charset from latin1 to
↪→ utf8"

}

{
"Message": "cannot track DDL: ALTER TABLE `shard_db_2`.`

↪→ shard_table_2` CHARACTER SET UTF8 COLLATE UTF8_UNICODE_CI",
"RawCause": "[ddl:8200]Unsupported modify charset from latin1 to

↪→ utf8"
}

3. Execute handle-error <task-name> skip again to skip the currently failed DDL
statements in MySQL instance 1 and 2:
» handle-error test skip

216



{
"result": true,
"msg": "",
"sources": [

{
"result": true,
"msg": "",
"source": "mysql-replica-01",
"worker": "worker1"

},
{

"result": true,
"msg": "",
"source": "mysql-replica-02",
"worker": "worker2"

}
]

}

4. Use query-status <task-name> to view the task status:
» query-status test

See the execution result.
{

"result": true,
"msg": "",
"sources": [

{
"result": true,
"msg": "",
"sourceStatus": {

"source": "mysql-replica-01",
"worker": "worker1",
"result": null,
"relayStatus": null

},
"subTaskStatus": [

{
"name": "test",
"stage": "Running",
"unit": "Sync",
"result": null,
"unresolvedDDLLockID": "",

217



"sync": {
"totalEvents": "4",
"totalTps": "0",
"recentTps": "0",
"masterBinlog": "(DESKTOP-T561TSO-bin.000001,

↪→ 2388)",
"masterBinlogGtid": "143bdef3-dd4a-11ea-8b00-00155

↪→ de45f57:1-10",
"syncerBinlog": "(DESKTOP-T561TSO-bin.000001,

↪→ 2388)",
"syncerBinlogGtid": "143bdef3-dd4a-11ea-8b00-00155

↪→ de45f57:1-4",
"blockingDDLs": [
],
"unresolvedGroups": [
],
"synced": true,
"binlogType": "remote"

}
}

]
},
{

"result": true,
"msg": "",
"sourceStatus": {

"source": "mysql-replica-02",
"worker": "worker2",
"result": null,
"relayStatus": null

},
"subTaskStatus": [

{
"name": "test",
"stage": "Running",
"unit": "Sync",
"result": null,
"unresolvedDDLLockID": "",
"sync": {

"totalEvents": "4",
"totalTps": "0",
"recentTps": "0",
"masterBinlog": "(DESKTOP-T561TSO-bin.000001,

↪→ 2388)",
"masterBinlogGtid": "143bdef3-dd4a-11ea-8b00-00155

218



↪→ de45f57:1-10",
"syncerBinlog": "(DESKTOP-T561TSO-bin.000001,

↪→ 2388)",
"syncerBinlogGtid": "143bdef3-dd4a-11ea-8b00-00155

↪→ de45f57:1-4",
"blockingDDLs": [
],
"unresolvedGroups": [
],
"synced": true,
"binlogType": "remote"

}
}

]
}

]
}

You can see that the task runs normally with no error and all four wrong DDL state-
ments are skipped.

4.4.9.4.2 Replace DDL if the migration gets interrupted
Non-shard-merge scenario
Assume that you need to migrate the upstream table db1.tbl1 to the downstream TiDB.

The initial table schema is:
SHOW CREATE TABLE db1.tbl1;

+--
↪→ -----+-----------------------------------------------------------------------------------------------------------+
↪→

| Table | Create Table
↪→
↪→ |

+--
↪→ -----+-----------------------------------------------------------------------------------------------------------+
↪→

| tb | CREATE TABLE `tbl1` (
`id` int(11) DEFAULT NULL,
PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 COLLATE=latin1_bin |
+--

↪→ -----+-----------------------------------------------------------------------------------------------------------+
↪→

219



Now, perform the following DDL operation in the upstream to add a new column with
the UNIQUE constraint:
ALTER TABLE `db1`.`tbl1` ADD COLUMN new_col INT UNIQUE;

Because this DDL statement is not supported by TiDB, the migration task gets inter-
rupted. Execute the query-status command, and you can see the following error:
{

"Message": "cannot track DDL: ALTER TABLE `db1`.`tbl1` ADD COLUMN `
↪→ new_col` INT UNIQUE KEY",

"RawCause": "[ddl:8200]unsupported add column 'new_col' constraint
↪→ UNIQUE KEY when altering 'db1.tbl1'",

}

You can replace this DDL statement with two equivalent DDL statements. The steps
are as follows:

1. Replace the wrong DDL statement by the following command:
» handle-error test replace "ALTER TABLE `db1`.`tbl1` ADD COLUMN `

↪→ new_col` INT;ALTER TABLE `db1`.`tbl1` ADD UNIQUE(`new_col`)";

{
"result": true,
"msg": "",
"sources": [

{
"result": true,
"msg": "",
"source": "mysql-replica-01",
"worker": "worker1"

}
]

}

2. Use query-status <task-name> to view the task status:
» query-status test

See the execution result.
{

"result": true,
"msg": "",
"sources": [

{

220



"result": true,
"msg": "",
"sourceStatus": {

"source": "mysql-replica-01",
"worker": "worker1",
"result": null,
"relayStatus": null

},
"subTaskStatus": [

{
"name": "test",
"stage": "Running",
"unit": "Sync",
"result": null,
"unresolvedDDLLockID": "",
"sync": {

"totalEvents": "4",
"totalTps": "0",
"recentTps": "0",
"masterBinlog": "(DESKTOP-T561TSO-bin.000001,

↪→ 2388)",
"masterBinlogGtid": "143bdef3-dd4a-11ea-8b00-00155

↪→ de45f57:1-10",
"syncerBinlog": "(DESKTOP-T561TSO-bin.000001,

↪→ 2388)",
"syncerBinlogGtid": "143bdef3-dd4a-11ea-8b00-00155

↪→ de45f57:1-4",
"blockingDDLs": [
],
"unresolvedGroups": [
],
"synced": true,
"binlogType": "remote"

}
}

]
}

]
}

You can see that the task runs normally and the wrong DDL statement is replaced by
new DDL statements that execute successfully.

Shard merge scenario

221



Assume that you need to merge and migrate the following four tables in the upstream
to one same table `shard_db`.`shard_table` in the downstream. The task mode is “pes-
simistic”.

• In the MySQL instance 1, there is a schema shard_db_1, which has two tables
shard_table_1 and shard_table_2.

• In the MySQL instance 2, there is a schema shard_db_2, which has two tables
shard_table_1 and shard_table_2.

The initial table schema is:
SHOW CREATE TABLE shard_db.shard_table;

+--
↪→ -----+-----------------------------------------------------------------------------------------------------------+
↪→

| Table | Create Table
↪→
↪→ |

+--
↪→ -----+-----------------------------------------------------------------------------------------------------------+
↪→

| tb | CREATE TABLE `shard_table` (
`id` int(11) DEFAULT NULL,
PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 COLLATE=latin1_bin |
+--

↪→ -----+-----------------------------------------------------------------------------------------------------------+
↪→

Now, perform the following DDL operation to all upstream sharded tables to add a new
column with the UNIQUE constraint:
ALTER TABLE `shard_db_*`.`shard_table_*` ADD COLUMN new_col INT UNIQUE;

Because this DDL statement is not supported by TiDB, the migration task gets in-
terrupted. Execute the query-status command, and you can see the following errors re-
ported by the shard_db_1.shard_table_1 table in MySQL instance 1 and the shard_db_2
↪→ .shard_table_1 table in MySQL instance 2:
{

"Message": "cannot track DDL: ALTER TABLE `shard_db_1`.`shard_table_1`
↪→ ADD COLUMN `new_col` INT UNIQUE KEY",

"RawCause": "[ddl:8200]unsupported add column 'new_col' constraint
↪→ UNIQUE KEY when altering 'shard_db_1.shard_table_1'",

}

222



{
"Message": "cannot track DDL: ALTER TABLE `shard_db_2`.`shard_table_1`

↪→ ADD COLUMN `new_col` INT UNIQUE KEY",
"RawCause": "[ddl:8200]unsupported add column 'new_col' constraint

↪→ UNIQUE KEY when altering 'shard_db_2.shard_table_1'",
}

You can replace this DDL statement with two equivalent DDL statements. The steps
are as follows:

1. Replace the wrong DDL statements respectively in MySQL instance 1 and MySQL
instance 2 by the following commands:
» handle-error test -s mysql-replica-01 replace "ALTER TABLE `

↪→ shard_db_1`.`shard_table_1` ADD COLUMN `new_col` INT;ALTER TABLE
↪→ `shard_db_1`.`shard_table_1` ADD UNIQUE(`new_col`)";

{
"result": true,
"msg": "",
"sources": [

{
"result": true,
"msg": "",
"source": "mysql-replica-01",
"worker": "worker1"

}
]

}

» handle-error test -s mysql-replica-02 replace "ALTER TABLE `
↪→ shard_db_2`.`shard_table_1` ADD COLUMN `new_col` INT;ALTER TABLE
↪→ `shard_db_2`.`shard_table_1` ADD UNIQUE(`new_col`)";

{
"result": true,
"msg": "",
"sources": [

{
"result": true,
"msg": "",
"source": "mysql-replica-02",
"worker": "worker2"

}

223



]
}

2. Use query-status <task-name> to view the task status, and you can see the following
errors reported by the shard_db_1.shard_table_2 table in MySQL instance 1 and the
shard_db_2.shard_table_2 table in MySQL instance 2:
{

"Message": "detect inconsistent DDL sequence from source ... ddls:
↪→ [ALTER TABLE `shard_db`.`tb` ADD COLUMN `new_col` INT UNIQUE
↪→ KEY] source: `shard_db_1`.`shard_table_2`], right DDL
↪→ sequence should be ..."

}

{
"Message": "detect inconsistent DDL sequence from source ... ddls:

↪→ [ALTER TABLE `shard_db`.`tb` ADD COLUMN `new_col` INT UNIQUE
↪→ KEY] source: `shard_db_2`.`shard_table_2`], right DDL
↪→ sequence should be ..."

}

3. Execute handle-error <task-name> replace again to replace the wrong DDL state-
ments in MySQL instance 1 and 2:
» handle-error test -s mysql-replica-01 replace "ALTER TABLE `

↪→ shard_db_1`.`shard_table_2` ADD COLUMN `new_col` INT;ALTER TABLE
↪→ `shard_db_1`.`shard_table_2` ADD UNIQUE(`new_col`)";

{
"result": true,
"msg": "",
"sources": [

{
"result": true,
"msg": "",
"source": "mysql-replica-01",
"worker": "worker1"

}
]

}

» handle-error test -s mysql-replica-02 replace "ALTER TABLE `
↪→ shard_db_2`.`shard_table_2` ADD COLUMN `new_col` INT;ALTER TABLE
↪→ `shard_db_2`.`shard_table_2` ADD UNIQUE(`new_col`)";

224



{
"result": true,
"msg": "",
"sources": [

{
"result": true,
"msg": "",
"source": "mysql-replica-02",
"worker": "worker2"

}
]

}

4. Use query-status <task-name> to view the task status:
» query-status test

See the execution result.
{

"result": true,
"msg": "",
"sources": [

{
"result": true,
"msg": "",
"sourceStatus": {

"source": "mysql-replica-01",
"worker": "worker1",
"result": null,
"relayStatus": null

},
"subTaskStatus": [

{
"name": "test",
"stage": "Running",
"unit": "Sync",
"result": null,
"unresolvedDDLLockID": "",
"sync": {

"totalEvents": "4",
"totalTps": "0",
"recentTps": "0",
"masterBinlog": "(DESKTOP-T561TSO-bin.000001,

↪→ 2388)",

225



"masterBinlogGtid": "143bdef3-dd4a-11ea-8b00-00155
↪→ de45f57:1-10",

"syncerBinlog": "(DESKTOP-T561TSO-bin.000001,
↪→ 2388)",

"syncerBinlogGtid": "143bdef3-dd4a-11ea-8b00-00155
↪→ de45f57:1-4",

"blockingDDLs": [
],
"unresolvedGroups": [
],
"unresolvedGroups": [
],
"synced": true,
"binlogType": "remote"

}
}

]
},
{

"result": true,
"msg": "",
"sourceStatus": {

"source": "mysql-replica-02",
"worker": "worker2",
"result": null,
"relayStatus": null

},
"subTaskStatus": [

{
"name": "test",
"stage": "Running",
"unit": "Sync",
"result": null,
"unresolvedDDLLockID": "",
"sync": {

"totalEvents": "4",
"totalTps": "0",
"recentTps": "0",
"masterBinlog": "(DESKTOP-T561TSO-bin.000001,

↪→ 2388)",
"masterBinlogGtid": "143bdef3-dd4a-11ea-8b00-00155

↪→ de45f57:1-10",
"syncerBinlog": "(DESKTOP-T561TSO-bin.000001,

↪→ 2388)",
"syncerBinlogGtid": "143bdef3-dd4a-11ea-8b00-00155

226



↪→ de45f57:1-4",
"blockingDDLs": [
],
"unresolvedGroups": [
],
"unresolvedGroups": [
],
"synced": try,
"binlogType": "remote"

}
}

]
}

]
}

You can see that the task runs normally with no error and all four wrong DDL state-
ments are replaced.

4.5 Handle Sharding DDL Locks Manually in DM

DM uses the sharding DDL lock to ensure operations are performed in the correct order.
This locking mechanism resolves sharding DDL locks automatically in most cases, but you
need to use the unlock-ddl-lock command to manually handle the abnormal DDL locks
in some abnormal scenarios.

Note:

• This document only applies to the processing of sharding DDL lock in
pessimistic coordination mode.

• The commands in the Command usage sections in this document are in
interactive mode. In command-line mode, you need to add the escape
characters to avoid an error report.

• Do not use unlock-ddl-lock or break-ddl-lock unless you are totally
aware of the possible impacts brought by the command and you can
accept them.

• Before manually handling the abnormal DDL locks, make sure that you
have already read the DM shard merge principles.

227



4.5.1 Command

4.5.1.1 show-ddl-locks

This command queries the current DDL lock information on DM-master.

4.5.1.1.1 Command usage
show-ddl-locks [--source=mysql-replica-01] [task-name | task-file]

4.5.1.1.2 Arguments description

• source:

– Flag; string; --source; optional
– It can be specified repeatedly multiple times.
– If it is not specified, this command queries the lock information related to all

MySQL sources; if it is specified, this command queries the lock information
related only to the specified MySQL source.

• task-name | task-file:

– Non-flag; string; optional
– If it is not specified, this command queries the lock information related to all

tasks; if it is specified, this command queries the lock information related only to
the specified task.

4.5.1.1.3 Example of results
» show-ddl-locks test
{

"result": true, # The result of the
↪→ query for the lock information.

"msg": "", # The additional
↪→ message for the failure to query the lock information or other
↪→ descriptive information (for example, the lock task does not
↪→ exist).

"locks": [ # The existing lock
↪→ information list.
{

"ID": "test-`shard_db`.`shard_table`", # The lock ID, which is
↪→ made up of the current task name and the schema/table
↪→ information corresponding to the DDL.

"task": "test", # The name of the task
↪→ to which the lock belongs.

228



"mode": "pessimistic" # The shard DDL mode.
↪→ Can be set to "pessimistic" or "optimistic".

"owner": "mysql-replica-01", # The owner of the lock
↪→ (the ID of the first source that encounters this DDL
↪→ operation in the pessimistic mode), which is always empty
↪→ in the optimistic mode.

"DDLs": [ # The list of DDL
↪→ operations corresponding to the lock in the pessimistic
↪→ mode, which is always empty in the optimistic mode.
"USE `shard_db`; ALTER TABLE `shard_db`.`shard_table` DROP

↪→ COLUMN `c2`;"
],
"synced": [ # The list of sources

↪→ that have received all sharding DDL events in the
↪→ corresponding MySQL instance.
"mysql-replica-01"

],
"unsynced": [ # The list of sources

↪→ that have not yet received all sharding DDL events in the
↪→ corresponding MySQL instance.
"mysql-replica-02"

]
}

]
}

4.5.1.2 unlock-ddl-lock

This command actively requests DM-master to unlock the specified DDL lock, including
requesting the owner to execute the DDL statement, requesting all other DM-workers that
are not the owner to skip the DDL statement, and removing the lock information on DM-
↪→ master.

Note:
Currently, unlock DDL lock takes effect only for the lock in the pessimistic
mode.

4.5.1.2.1 Command usage
unlock-ddl-lock [--owner] [--force-remove] <lock-ID>

229



4.5.1.2.2 Arguments description

• owner:

– Flag; string; --owner; optional
– If it is not specified, this command requests for the default owner (the owner in the

result of show-ddl-locks) to execute the DDL statement; if it is specified, this
command requests for the MySQL source (the alternative of the default owner)
to execute the DDL statement.

– The new owner should not be specified unless the original owner is already re-
moved from the cluster.

• force-remove:

– Flag; boolean; --force-remove; optional
– If it is not specified, this command removes the lock information only when the

owner succeeds to execute the DDL statement; if it is specified, this command
forcefully removes the lock information even though the owner fails to execute the
DDL statement (after doing this you cannot query or operate on the lock again).

• lock-ID:

– Non-flag; string; required
– It specifies the ID of the DDL lock that needs to be unlocked (the ID in the result

of show-ddl-locks).

4.5.1.2.3 Example of results
» unlock-ddl-lock test-`shard_db`.`shard_table`
{

"result": true, # The result of the
↪→ unlocking operation.

"msg": "", # The additional
↪→ message for the failure to unlock the lock.

}

4.5.2 Supported scenarios

Currently, the unlock-ddl-lock command only supports handling sharding DDL locks
in the following two abnormal scenarios.

4.5.2.1 Scenario 1: Some MySQL sources are removed

230



4.5.2.1.1 The reason for the abnormal lock
Before DM-master tries to automatically unlock the sharding DDL lock, all the MySQL

sources need to receive the sharding DDL events (for details, see shard merge principles).
If the sharding DDL event is already in the migration process, and some MySQL sources
have been removed and are not to be reloaded (these MySQL sources have been removed
according to the application demand), then the sharding DDL lock cannot be automatically
migrated and unlocked because not all the DM-workers can receive the DDL event.

Note:
If you need to make some DM-workers offline when not in the process of
migrating sharding DDL events, a better solution is to use stop-task to
stop the running tasks first, make the DM-workers go offline, remove the
corresponding configuration information from the task configuration file, and
finally use start-task and the new task configuration to restart the migration
task.

4.5.2.1.2 Manual solution
Suppose that there are two instances MySQL-1 (mysql-replica-01) and MySQL-2 (mysql

↪→ -replica-02) in the upstream, and there are two tables shard_db_1.shard_table_1
and shard_db_1.shard_table_2 in MySQL-1 and two tables shard_db_2.shard_table_1
and shard_db_2.shard_table_2 in MySQL-2. Now we need to merge the four tables and
migrate them into the table shard_db.shard_table in the downstream TiDB.

The initial table structure is:
SHOW CREATE TABLE shard_db_1.shard_table_1;
+---------------+------------------------------------------+
| Table | Create Table |
+---------------+------------------------------------------+
| shard_table_1 | CREATE TABLE `shard_table_1` (
`c1` int(11) NOT NULL,
PRIMARY KEY (`c1`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 |
+---------------+------------------------------------------+

The following DDL operation will be executed on the upstream sharded tables to alter
the table structure:
ALTER TABLE shard_db_*.shard_table_* ADD COLUMN c2 INT;

The operation processes of MySQL and DM are as follows:

231



1. The corresponding DDL operations are executed on the two sharded tables of mysql-
↪→ replica-01 to alter the table structures.
ALTER TABLE shard_db_1.shard_table_1 ADD COLUMN c2 INT;

ALTER TABLE shard_db_1.shard_table_2 ADD COLUMN c2 INT;

2. DM-worker sends the received DDL information of the two sharded tables of mysql-
↪→ replica-01 to DM-master, and DM-master creates the corresponding DDL lock.

3. Use show-ddl-lock to check the information of the current DDL lock.
» show-ddl-locks test
{

"result": true,
"msg": "",
"locks": [

{
"ID": "test-`shard_db`.`shard_table`",
"task": "test",
"mode": "pessimistic"
"owner": "mysql-replica-01",
"DDLs": [

"USE `shard_db`; ALTER TABLE `shard_db`.`shard_table` ADD
↪→ COLUMN `c2` int(11);"

],
"synced": [

"mysql-replica-01"
],
"unsynced": [

"mysql-replica-02"
]

}
]

}

4. Due to the application demand, the data corresponding to mysql-replica-02 is no
longer needed to be migrated to the downstream TiDB, and mysql-replica-02 is
removed.

5. The lock whose ID is test-`shard_db`.`shard_table` on DM-master cannot receive
the DDL information of mysql-replica-02.

• The returned result unsynced by show-ddl-locks has always included the infor-
mation of mysql-replica-02.

232



6. Use unlock-dll-lock to ask DM-master to actively unlock the DDL lock.

• If the owner of the DDL lock has gone offline, you can use the parameter --owner
to specify another DM-worker as the new owner to execute the DDL.

• If any MySQL source reports an error, result will be set to false, and at this
point you should check carefully if the errors of each MySQL source is acceptable
and within expectations.
unlock-ddl-lock test-`shard_db`.`shard_table`

{
"result": true,
"msg": ""

7. Use show-ddl-locks to confirm if the DDL lock is unlocked successfully.
» show-ddl-locks test
{

"result": true,
"msg": "no DDL lock exists",
"locks": [
]

}

8. Check whether the table structure is altered successfully in the downstream TiDB.
mysql> SHOW CREATE TABLE shard_db.shard_table;
+-------------+--------------------------------------------------+
| Table | Create Table |
+-------------+--------------------------------------------------+
| shard_table | CREATE TABLE `shard_table` (
`c1` int(11) NOT NULL,
`c2` int(11) DEFAULT NULL,
PRIMARY KEY (`c1`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 COLLATE=latin1_bin |
+-------------+--------------------------------------------------+

9. Use query-status to confirm if the migration task is normal.

4.5.2.1.3 Impact
After you have manually unlocked the lock by using unlock-ddl-lock, if you don’t

deal with the offline MySQL sources included in the task configuration information, the lock
might still be unable to be migrated automatically when the next sharding DDL event is
received.

233



Therefore, after you have manually unlocked the DDL lock, you should perform the
following operations:

1. Use stop-task to stop the running tasks.
2. Update the task configuration file, and remove the related information of the offline

MySQL source from the configuration file.
3. Use start-task and the new task configuration file to restart the task.

Note:
After you run unlock-ddl-lock, if the MySQL source that went offline is
reloaded and the DM-worker tries to migrate the data of the sharded tables,
a match error between the data and the downstream table structure might
occur.

4.5.2.2 Scenario 2: Some DM-workers stop abnormally or the network failure
occurs during the DDL unlocking process

4.5.2.2.1 The reason for the abnormal lock
After DM-master receives the DDL events of all DM-workers, automatically running

unlock DDL lock mainly include the following steps:

1. Ask the owner of the lock to execute the DDL and update the checkpoints of corre-
sponding sharded tables.

2. Remove the DDL lock information stored on DM-master after the owner successfully
executes the DDL.

3. Ask all other non-owners to skip the DDL and update the checkpoints of corresponding
sharded tables after the owner successfully executes the DDL.

4. DM-master removes the corresponding DDL lock information after all the owners or
non-owners’ operations are successful.

Currently, the above unlocking process is not atomic. If the non-owner skips the DDL
operation successfully, the DM-worker where the non-owner is located stops abnormally
or a network anomaly occurs with the downstream TiDB, which can cause the checkpoint
updating to fail.

When the MySQL source corresponding to the non-owner restores data migration, the
non-owner tries to request the DM-master to re-coordinate the DDL operation that has
been coordinated before the exception occurs and will never receives the corresponding DDL
operation from other MySQL sources. This can cause the DDL operation to automatically
unlock the corresponding lock.

234



4.5.2.2.2 Manual solution
Suppose that now we have the same upstream and downstream table structures and the

same demand for merging tables and migration as in the manual solution of Some MySQL
sources are removed.

When DM-master automatically executes the unlocking process, the owner (mysql-
↪→ replica-01) successfully executes the DDL and continues the migration process. How-
ever, in the process of requesting the non-owner (mysql-replica-02) to skip the DDL oper-
ation, the checkpoint fails to update after the DM-worker skips the DDL operation because
the corresponding DM-worker was restarted.

After the data migration subtask corresponding to mysql-replica-02 restores, a new
lock is created on the DM-master, but other MySQL sources have executed or skipped DDL
operations and are performing subsequent migration.

The operation processes are:

1. Use show-ddl-locks to confirm if the corresponding lock of the DDL exists on DM-
↪→ master.
Only mysql-replica-02 is at the synced state.
» show-ddl-locks
{

"result": true,
"msg": "",
"locks": [

{
"ID": "test-`shard_db`.`shard_table`",
"task": "test",
"mode": "pessimistic"
"owner": "mysql-replica-02",
"DDLs": [

"USE `shard_db`; ALTER TABLE `shard_db`.`shard_table` ADD
↪→ COLUMN `c2` int(11);"

],
"synced": [

"mysql-replica-02"
],
"unsynced": [

"mysql-replica-01"
]

}
]

}

2. Use unlock-ddl-lock to ask DM-master to unlock the lock.

235



• During the unlocking process, the owner tries to execute the DDL operation to
the downstream again (the original owner before restarting has executed the DDL
operation to the downstream once). Make sure that the DDL operation can be
executed multiple times.
unlock-ddl-lock test-`shard_db`.`shard_table`
{

"result": true,
"msg": "",

}

3. Use show-ddl-locks to confirm if the DDL lock has been successfully unlocked.

4. Use query-status to confirm if the migration task is normal.

4.5.2.2.3 Impact
After manually unlocking the lock, the following sharding DDL can be migrated auto-

matically and normally.

4.6 Manage Table Schemas of Tables to be Migrated

This document describes how to manage the schema of the table in DM during migration
using dmctl.

4.6.1 Implementation principles

When you migrate tables using DM, DM performs the following operations on the table
schema:

• For full export and import, DM directly exports the upstream table schema of the
current time to SQL files and applies the table schema to the downstream.

• For incremental replication, the whole data link contains the following table schemas,
which might be the same or different:

236



Figure 22: schema

– The upstream table schema at the current time, identified as schema-U.
– The table schema of the binlog event currently being consumed by DM, identi-

fied as schema-B. This schema corresponds to the upstream table schema at a
historical time.

– The table schema currently maintained in DM (the schema tracker component),
identified as schema-I.

– The table schema in the downstream TiDB cluster, identified as schema-D.

In most cases, the four table schemas above are the same.

When the upstream database performs a DDL operation to change the table schema,
schema-U is changed. By applying the DDL operation to the internal schema tracker compo-
nent and the downstream TiDB cluster, DM updates schema-I and schema-D in an orderly
manner to keep them consistent with schema-U. Therefore, DM can then normally con-
sume the binlog event corresponding to the schema-B table schema. That is, after the DDL

237



operation is successfully migrated, schema-U, schema-B, schema-I, and schema-D are still
consistent.

However, during the migration with optimistic mode sharding DDL support enabled, the
schema-D of the downstream table might be inconsistent with the schema-B and schema-I
of some upstream sharded tables. In such cases, DM still keeps schema-I and schema-B
consistent to ensure that the binlog event corresponding to DML can be parsed normally.

In addition, in some scenarios (such as when the downstream table has more columns
than the upstream table), schema-D might be inconsistent with schema-B and schema-I.

To support the scenarios mentioned above and handle other migration interruptions
caused by schema inconsistency, DM provides the operate-schema command to obtain,
modify, and delete the schema-I table schema maintained in DM.

4.6.2 Command

help operate-schema

`get`/`set`/`remove` the schema for an upstream table.

Usage:
dmctl operate-schema <operate-type> <-s source ...> <task-name | task-file

↪→ > <-d database> <-t table> [schema-file] [--flush] [--sync] [flags]

Flags:
-d, --database string database name of the table

--flush flush the table info and checkpoint immediately
-h, --help help for operate-schema

--sync sync the table info to master to resolve shard ddl
↪→ lock, only for optimistic mode now

-t, --table string table name

Global Flags:
-s, --source strings MySQL Source ID.

Note:

• Because a table schema might change during data migration, to obtain a
predictable table schema, currently the operate-schema command can
be used only when the data migration task is in the Paused state.

• To avoid data loss due to mishandling, it is strongly recommended to
get and backup the table schema firstly before you modify the schema.

238



4.6.3 Parameters

• operate-type:

– Required.
– Specifies the type of operation on the schema. The optional values are get, set,

and remove.

• -s:

– Required.
– Specifies the MySQL source that the operation is applied to.

• task-name | task-file:

– Required.
– Specifies the task name or task file path.

• -d:

– Required.
– Specifies the name of the upstream database the table belongs to.

• -t:

– Required.
– Specifies the name of the upstream table corresponding to the table.

• schema-file:

– Required when the operation type is set. Optional for other operation types.
– The table schema file to be set. The file content should be a valid CREATE TABLE

statement.

• --flush:

– Optional.
– Writes the schema to the checkpoint so that DM can load it after restarting the

task.
– The default value is true.

• --sync:

– Optional. Only used when an error occurs in the optimistic sharding DDL mode.
– Updates the optimistic sharding metadata with this schema.

4.6.4 Usage example

4.6.4.1 Get the table schema
If you want to get the table schema of the `db_single`.`t1` table corresponding to

the mysql-replica-01 MySQL source in the db_single task, run the following command:

239



operate-schema get -s mysql-replica-01 task_single -d db_single -t t1

{
"result": true,
"msg": "",
"sources": [

{
"result": true,
"msg": "CREATE TABLE `t1` ( `c1` int(11) NOT NULL, `c2` int(11)

↪→ DEFAULT NULL, PRIMARY KEY (`c1`)) ENGINE=InnoDB DEFAULT
↪→ CHARSET=latin1 COLLATE=latin1_bin",

"source": "mysql-replica-01",
"worker": "127.0.0.1:8262"

}
]

}

4.6.4.2 Set the table schema
If you want to set the table schema of the `db_single`.`t1` table corresponding to the

mysql-replica-01 MySQL source in the db_single task as follows:
CREATE TABLE `t1` (

`c1` int(11) NOT NULL,
`c2` bigint(11) DEFAULT NULL,
PRIMARY KEY (`c1`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1 COLLATE=latin1_bin

Save the CREATE TABLE statement above as a file (for example, db_single.t1-schema.
↪→ sql), and run the following command:
operate-schema set -s mysql-replica-01 task_single -d db_single -t t1

↪→ db_single.t1-schema.sql

{
"result": true,
"msg": "",
"sources": [

{
"result": true,
"msg": "",
"source": "mysql-replica-01",
"worker": "127.0.0.1:8262"

}
]

240



}

4.6.4.3 Delete table schema

Note:
After the table schema maintained in DM is deleted, if a DDL/DML statement
related to this table needs to be migrated to the downstream, DM will try to
get the table schema from the following three sources in an orderly manner:

• The table_info field in the checkpoint table
• The meta information in the optimistic sharding DDL
• The corresponding table in the downstream TiDB

If you want to delete the table schema of the `db_single`.`t1` table corresponding to
the mysql-replica-01 MySQL source in the db_single task, run the following command:
operate-schema remove -s mysql-replica-01 task_single -d db_single -t t1

{
"result": true,
"msg": "",
"sources": [

{
"result": true,
"msg": "",
"source": "mysql-replica-01",
"worker": "127.0.0.1:8262"

}
]

}

4.7 Handle Alerts

This document introduces how to deal with the alert information in DM.

4.7.1 Alerts related to high availability

4.7.1.1 DM_master_all_down

241



• Description:
If all DM-master nodes are offline, this alert is triggered.

• Solution:
You can take the following steps to handle the alert:

1. Check the environment of the cluster.
2. Check the logs of all DM-master nodes for troubleshooting.

4.7.1.2 DM_worker_offline

• Description:
If a DM-worker node is offline for more than one hour, this alert is triggered. In a high-
availability architecture, this alert might not directly interrupt the task but increases
the risk of interruption.

• Solution:
You can take the following steps to handle the alert:

1. View the working status of the corresponding DM-worker node.
2. Check whether the node is connected.
3. Troubleshoot errors through logs.

4.7.1.3 DM_DDL_error

• Description:
This error occurs when DM is processing the sharding DDL operations.

• Solution:
Refer to Troubleshoot DM.

4.7.1.4 DM_pending_DDL

• Description:
If a sharding DDL operation is pending for more than one hour, this alert is triggered.

• Solution:
In some scenarios, the pending sharding DDL operation might be what users expect.
Otherwise, refer to Handle Sharding DDL Locks Manually in DM for solution.

242



4.7.2 Alert rules related to task status

4.7.2.1 DM_task_state

• Description:
When a sub-task of DM-worker is in the Paused state for over 20 minutes, an alert is
triggered.

• Solution:
Refer to Troubleshoot DM.

4.7.3 Alert rules related to relay log

4.7.3.1 DM_relay_process_exits_with_error

• Description:
When the relay log processing unit encounters an error, this unit moves to Paused
state, and an alert is triggered immediately.

• Solution:
Refer to Troubleshoot DM.

4.7.3.2 DM_remain_storage_of_relay_log

• Description:
When the free space of the disk where the relay log is located is less than 10G, an alert
is triggered.

• Solutions:
You can take the following methods to handle the alert:

– Delete unwanted data manually to increase free disk space.
– Reconfigure the automatic data purge strategy of the relay log or purge data

manually.
– Execute the command pause-relay to pause the relay log pulling process. After

there is enough free disk space, resume the process by running the command
resume-relay. Note that you must not purge upstream binlog files that have not
been pulled after the relay log pulling process is paused.

243



4.7.3.3 DM_relay_log_data_corruption

• Description:
When the relay log processing unit validates the binlog event read from the upstream
and detects abnormal checksum information, this unit moves to the Paused state, and
an alert is triggered immediately.

• Solution:
Refer to Troubleshoot DM.

4.7.3.4 DM_fail_to_read_binlog_from_master

• Description:
If an error occurs when the relay log processing unit tries to read the binlog event
from the upstream, this unit moves to the Paused state, and an alert is triggered
immediately.

• Solution:
Refer to Troubleshoot DM.

4.7.3.5 DM_fail_to_write_relay_log

• Description:
If an error occurs when the relay log processing unit tries to write the binlog event
into the relay log file, this unit moves to the Paused state, and an alert is triggered
immediately.

• Solution:
Refer to Troubleshoot DM.

4.7.3.6 DM_binlog_file_gap_between_master_relay

• Description:
When the number of the binlog files in the current upstream MySQL/MariaDB exceeds
that of the latest binlog files pulled by the relay log processing unit by more than 1
for 10 minutes, and an alert is triggered.

• Solution:
Refer to Troubleshoot DM.

244



4.7.4 Alert rules related to Dump/Load

4.7.4.1 DM_dump_process_exists_with_error

• Description:
When the Dump processing unit encounters an error, this unit moves to the Paused
state, and an alert is triggered immediately.

• Solution:
Refer to Troubleshoot DM.

4.7.4.2 DM_load_process_exists_with_error

• Description:
When the Load processing unit encounters an error, this unit moves to the Paused
state, and an alert is triggered immediately.

• Solution:
Refer to Troubleshoot DM.

4.7.5 Alert rules related to binlog replication

4.7.5.1 DM_sync_process_exists_with_error

• Description:
When the binlog replication processing unit encounters an error, this unit moves to
the Paused state, and an alert is triggered immediately.

• Solution:
Refer to Troubleshoot DM.

4.7.5.2 DM_binlog_file_gap_between_master_syncer

• Description:
When the number of the binlog files in the current upstream MySQL/MariaDB exceeds
that of the latest binlog files processed by the relay log processing unit by more than
1 for 10 minutes, an alert is triggered.

• Solution:
Refer to Handle Performance Issues.

245



4.7.5.3 DM_binlog_file_gap_between_relay_syncer

• Description:
When the number of the binlog files in the current relay log processing unit exceeds
that of the latest binlog files processed by the binlog replication processing unit by
more than 1 for 10 minutes, an alert is triggered.

• Solution:
Refer to Handle Performance Issues.

4.8 Daily Check

This document summarizes how to perform a daily check on TiDB Data Migration (DM).

• Method 1: Execute the query-status command to check the running status of the
task and the error output (if any). For details, see Query Status.

• Method 2: If Prometheus and Grafana are correctly deployed when you deploy the DM
cluster using TiUP, you can view DM monitoring metrics in Grafana. For example,
suppose that the Grafana’s address is 172.16.10.71, go to http://172.16.10.71:3000,
enter the Grafana dashboard, and select the DM Dashboard to check monitoring met-
rics of DM. For more information of these metrics, see DM Monitoring Metrics.

• Method 3: Check the running status of DM and the error (if any) using the log file.

– DM-master log directory: It is specified by the --log-file DM-master process
parameter. If DM is deployed using TiUP, the log directory is {log_dir} in the
DM-master node.

– DM-worker log directory: It is specified by the --log-file DM-worker process
parameter. If DM is deployed using TiUP, the log directory is {log_dir} in the
DM-worker node.

5 Usage Scenarios

5.1 Migrate from a MySQL-compatible Database - Taking Ama-
zon Aurora MySQL as an Example

This document describes how to migrate from Amazon Aurora MySQL to TiDB by using
TiDB Data Migration (DM).

The information of the Aurora cluster in the example is as follows:

246

http://172.16.10.71:3000
https://aws.amazon.com/rds/aurora/details/mysql-details/?nc1=h_ls


Cluster EndpointPort Role Version
Aurora-1 test-

dm-
2-
0.cluster-
czrtqco96yc6.us-
east-
2.rds.amazonaws.com

3306 Writer Aurora
(MySQL)-
5.7.12

Aurora-1 test-
dm-
2-
0.cluster-
ro-
czrtqco96yc6.us-
east-
2.rds.amazonaws.com

3306 ReaderAurora
(MySQL)-
5.7.12

Aurora-2 test-
dm-
2-0-
2.cluster-
czrtqco96yc6.us-
east-
2.rds.amazonaws.com

3306 Writer Aurora
(MySQL)-
5.7.12

Aurora-2 test-
dm-
2-0-
2.cluster-
ro-
czrtqco96yc6.us-
east-
2.rds.amazonaws.com

3306 ReaderAurora
(MySQL)-
5.7.12

The data and migration plan of the Aurora cluster are as follows:

Cluster Database Table Migration
Aurora-1 migrate_me t1 Yes
Aurora-1 ignore_me ignore_table No
Aurora-2 migrate_me t2 Yes
Aurora-2 ignore_me ignore_table No

The Aurora users in this migration are as follows:

247



Cluster User Password
Aurora-1 root 12345678
Aurora-2 root 12345678

The TiDB cluster information in the example is as follows. The TiDB cluster is deployed
using TiDB Cloud.

Node Port Version
tidb.6657c286.23110bc6.us-east-1.prod.aws.tidbcloud.com 4000 v4.0.2

The TiDB users in this migration are as follows:

User Password
root 87654321

After migration, the `migrate_me`.`t1` and `migrate_me`.`t2` tables are expected
to exist in the TiDB cluster. The data of these tables is consistent with that of the Aurora
cluster.

Note:
This migration does not involve the DM Shard Merge feature. To use this
feature, see DM Shard Merge Scenario.

5.1.1 Step 1: Precheck

To ensure a successful migration, you need to do prechecks before starting the migration.
This section provides the precheck list and solutions to DM and Aurora components.

5.1.1.1 DM nodes deployment
As the hub of data migration, DM needs to connect to the upstream Aurora cluster and

the downstream TiDB cluster. Therefore, you need to use the MySQL client to check whether
the nodes in which DM is to be deployed can connect to the upstream and downstream. In
addition, for details of DM requirements on hardware, software, and the node number, see
DM Cluster Software and Hardware Recommendations.

5.1.1.2 Aurora

248

https://tidbcloud.com/


DM relies on the ROW-formatted binlog for incremental replication. See Enable binary
for an Aurora Cluster for the configuration instruction.

If GTID is enabled in Aurora, you can migrate data based on GTID. For how to enable
it, see Configuring GTID-Based Replication for an Aurora MySQL Cluster. To migrate data
based on GTID, you need to set enable-gtid to true in the configuration file of data source
in step 3.

Note:

• GTID-based data migration requires MySQL 5.7 (Aurora 2.04) version
or later.

• In addition to the Aurora-specific configuration above, the upstream
database must meet other requirements for migrating from MySQL, such
as table schemas, character sets, and privileges. See Checking Items for
details.

5.1.2 Step 2: Deploy the DM cluster

DM can be deployed in multiple ways. Currently, it is recommended to use TiUP to
deploy a DM cluster. For the specific deployment method, see Deploy DM cluster using
TiUP. This example has two data sources, so at least two DM-worker nodes need to be
deployed.

After deployment, you need to record the IP and service port of any DM-master node
(8261 by default) for dmctl to connect. This example uses 127.0.0.1:8261. Check the DM
status through TiUP using dmctl:

Note:
When using other methods to deploy DM, you can call dmctl in a similar
way. See Introduction to dmctl.

tiup dmctl --master-addr 127.0.0.1:8261 list-member

The number of masters and workers in the returned result is consistent with the number
of deployed nodes:
{

"result": true,

249

https://aws.amazon.com/premiumsupport/knowledge-center/enable-binary-logging-aurora/?nc1=h_ls
https://aws.amazon.com/premiumsupport/knowledge-center/enable-binary-logging-aurora/?nc1=h_ls
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/mysql-replication-gtid.html#mysql-replication-gtid.configuring-aurora


"msg": "",
"members": [

{
"leader": {

...
}

},
{

"master": {
"msg": "",
"masters": [

...
]

}
},
{

"worker": {
"msg": "",
"workers": [

...
]

}
}

]
}

5.1.3 Step 3: Configure the data source

Note:
The configuration file used by DM supports database passwords in plaintext
or ciphertext. It is recommended to use password encrypted using dmctl.
To obtain the ciphertext password, see Encrypt the database password using
dmctl.

Save the following configuration files of data source according to the example, in which
the value of source-id will be used in the task configuration in step 4.

The content of source1.yaml:
## Aurora-1
source-id: "aurora-replica-01"

250



## To migrate data based on GTID, you need to set this item to true.
enable-gtid: false

from:
host: "test-dm-2-0.cluster-czrtqco96yc6.us-east-2.rds.amazonaws.com"
user: "root"
password: "12345678"
port: 3306

The content of source2.yaml:
## Aurora-2
source-id: "aurora-replica-02"

enable-gtid: false

from:
host: "test-dm-2-0-2.cluster-czrtqco96yc6.us-east-2.rds.amazonaws.com"
user: "root"
password: "12345678"
port: 3306

See Migrate Data Using Data Migration - Create Data Source, and use dmctl to add
two data sources through TiUP.
tiup dmctl --master-addr 127.0.0.1:8261 operate-source create dm-test/

↪→ source1.yaml
tiup dmctl --master-addr 127.0.0.1:8261 operate-source create dm-test/

↪→ source2.yaml

When the data sources are successfully added, the return information of each data source
includes a DM-worker bound to it.
{

"result": true,
"msg": "",
"sources": [

{
"result": true,
"msg": "",
"source": "aurora-replica-01",
"worker": "one-dm-worker-ID"

}
]

}

251



5.1.4 Step 4: Configure the task

Note:
Because Aurora does not support FTWRL, write operations have to be paused
when you only perform the full data migration to export data. See AWS
documentation for details. In this example, both full data migration and
incremental replication are performed, and DM automatically enables the
safe mode to solve this pause issue. To ensure data consistency in other
combinations of task mode, see AWS documentation.

This example migrates the existing data in Aurora and replicates incremental data to
TiDB in real time, which is the full data migration plus incremental replication mode.
According to the TiDB cluster information above, the added source-id, and the table to
be migrated, save the following task configuration file task.yaml:
## The task name. You need to use a different name for each of the multiple

↪→ tasks that run simultaneously.
name: "test"
## The full data migration plus incremental replication task mode.
task-mode: "all"
## The downstream TiDB configuration information.
target-database:
host: "tidb.6657c286.23110bc6.us-east-1.prod.aws.tidbcloud.com"
port: 4000
user: "root"
password: "87654321"

## Configuration of all the upstream MySQL instances required by the current
↪→ data migration task.

mysql-instances:
- source-id: "aurora-replica-01"
# The configuration items of the block and allow lists of the schema or

↪→ table to be migrated, used to quote the global block and allow lists
↪→ configuration. For global configuration, see the `block-allow-list`
↪→ below.

block-allow-list: "global"
mydumper-config-name: "global"

- source-id: "aurora-replica-02"
block-allow-list: "global"
mydumper-config-name: "global"

252

https://aws.amazon.com/premiumsupport/knowledge-center/mysqldump-error-rds-mysql-mariadb/?nc1=h_ls
https://aws.amazon.com/premiumsupport/knowledge-center/mysqldump-error-rds-mysql-mariadb/?nc1=h_ls
https://aws.amazon.com/premiumsupport/knowledge-center/mysqldump-error-rds-mysql-mariadb/?nc1=h_ls


## The configuration of block and allow lists.
block-allow-list:
global: # Quoted by block-allow-list: "global"

↪→ above
do-dbs: ["migrate_me"] # The allow list of the upstream table to

↪→ be migrated. Database tables that are not in the allow list will
↪→ not be migrated.

## The configuration of the dump unit.
mydumpers:

global: # Quoted by mydumper-config-name: "global"
↪→ above

extra-args: "--consistency none" # Aurora does not support FTWRL, you
↪→ need to configure this option to bypass FTWRL.

5.1.5 Step 5: Start the task

Start the task using dmctl through TiUP.

Note:
Currently, when using dmctl in TiUP, you need to use the absolute path of
task.yaml. TiUP will support the relative path in later versions.

tiup dmctl --master-addr 127.0.0.1:8261 start-task /absolute/path/to/task.
↪→ yaml --remove-meta

If the task is successfully started, the following information is returned:
{

"result": true,
"msg": "",
"sources": [

{
"result": true,
"msg": "",
"source": "aurora-replica-01",
"worker": "one-dm-worker-ID"

},
{

"result": true,

253



"msg": "",
"source": "aurora-replica-02",
"worker": "another-dm-worker-ID"

}
]

}

If source db replication privilege checker and source db dump privilege
↪→ checker errors are in the returned information, check whether unrecognized privileges
exsit in the errorMsg field. For example:
line 1 column 287 near \"INVOKE LAMBDA ON *.* TO...

The returned information above shows that the INVOKE LAMBDA privilege causes an error.
If the privilege is Aurora-specific, add the following content to the configuration file to skip
the check. DM will improve the automatic handling of Aurora privileges in later versions.
ignore-checking-items: ["replication_privilege","dump_privilege"]

5.1.6 Step 6: Query the task and validate the data

Use dmctl through TiUP to query information of the on-going migration task and the
task status.
tiup dmctl --master-addr 127.0.0.1:8261 query-status

If the task is running normally, the following information is returned.
{

"result": true,
"msg": "",
"tasks": [

{
"taskName": "test",
"taskStatus": "Running",
"sources": [

"aurora-replica-01",
"aurora-replica-02"

]
}

]
}

You can query data in the downstream, modify data in Aurora, and validate the data
migrated to TiDB.

254



5.2 Migration when There Are More Columns in the Downstream
TiDB Table

This document describes how to migrate tables using DM when there are more columns
in the downstream TiDB table schema than the upstream table schema.

5.2.1 The table shcema of the data source

This document uses the follwing data source example:

Schema Tables
user information, log
store store_bj, store_tj
log messages

5.2.2 Migration requirements

Create a customized table log.messages in TiDB. Its schema contains not only all the
columns in the log.messages table of the data source, but also additional columns. In this
case, migrate the table log.messages of the data source to the table log.messages of the
TiDB cluster.

Note:

• The columns that only exist in the downstream TiDB must be given a
default value or allowed to be NULL.

• For tables that are being migrated by DM, you can directly add new
columns in the downstream TiDB that are given a default value or al-
lowed to be NULL. Adding such new columns does not affect the data
migration.

5.2.3 Only migrate incremental data to TiDB and the downstream TiDB table
has more columns

If your migration task contains full data migration, the task can operate normally. If
you have already used other tools to do full data migration and this migration task only uses
DM to replicate incremental data, refer to Migrate Incremental Data to TiDB to create a
data migration task. At the same time, you need to manually configure the table schema in
DM for MySQL binlog parsing.

255



Otherwise, after creating the task, the following data migration errors occur when you
execute the query-status‘ command:
"errors": [

{
"ErrCode": 36027,
"ErrClass": "sync-unit",
"ErrScope": "internal",
"ErrLevel": "high",
"Message": "startLocation: [position: (mysql-bin.000001, 2022), gtid-

↪→ set:09bec856-ba95-11ea-850a-58f2b4af5188:1-9 ], endLocation: [
↪→ position: (mysql-bin.000001, 2022), gtid-set: 09bec856-ba95-11
↪→ ea-850a-58f2b4af5188:1-9]: gen insert sqls failed, schema: log
↪→ , table: messages: Column count doesn't match value count: 3 (
↪→ columns) vs 2 (values)",

"RawCause": "",
"Workaround": ""

}
]

The reason for the above errors is that when DM migrates the binlog event, if DM has
not maintained internally the table schema corresponding to that table, DM tries to use
the current table schema in the downstream to parse the binlog event and generate the
corresponding DML statement. If the number of columns in the binlog event is inconsistent
with the number of columns in the downstream table schema, the above error might occur.

In such cases, you can execute the operate-schema command to specify for the table
a table schema that matches the binlog event. If you are migrating sharded tables, you
need to configure the table schema in DM for parsing MySQL binlog for each sharded tables
according to the following steps:

1. Specify the table schema for the table log.messages to be migrated in the data source.
The table schema needs to correspond to the data of the binlog event to be replicated
by DM. Then save the CREATE TABLE table schema statement in a file. For example,
save the following table schema in the log.messages.sql file:
CREATE TABLE `messages` (
`id` int(11) NOT NULL,
`message` varchar(255) DEFAULT NULL,
PRIMARY KEY (`id`)

)

2. Execute the operate-schema command to set the table schema. At this time, the task
should be in the Paused state because of the above error.
tiup dmctl --master-addr <master-addr> operate-schema set -s mysql-01

↪→ task-test -d log -t message log.message.sql

256



3. Execute the resume-task command to resume the Paused task.

4. Execute the query-status command to check whether the data migration task is
running normally.

5.3 Switch DM-worker Connection between Upstream MySQL In-
stances

When the upstream MySQL instance that DM-worker connects to needs downtime main-
tenance or when the instance crashes unexpectedly, you need to switch the DM-worker
connection to another MySQL instance within the same migration group.

Note:

• You can switch the DM-worker connection to only an instance within
the same primary-secondary migration cluster.

• The MySQL instance to be newly connected to must have the binlog
required by DM-worker.

• DM-worker must operate in the GTID sets mode, which means you must
specify enable-gtid: true in the corresponding source configuration
file.

• The connection switch only supports the following two scenarios. Strictly
follow the procedures for each scenario. Otherwise, you might have
to re-deploy the DM cluster according to the newly connected MySQL
instance and perform the data migration task all over again.

For more details on GTID set, refer to MySQL documentation.

5.3.1 Switch DM-worker connection via virtual IP

When DM-worker connects the upstream MySQL instance via a virtual IP (VIP), switch-
ing the VIP connection to another MySQL instance means switching the MySQL instance
connected to DM-worker, without the upstream connection address changed.

Note:
Make necessary changes to DM in this scenario. Otherwise, when you switch
the VIP connection to another MySQL instance, DM might connect to the
new and old MySQL instances at the same time in different connections.

257

https://dev.mysql.com/doc/refman/5.7/en/replication-gtids-concepts.html#replication-gtids-concepts-gtid-sets


In this situation, the binlog replicated to DM is not consistent with other
upstream status that DM receives, causing unpredictable anomalies and even
data damage.

To switch one upstream MySQL instance (when DM-worker connects to it via a VIP)
to another, perform the following steps:

1. Use the query-status command to get the GTID sets (syncerBinlogGtid) corre-
sponding to the binlog that the current processing unit of binlog replication has repli-
cated to the downstream. Mark the sets as gtid-S.

2. Use the SELECT @@GLOBAL.gtid_purged; command on the new MySQL instance to
get the GTID sets corresponding to the purged binlogs. Mark the sets as gtid-P.

3. Use the SELECT @@GLOBAL.gtid_executed; command on the new MySQL instance to
get the GTID sets corresponding to all successfully executed transactions. Mark the
sets as gtid-E.

4. Make sure that the following conditions are met. Otherwise, you cannot switch the
DM-work connection to the new MySQL instance:

• gtid-S contains gtid-P. gtid-P can be empty.
• gtid-E contains gtid-S.

5. Use pause-task to pause all running tasks of data migration.
6. Change the VIP for it to direct at the new MySQL instance.
7. Use resume-task to resume the previous migration task.

5.3.2 Change the address of the upstream MySQL instance that DM-worker
connects to

To make DM-worker connect to a new MySQL instance in the upstream by modifying
the DM-worker configuration, perform the following steps:

1. Use the query-status command to get the GTID sets (syncerBinlogGtid) corre-
sponding to the binlog that the current processing unit of binlog replication has repli-
cated to the downstream. Mark this sets as gtid-S.

2. Use the SELECT @@GLOBAL.gtid_purged; command on the new MySQL instance to
get the GTID sets corresponding to the purged binlogs. Mark this sets as gtid-P.

3. Use the SELECT @@GLOBAL.gtid_executed; command on the new MySQL instance to
get the GTID sets corresponding to all successfully executed transactions. Mark this
sets as gtid-E.

4. Make sure that the following conditions are met. Otherwise, you cannot switch the
DM-work connection to the new MySQL instance:

• gtid-S contains gtid-P. gtid-P can be empty.

258



• gtid-E contains gtid-S.

5. Use stop-task to stop all running tasks of data migration.
6. Use the operator-source stop command to remove the source configuration corre-

sponding to the address of the old MySQL instance from the DM cluster.
7. Update the address of the MySQL instance in the source configuration file and use the

operate-source create command to reload the new source configuration in the DM
cluster.

8. Use start-task to restart the migration task.

6 Troubleshoot

6.1 Handle Errors

This document introduces the error system and how to handle common errors when you
use DM.

6.1.1 Error system

In the error system, usually, the information of a specific error is as follows:

• code: error code.
DM uses the same error code for the same error type. An error code does not change
as the DM version changes.
Some errors might be removed during the DM iteration, while the error codes are not.
DM uses a new error code instead of an existing one for a new error.

• class: error type.
It is used to mark the component where an error occurs (error source).
The following table displays all error types, error sources, and error samples.
|
Error Type
| Error Source | Error Sample

↪→ |

:————– | :—————————— | :————————————————————
|
database | Database operations | [code=10003:class=database:scope=downstream
↪→ :level=medium] database driver: invalid connection |
functional | Underlying functions of DM | [code=11005:class=functional:scope
↪→ =internal:level=high] not allowed operation: alter multiple tables
↪→ in one statement |

259



config | Incorrect configuration | [code=20005:class=config:scope=internal:
↪→ level=medium] empty source-id not valid |
binlog-op | Binlog operations | [code=22001:class=binlog-op:scope=internal:
↪→ level=high] empty UUIDs not valid |
checkpoint | checkpoint operations | [code=24002:class=checkpoint:scope=
↪→ internal:level=high] save point bin.1234 is older than current pos
↪→ bin.1371 |
task-check | Performing task check | [code=26003:class=task-check:scope=
↪→ internal:level=medium] new table router error |
relay-event-lib| Executing the basic functions of the relay module | [code=28001:
↪→ class=relay-event-lib:scope=internal:level=high] parse server-uuid.
↪→ index |
relay-unit | relay processing unit | [code=30015:class=relay-unit:scope=
↪→ upstream:level=high] TCPReader get event: ERROR 1236 (HY000): Could
↪→ not open log file |
dump-unit | dump processing unit | [code=32001:class=dump-unit:scope=internal
↪→ :level=high] mydumper runs with error: CRITICAL **: 15:12:17.559:
↪→ Error connecting to database: Access denied for user 'root'@'172.17.0.1'
↪→ (using password: NO) |
load-unit | load processing unit | [code=34002:class=load-unit:scope=internal
↪→ :level=high] corresponding ending of sql: ')' not found |
sync-unit | sync processing unit | [code=36027:class=sync-unit:scope=internal
↪→ :level=high] Column count doesn't match value count: 9 (columns)vs
↪→ 10 (values) |
dm-master | DM-master service | [code=38008:class=dm-master:scope=internal
↪→ :level=high] grpc request error: rpc error: code = Unavailable desc
↪→ = all SubConns are in TransientFailure, latest connection error:
↪→ connection error: desc = "transport: Error while dialing dial tcp
↪→ 172.17.0.2:8262: connect: connection refused" |
dm-worker | DM-worker service | [code=40066:class=dm-worker:scope=internal
↪→ :level=high] ExecuteDDL timeout, try use query-status to query
↪→ whether the DDL is still blocking |
dm-tracer | DM-tracer service | [code=42004:class=dm-tracer:scope=internal:
↪→ level=medium] trace event test.1 not found |
schema-tracker | schema-tracker (during incremental data replication) | [code
↪→ =44006:class=schema-tracker:scope=internal:level=high],"cannot track
↪→ DDL: ALTER TABLE test DROP COLUMN col1" |
scheduler | Scheduling operations (of data migration tasks) | [code=46001:class=
↪→ scheduler:scope=internal:level=high],"the scheduler has not started"
|
dmctl | An error occurs within dmctl or when it interacts with other components |
[code=48001:class=dmctl:scope=internal:level=high],"can not create grpc
↪→ connection" |

• scope: Error scope.

260



It is used to mark the scope and source of DM objects when an error occurs. scope
includes four types: not-set, upstream, downstream, and internal.
If the logic of the error directly involves requests between upstream and downstream
databases, the scope is set to upstream or downstream; otherwise, it is currently set
to internal.

• level: Error level.
The severity level of the error, including low, medium, and high.

– The low level error usually relates to user operations and incorrect inputs. It does
not affect migration tasks.

– The medium level error usually relates to user configurations. It affects some newly
started services; however, it does not affect the existing DM migration status.

– The high level error usually needs your attention, since you need to resolve it to
avoid the possible interruption of a migration task.

• message: Error descriptions.
Detailed descriptions of the error. To wrap and store every additional layer of error
message on the error call chain, the errors.Wrap mode is adopted. The message de-
scription wrapped at the outermost layer indicates the error in DM and the message
description wrapped at the innermost layer indicates the error source.

• workaround: Error handling methods (optional)
The handling methods for this error. For some confirmed errors (such as configuration
errors), DM gives the corresponding manual handling methods in workaround.

• Error stack information (optional)
Whether DM outputs the error stack information depends on the error severity and
the necessity. The error stack records the complete stack call information when the
error occurs. If you cannot figure out the error cause based on the basic information
and the error message, you can trace the execution path of the code when the error
occurs using the error stack.

For the complete list of error codes, refer to the error code lists.

6.1.2 Troubleshooting

If you encounter an error while running DM, take the following steps to troubleshoot
this error:

1. Execute the query-status command to check the task running status and the error
output.

261

https://godoc.org/github.com/pkg/errors#hdr-Adding_context_to_an_error
https://github.com/pingcap/dm/blob/master/_utils/terror_gen/errors_release.txt


2. Check the log files related to the error. The log files are on the DM-master and DM-
worker nodes. To get key information about the error, refer to the error system. Then
check the Handle Common Errors section to find the solution.

3. If the error is not covered in this document, and you cannot solve the problem by
checking the log or monitoring metrics, you can contact the R&D.

4. After the error is resolved, restart the task using dmctl.
resume-task ${task name}

However, you need to reset the data migration task in some cases. For details, refer to
Reset the Data Migration Task.

6.1.3 Handle common errors

|
Error Code
| Error Description | How to

↪→ Handle |

:———– | :———————————————————— | :————————————
———————– |
code=10001 | Abnormal database operation. | Further analyze the error message and error
stack. |
code=10002 | The bad connection error from the underlying database. It usually indicates
that the connection between DM and the downstream TiDB instance is abnormal (possibly
caused by network failure, TiDB restart and so on) and the currently requested data is not
sent to TiDB. | DM provides automatic recovery for such error. If the recovery is not suc-
cessful for a long time, check the network or TiDB status. |
code=10003 | The invalid connection error from the underlying database. It usually in-
dicates that the connection between DM and the downstream TiDB instance is abnormal
(possibly caused by network failure, TiDB restart and so on) and the currently requested
data is partly sent to TiDB. | DM provides automatic recovery for such error. If the recovery
is not successful for a long time, further check the error message and analyze the information
based on the actual situation. |
code=10005 | Occurs when performing the QUERY type SQL statements. | |
code=10006 | Occurs when performing the EXECUTE type SQL statements, including DDL
statements and DML statements of the INSERT, UPDATEor DELETE type. For more detailed
error information, check the error message which usually includes the error code and error
information returned for database operations.

|
code=11006 | Occurs when the built-in parser of DM parses the incompatible DDL state-
ments. | Refer to Data Migration - incompatible DDL statements for solution. |

262



code=20010 | Occurs when decrypting the database password that is provided in task config-
uration. | Check whether the downstream database password provided in the configuration
task is correctly encrypted using dmctl. |
code=26002 | The task check fails to establish database connection. For more detailed error
information, check the error message which usually includes the error code and error infor-
mation returned for database operations. | Check whether the machine where DM-master is
located has permission to access the upstream. |
code=32001 | Abnormal dump processing unit | If the error message contains mydumper:
↪→ argument list too long., configure the table to be exported by manually adding the
--regex regular expression in the Mydumper argument extra-args in the task.yaml file
according to the block-allow list. For example, to export all tables named hello, add --
↪→ regex '.*\\.hello$'; to export all tables, add --regex '.*'. |
code=38008 | An error occurs in the gRPC communication among DM components. | Check
class. Find out the error occurs in the interaction of which components. Determine the
type of communication error. If the error occurs when establishing gRPC connection, check
whether the communication server is working normally. |

6.1.3.1 What can I do when a migration task is interrupted with the invalid
connection error returned?

6.1.3.1.1 Reason
The invalid connection error indicates that anomalies have occurred in the connection

between DM and the downstream TiDB database (such as network failure, TiDB restart,
TiKV busy and so on) and that a part of the data for the current request has been sent to
TiDB.

6.1.3.1.2 Solutions
Because DM has the feature of concurrently migrating data to the downstream in migra-

tion tasks, several errors might occur when a task is interrupted. You can check these errors
by using query-status.

• If only the invalid connection error occurs during the incremental replication pro-
cess, DM retries the task automatically.

• If DM does not or fails to retry automatically because of version problems, use stop-
↪→ task to stop the task and then use start-task to restart the task.

6.1.3.2 A migration task is interrupted with the driver: bad connection error
returned

6.1.3.2.1 Reason
The driver: bad connection error indicates that anomalies have occurred in the con-

nection between DM and the upstream TiDB database (such as network failure, TiDB restart

263



and so on) and that the data of the current request has not yet been sent to TiDB at that
moment.

6.1.3.2.2 Solution
The current version of DM automatically retries on error. If you use the previous version

which does not support automatically retry, you can execute the stop-task command to
stop the task. Then execute start-task to restart the task.

6.1.3.3 The relay unit throws error event from * in * diff from passed-in
event * or a migration task is interrupted with failing to get or parse binlog
errors like get binlog error ERROR 1236 (HY000) and binlog checksum mismatch,
data may be corrupted returned

6.1.3.3.1 Reason
During the DM process of relay log pulling or incremental replication, this two errors

might occur if the size of the upstream binlog file exceeds 4 GB.
Cause: When writing relay logs, DM needs to perform event verification based on

binlog positions and the size of the binlog file, and store the replicated binlog positions as
checkpoints. However, the official MySQL uses uint32 to store binlog positions. This means
the binlog position for a binlog file over 4 GB overflows, and then the errors above occur.

6.1.3.3.2 Solutions
For relay units, manually recover migration using the following solution:

1. Identify in the upstream that the size of the corresponding binlog file has exceeded
4GB when the error occurs.

2. Stop the DM-worker.

3. Copy the corresponding binlog file in the upstream to the relay log directory as the
relay log file.

4. In the relay log directory, update the corresponding relay.meta file to pull from the
next binlog file. If you have specified enable_gtid to true for the DM-worker, you
need to modify the GTID corresponding to the next binlog file when updating the
relay.meta file. Otherwise, you don’t need to modify the GTID.
Example: when the error occurs, binlog-name = "mysql-bin.004451" and binlog-
↪→ pos = 2453. Update them respectively to binlog-name = "mysql-bin.004452"
↪→ and binlog-pos = 4, and update binlog-gtid to f0e914ef-54cf-11e7-813d-6
↪→ c92bf2fa791:1-138218058.

5. Restart the DM-worker.

264



For binlog replication processing units, manually recover migration using the following
solution:

1. Identify in the upstream that the size of the corresponding binlog file has exceeded
4GB when the error occurs.

2. Stop the migration task using stop-task.

3. Update the binlog_name in the global checkpoints and in each table checkpoint of
the downstream dm_meta database to the name of the binlog file in error; update
binlog_pos to a valid position value for which migration has completed, for example,
4.
Example: the name of the task in error is dm_test, the corresponding ssource-id is
replica-1, and the corresponding binlog file is mysql-bin|000001.004451. Execute
the following command:
UPDATE dm_test_syncer_checkpoint SET binlog_name='mysql-bin

↪→ |000001.004451', binlog_pos = 4 WHERE id='replica-1';

4. Specify safe-mode: true in the syncers section of the migration task configuration
to ensure re-entrant.

5. Start the migration task using start-task.

6. View the status of the migration task using query-status. You can restore safe-
↪→ mode to the original value and restart the migration task when migration is done
for the original error-triggering relay log files.

6.1.3.4 Access denied for user 'root'@'172.31.43.27' (using password: YES)
shows when you query the task or check the log

For database related passwords in all the DM configuration files, it is recommended to
use the passwords encrypted by dmctl. If a database password is empty, it is unnecessary to
encrypt it. For how to encrypt the plaintext password, see Encrypt the database password
using dmctl.

In addition, the user of the upstream and downstream databases must have the cor-
responding read and write privileges. Data Migration also prechecks the corresponding
privileges automatically while starting the data migration task.

6.1.3.5 The load processing unit reports the error packet for query is too
large. Try adjusting the 'max_allowed_packet' variable

265



6.1.3.5.1 Reasons

• Both MySQL client and MySQL/TiDB server have the quota limits for max_allowed_packet
↪→ . If any max_allowed_packet exceeds a limit, the client receives the error
message. Currently, for the latest version of DM and TiDB server, the default value
of max_allowed_packet is 64M.

• The full data import processing unit in DM does not support splitting the SQL file
exported by the Dump processing unit in DM.

6.1.3.5.2 Solutions

• It is recommended to set the statement-size option of extra-args for the Dump
processing unit:
According to the default --statement-size setting, the default size of Insert
↪→ Statement generated by the Dump processing unit is about 1M. With this default
setting, the load processing unit does not report the error packet for query is
↪→ too large. Try adjusting the 'max_allowed_packet' variable in most
cases.
Sometimes you might receive the following WARN log during the data dump. This WARN
log does not affect the dump process. This only means that wide tables are dumped.
Row bigger than statement_size for xxx

• If the single row of the wide table exceeds 64M, you need to modify the following
configurations and make sure the configurations take effect.

– Execute set @@global.max_allowed_packet=134217728 (134217728 = 128
MB) in the TiDB server.

– First add the max-allowed-packet: 134217728 (128 MB) to the target-
↪→ database section in the DM task configuration file. Then, execute the
stop-task command and execute the start-task command.

6.2 Handle Performance Issues

This document introduces common performance issues that might exist in DM and how
to deal with them.

Before diagnosing an issue, you can refer to the DM 2.0-GA Benchmark Report.
When diagnosing and handling performance issues, make sure that:

• The DM monitoring component is correctly configured and installed.
• You can view monitoring metrics on the Grafana monitoring dashboard.

266



• The component you diagnose works well; otherwise, possible monitoring metrics excep-
tions might interfere with the diagnosis of performance issues.

In the case of a large latency in the data migration, to quickly figure out whether the
bottleneck is inside the DM component or in the TiDB cluster, you can first check DML
↪→ queue remain length in Write SQL Statements to Downstream.

6.2.1 relay log unit

To diagnose performance issues in the relay log unit, you can check the binlog file
↪→ gap between master and relay monitoring metric. For more information about this
metric, refer to monitoring metrics of the relay log. If this metric is greater than 1 for a
long time, it usually indicates that there is a performance issue; if this metric is 0, it usually
indicates that there is no performance issue.

If the value of binlog file gap between master and relay is 0, but you suspect that
there is a performance issue, you can check binlog pos. If master in this metric is much
larger than relay, a performance issue might exist. In this case, diagnose and handle this
issue accordingly.

6.2.1.1 Read binlog data
read binlog event duration refers to the duration that the relay log reads binlog

from the upstream database (MySQL/MariaDB). Ideally, this metric is close to the network
latency between DM-worker and MySQL/MariaDB instances.

• For data migration in one data center, reading binlog data is not a performance bot-
tleneck. If the value of read binlog event duration is too large, check the network
connection between DM-worker and MySQL/MariaDB.

• For data migration in the geo-distributed environment, try to deploy DM-worker and
MySQL/MariaDB in one data center, while deploying the TiDB cluster in the target
data center.

The process of reading binlog data from the upstream database includes the following
sub-processes:

• The upstream MySQL/MariaDB reads the binlog data locally and sends it through the
network. When no exception occurs in the MySQL/MariaDB load, this sub-process
usually does not become a bottleneck.

• The binlog data is transferred from the machine where MySQL/MariaDB is located to
the machine where DM-worker is located via the network. Whether this sub-process
becomes a bottleneck mainly depends on the network connection between DM-worker
and the upstream MySQL/MariaDB.

267



• DM-worker reads binlog data from the network data stream and constructs it as a
binlog event. When no exception occurs in the DM-worker load, this sub-process
usually does not become a bottleneck.

Note:
If the value of read binlog event duration is large, another possible reason
is that the upstream MySQL/MariaDB has a low load. This means that no
binlog event needs to be sent to DM for a period of time, and the relay log
unit stays in a wait state, thus this value includes additional waiting time.

6.2.1.2 binlog data decoding and verification
After reading the binlog event into the DM memory, DM’s relay processing unit decodes

and verifies data. This usually does not lead to performance bottleneck; therefore, there
is no related performance metric on the monitoring dashboard by default. If you need to
view this metric, you can manually add a monitoring item in Grafana. This monitoring item
corresponds to dm_relay_read_transform_duration, a metric from Prometheus.

6.2.1.3 Write relay log files
When writing a binlog event to a relay log file, the relevant performance metric is write

↪→ relay log duration. This value should be microseconds when binlog event size
is not too large. If write relay log duration is too large, check the write performance of
the disk. To avoid low write performance, use local SSDs for DM-worker.

6.2.2 Load unit

The main operations of the Load unit are to read the SQL file data from the local and
write it to the downstream. The related performance metric is transaction execution
↪→ latency. If this value is too large, check the downstream performance by checking the
monitoring of the downstream database. You can also check whether there is a large network
latency between DM and the downstream database.

6.2.3 Binlog replication unit

To diagnose performance issues in the Binlog replication unit, you can check the
binlog file gap between master and syncer monitoring metric. For more information
about this metric, refer to monitoring metrics of the Binlog replication.

• If this metric is greater than 1 for a long time, it usually indicates that there is a
performance issue.

268



• If this metric is 0, it usually indicates that there is no performance issue.

When binlog file gap between master and syncer is greater than 1 for a long time,
check binlog file gap between relay and syncer to figure out which unit the latency
mainly exists in. If this value is usually 0, the latency might exist in the relay log unit. Then
you can refer to relay log unit to resolve this issue; otherwise, continue checking the Binlog
replication unit.

6.2.3.1 Read binlog data
The Binlog replication unit decides whether to read the binlog event from the upstream

MySQL/MariaDB or from the relay log file according to the configuration. The related
performance metric is read binlog event duration, which generally ranges from a few
microseconds to tens of microseconds.

• If DM’s Binlog replication processing unit reads the binlog event from upstream
MySQL/MariaDB, to locate and resolve the issue, refer to read binlog data in the
“relay log unit” section.

• If DM’s Binlog replication processing unit reads the binlog event from the relay log file,
when binlog event size is not too large, the value of read binlog event duration
↪→ should be microseconds. If read binlog event duration is too large, check the
read performance of the disk. To avoid low write performance, use local SSDs for
DM-worker.

6.2.3.2 binlog event conversion
The Binlog replication unit constructs DML, parses DDL, and performs table router con-

version from binlog event data. The related metric is transform binlog event duration.
The duration is mainly affected by the write operations upstream. Take the INSERT

↪→ INTO statement as an example, the time consumed to convert a single VALUES greatly
differs from that to convert a lot of VALUES. The time consumed might range from tens of
microseconds to hundreds of microseconds. However, usually this is not a bottleneck of the
system.

6.2.3.3 Write SQL statements to downstream
When the Binlog replication unit writes the converted SQL statements to the down-

stream, the related performance metrics are DML queue remain length and transaction
↪→ execution latency.

After constructing SQL statements from binlog event, DM uses worker-count queues
to concurrently write these statements to the downstream. However, to avoid too many
monitoring entries, DM performs the modulo 8 operation on the IDs of concurrent queues.
This means that all concurrent queues correspond to one item from q_0 to q_7.

269



DML queue remain length indicates in the concurrent processing queue, the number of
DML statements that have not been consumed and have not started to be written down-
stream. Ideally, the curves corresponding to each q_* are almost the same. If not, it indicates
that the concurrent load is extremely unbalanced.

If the load is not balanced, confirm whether tables need to be migrated have primary
keys or unique keys. If these keys do not exist, add the primary keys or the unique keys; if
these keys do exist while the load is not balanced, upgrade DM to v1.0.5 or later versions.

• When there is no noticeable latency in the entire data migration link, the corresponding
curve of DML queue remain length is almost always 0, and the maximum does not
exceed the value of batch in the task configuration file.

• If you find a noticeable latency in the data migration link, and the curve of DML queue
↪→ remain length corresponding to each q_* is almost the same and is almost always
0, it means that DM fails to read, convert, or concurrently write the data from the
upstream in time (the bottleneck might be in the relay log unit). For troubleshooting,
refer to the previous sections of this document.

If the corresponding curve of DML queue remain length is not 0 (usually the maximum
is not more than 1024), it indicates that there is a bottleneck when writing SQL statements to
the downstream. You can use transaction execution latency to view the time consumed
to execute a single transaction to the downstream.

transaction execution latency is usually tens of milliseconds. If this value is too
large, check the downstream performance based on the monitoring of the downstream
database. You can also check whether there is a large network latency between DM and the
downstream database.

To view the time consumed to write a single statement such as BEGIN, INSERT, UPDATE,
DELETE, or COMMIT to the downstream, you can also check statement execution latency.

7 Performance Tuning

7.1 Optimize Configuration of DM

This document introduces how to optimize the configuration of the data migration task
to improve the performance of data migration.

7.1.1 Full data export

mydumpers is the configuration item related to full data export. This section describes
how to configure performance-related options.

270



7.1.1.1 rows
Setting the rows option enables concurrently exporting data from a single table using

multi-thread. The value of rows is the maximum number of rows contained in each exported
chunk. After this option is enabled, DM selects a column as the split benchmark when the
data of a MySQL single table is concurrently exported. This column can be one of the
following columns: the primary key column, the unique index column, and the normal index
column (ordered from highest priority to lowest). Make sure this column is of integer type
(for example, INT, MEDIUMINT, BIGINT).

The value of rows can be set to 10000. You can change this value according to the total
number of rows in the table and the performance of the database. In addition, you need to
set threads to control the number of concurrent threads. By default, the value of threads
is 4. You can adjust this value as needed.

7.1.1.2 chunk-filesize
During full backup, DM splits the data of each table into multiple chunks according to

the value of the chunk-filesize option. Each chunk is saved in a file with a size of about
chunk-filesize. In this way, data is split into multiple files and you can use the parallel
processing of the DM Load unit to improve the import speed. The default value of this
option is 64 (in MB). Normally, you do not need to set this option. If you set it, adjust the
value of this option according to the size of the full data.

Note:

• You cannot update the value of mydumpers after the migration task is
created. Be sure about the value of each option before creating the task.
If you need to update the value, stop the task using dmctl, update the
configuration file, and re-create the task.

• mydumpers.threads can be replaced with the mydumper-thread config-
uration item for simplicity.

• If rows is set，DM ignores the value of chunk-filesize.

7.1.2 Full data import

loaders is the configuration item related to full data import. This section describes how
to configure performance-related options.

7.1.2.1 pool-size
The pool-size option determines the number of threads in the DM Load unit. The

default value is 16. Normally, you do not need to set this option. If you set it, adjust the
value of this option according to the size of the full data and the performance of the database.

271



Note:

• You cannot update the value of loaders after the migration task is
created. Be sure about the value of each option before creating the task.
If you need to update the value, stop the task using dmctl, update the
configuration file, and re-create the task.

• loaders.pool-size can be replaced with the loader-thread configura-
tion item for simplicity.

7.1.3 Incremental data replication

syncers is the configuration item related to incremental data replication. This section
describes how to configure performance-related options.

7.1.3.1 worker-count

worker-count determines the number of threads for concurrent replication of DMLs in
the DM Sync unit. The default value is 16. To speed up data replication, increase the value
of this option appropriately.

7.1.3.2 batch

batch determines the number of DMLs included in each transaction when the data is
replicated to the downstream database during the DM Sync unit. The default value is 100.
Normally, you do not need to change the value of this option.

Note:

• You cannot update the value of syncers after the replication task is
created. Be sure about the value of each option before creating the task.
If you need to update the value, stop the task using dmctl, update the
configuration file, and re-create the task.

• syncers.worker-count can be replaced with the syncer-thread config-
uration item for simplicity.

• You can change the values of worker-count and batch according to the
actual scenario. For example, if there is a high network delay between
DM and the downstream database, you can increase the value of worker
↪→ -count and decrease the value of batch appropriately.

272



8 Reference

8.1 Architecture

8.1.1 Data Migration Overview

TiDB Data Migration (DM) is an integrated data migration task management platform,
which supports the full data migration and the incremental data replication from MySQL-
compatible databases (such as MySQL, MariaDB, and Aurora MySQL) into TiDB. It can
help to reduce the operation cost of data migration and simplify the troubleshooting process.
When using DM for data migration, you need to perform the following operations:

• Deploy a DM Cluster
• Create upstream data source and save data source access information
• Create data migration tasks to migrate data from data sources to TiDB

The data migration task includes two stages: full data migration and incremental data
replication:

• Full data migration: Migrate the table structure of the corresponding table from the
data source to TiDB, and then read the data stored in the data source and write it to
the TiDB cluster.

• Incremental data replication: After the full data migration is completed, the corre-
sponding table changes from the data source are read and then written to the TiDB
cluster.

The following describes the features of DM.

8.1.1.1 Basic features
This section describes the basic data migration features provided by DM.

273

https://github.com/pingcap/dm


Figure 23: DM Core Features

8.1.1.1.1 Block and allow lists migration at the schema and table levels
The block and allow lists filtering rule is similar to the replication-rules-db

↪→ /replication-rules-table feature of MySQL, which can be used to filter or replicate
all operations of some databases only or some tables only.

8.1.1.1.2 Binlog event filtering
The binlog event filtering feature means that DM can filter certain types of SQL state-

ments from certain tables in the source database. For example, you can filter all INSERT
statements in the table test.sbtest or filter all TRUNCATE TABLE statements in the schema
test.

8.1.1.1.3 Schema and table routing
The schema and table routing feature means that DM can migrate a certain table of

the source database to the specified table in the downstream. For example, you can migrate
the table structure and data from the table test.sbtest1 in the source database to the
table test.sbtest2 in TiDB. This is also a core feature for merging and migrating sharded
databases and tables.

8.1.1.2 Advanced features

8.1.1.2.1 Shard merge and migration
DM supports merging and migrating the original sharded instances and tables from the

source databases into TiDB, but with some restrictions. For details, see Sharding DDL usage

274



restrictions in the pessimistic mode and Sharding DDL usage restrictions in the optimistic
mode.

8.1.1.2.2 Optimization for third-party online-schema-change tools in the mi-
gration process

In the MySQL ecosystem, tools such as gh-ost and pt-osc are widely used. DM provides
support for these tools to avoid migrating unnecessary intermediate data. For details, see
Online DDL Tools

8.1.1.2.3 Filter certain row changes using SQL expressions
In the phase of incremental replication, DM supports the configuration of SQL expres-

sions to filter out certain row changes, which lets you replicate the data with a greater
granularity. For more information, refer to Filter Certain Row Changes Using SQL Expres-
sions.

8.1.1.3 Usage restrictions
Before using the DM tool, note the following restrictions:

• Database version requirements

– MySQL version > 5.5
– MariaDB version >= 10.1.2

Note:
If there is a primary-secondary migration structure between the upstream
MySQL/MariaDB servers, then choose the following version.

– MySQL version > 5.7.1
– MariaDB version >= 10.1.3

Warning:
Support for MySQL 8.0 is an experimental feature of TiDB Data Mi-
gration v2.0. It is NOT recommended that you use it in a production
environment.

• DDL syntax compatibility

– Currently, TiDB is not compatible with all the DDL statements that MySQL
supports. Because DM uses the TiDB parser to process DDL statements, it only
supports the DDL syntax supported by the TiDB parser. For details, see MySQL
Compatibility.

275

https://pingcap.com/docs/stable/reference/mysql-compatibility/#ddl
https://pingcap.com/docs/stable/reference/mysql-compatibility/#ddl


– DM reports an error when it encounters an incompatible DDL statement. To
solve this error, you need to manually handle it using dmctl, either skipping this
DDL statement or replacing it with a specified DDL statement(s). For details,
see Skip or replace abnormal SQL statements.

• Sharding merge with conflicts

– If conflict exists between sharded tables, solve the conflict by referring to han-
dling conflicts of auto-increment primary key. Otherwise, data migration is not
supported. Conflicting data can cover each other and cause data loss.

– For other sharding DDL migration restrictions, see Sharding DDL usage restric-
tions in the pessimistic mode and Sharding DDL usage restrictions in the opti-
mistic mode.

• Switch of MySQL instances for data sources
When DM-worker connects the upstream MySQL instance via a virtual IP (VIP), if
you switch the VIP connection to another MySQL instance, DM might connect to
the new and old MySQL instances at the same time in different connections. In this
situation, the binlog migrated to DM is not consistent with other upstream status
that DM receives, causing unpredictable anomalies and even data damage. To make
necessary changes to DM manually, see Switch DM-worker connection via virtual IP.

8.1.2 DM-worker Introduction

DM-worker is a tool used to migrate data from MySQL/MariaDB to TiDB.
It has the following features:

• Acts as a secondary database of any MySQL or MariaDB instance
• Reads the binlog events from MySQL/MariaDB and persists them to the local storage
• A single DM-worker supports migrating the data of one MySQL/MariaDB instance to

multiple TiDB instances
• Multiple DM-workers support migrating the data of multiple MySQL/MariaDB in-

stances to one TiDB instance

8.1.2.1 DM-worker processing unit
A DM-worker task contains multiple logic units, including relay log, the dump processing

unit, the load processing unit, and binlog replication.

8.1.2.1.1 Relay log
The relay log persistently stores the binlog data from the upstream MySQL/MariaDB

and provides the feature of accessing binlog events for the binlog replication.
Its rationale and features are similar to the relay log of MySQL. For details, see MySQL

Relay Log.

276

https://dev.mysql.com/doc/refman/5.7/en/replica-logs-relaylog.html
https://dev.mysql.com/doc/refman/5.7/en/replica-logs-relaylog.html


8.1.2.1.2 Dump processing unit
The dump processing unit dumps the full data from the upstream MySQL/MariaDB to

the local disk.

8.1.2.1.3 Load processing unit
The load processing unit reads the dumped files of the dump processing unit and then

loads these files to the downstream TiDB.

8.1.2.1.4 Binlog replication/sync processing unit
Binlog replication/sync processing unit reads the binlog events of the upstream MySQL/-

MariaDB or the binlog events of the relay log, transforms these events to SQL statements,
and then applies these statements to the downstream TiDB.

8.1.2.2 Privileges required by DM-worker
This section describes the upstream and downstream database users’ privileges required

by DM-worker, and the user privileges required by the respective processing unit.

8.1.2.2.1 Upstream database user privileges
The upstream database (MySQL/MariaDB) user must have the following privileges:

Privilege Scope
SELECT Tables
RELOAD Global
REPLICATION SLAVE Global
REPLICATION CLIENT Global

If you need to migrate the data from db1 to TiDB, execute the following GRANT statement:
GRANT RELOAD,REPLICATION SLAVE, REPLICATION CLIENT ON *.* TO 'your_user'@'

↪→ your_wildcard_of_host'
GRANT SELECT ON db1.* TO 'your_user'@'your_wildcard_of_host';

If you also need to migrate the data from other databases into TiDB, make sure the
same privileges are granted to the user of the respective databases.

8.1.2.2.2 Downstream database user privileges
The downstream database (TiDB) user must have the following privileges:

Privilege Scope
SELECT Tables

277



Privilege Scope
INSERT Tables
UPDATE Tables
DELETE Tables
CREATE Databases, tables
DROP Databases, tables
ALTER Tables
INDEX Tables

Execute the following GRANT statement for the databases or tables that you need to
migrate:
GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP,ALTER,INDEX ON db.table TO '

↪→ your_user'@'your_wildcard_of_host';

8.1.2.2.3 Minimal privilege required by each processing unit

Processing
unit

Minimal upstream
(MySQL/MariaDB)
privilege

Minimal
downstream
(TiDB)
privilege

Minimal
sys-
tem
privi-
lege

Relay
log

REPLICATION SLAVE
(reads the
binlog)REPLICATION
↪→ CLIENT
(show master
↪→ status,
show slave status)

NULL Read/Write
local
files

Dump SELECTRELOAD
(flushes tables with
Read lock and
unlocks tables）

NULL Write
local
files

278



Processing
unit

Minimal upstream
(MySQL/MariaDB)
privilege

Minimal
downstream
(TiDB)
privilege

Minimal
sys-
tem
privi-
lege

Load NULL SELECT
(Query the
checkpoint
his-
tory)CREATE
(creates a
database/table)DELETE
↪→ (deletes
check-
point)INSERT
(Inserts the
Dump data)

Read/Write
local
files

Binlog
repli-
cation

REPLICATION SLAVE
(reads the
binlog)REPLICATION
↪→ CLIENT
(show master
↪→ status,
show slave status)

SELECT
(shows the
index and col-
umn)INSERT
(DML)UPDATE
↪→
(DML)DELETE
↪→
(DML)CREATE
↪→ (creates a
database/table)DROP
↪→ (drops
databases/ta-
bles)ALTER
(alters a
table)INDEX
(creates/-
drops an
index)

Read/Write
local
files

Note:
These privileges are not immutable and they change as the request changes.

279



8.2 Command-line Flags

This document introduces DM’s command-line flags.

8.2.1 DM-master

8.2.1.1 --advertise-addr

• The external address of DM-master used to receive client requests
• The default value is "{master-addr}"
• Optional flag. It can be in the form of "domain-name:port"

8.2.1.2 --advertise-peer-urls

• The external address for communication between DM-master nodes
• The default value is "{peer-urls}"
• Optional flag. It can be in the form of "http(s)://domain-name:port"

8.2.1.3 --config

• The configuration file path of DM-master
• The default value is ""
• Optional flag

8.2.1.4 --data-dir

• The directory used to store data of DM-master
• The default value is "default.{name}"
• Optional flag

8.2.1.5 --initial-cluster

• The "{node name}={external address}" list used to bootstrap DM-master cluster
• The default value is "{name}={advertise-peer-urls}"
• This flag needs to be specified if the join flag is not specified. A configuration example

of a 3-node cluster is "dm-master-1=http://172.16.15.11:8291,dm-master-2=http
↪→ ://172.16.15.12:8291,dm-master-3=http://172.16.15.13:8291"

8.2.1.6 --join

• The existing cluster’s advertise-addr list when a DM-master node joins this cluster
• The default value is ""
• This flag needs to be specified if the initial-cluster flag is not specified. Sup-

pose a new node joins a cluster that has 2 nodes, a configuration example is
"172.16.15.11:8261,172.16.15.12:8261"

280



8.2.1.7 --log-file

• The output file name of the log
• The default value is ""
• Optional flag

8.2.1.8 -L

• The log level
• The default value is "info"
• Optional flag

8.2.1.9 --master-addr

• The address on which DM-master listens to the client’s requests
• The default value is ""
• Required flag

8.2.1.10 --name

• The name of a DM-master node
• The default value is "dm-master-{hostname}"
• Required flag

8.2.1.11 --peer-urls

• The listening address for communications between DM-master nodes
• The default value is "http://127.0.0.1:8291"
• Required flag

8.2.2 DM-worker

8.2.2.1 --advertise-addr

• The external address of DM-worker used to receive client requests
• The default value is "{worker-addr}"
• Optional flag. It can be in the form of "domain-name:port"

8.2.2.2 --config

• The configuration file path of DM-worker
• The default value is ""
• Optional flag

281



8.2.2.3 --join

• The {advertise-addr} list of DM-master nodes in a cluster when a DM-worker reg-
isters to this cluster

• The default value is ""
• Required flag. A configuration example of 3-node (DM-master node) cluster is

"172.16.15.11:8261,172.16.15.12:8261,172.16.15.13:8261"

8.2.2.4 --log-file

• The output file name of the log
• The default value is ""
• Optional flag

8.2.2.5 -L

• The log level
• The default value is "info"
• Optional flag

8.2.2.6 --name

• The name of a DM-worker node
• The default value is "{advertise-addr}"
• Required flag

8.2.2.7 --worker-addr

• The address on which DM-worker listens to the client’s requests
• The default value is ""
• Required flag

8.2.3 dmctl

8.2.3.1 --config

• The configuration file path of dmctl
• The default value is ""
• Optional flag

282



8.2.3.2 --master-addr

• The {advertise-addr} of any DM-master node in the cluster to be connected by
dmctl

• The default value is ""
• It is a required flag when dmctl interacts with DM-master

8.2.3.3 --encrypt

• Encrypts the plaintext database password into ciphertext
• The default value is ""
• When this flag is specified, it is only used to encrypt the plaintext without interacting

with the DM-master

8.2.3.4 --decrypt

• Decrypts ciphertext encrypted with dmctl into plaintext
• The default value is ""
• When this flag is specified, it is only used to decrypt the ciphertext without interacting

with the DM-master

8.3 Configuration

8.3.1 Data Migration Configuration File Overview

This document gives an overview of configuration files of DM (Data Migration).

8.3.1.1 DM process configuration files

• dm-master.toml: The configuration file of running the DM-master process, including
the topology information and the logs of the DM-master. For more details, refer to
DM-master Configuration File.

• dm-worker.toml: The configuration file of running the DM-worker process, including
the topology information and the logs of the DM-worker. For more details, refer to
DM-worker Configuration File.

• source.yaml: The configuration of the upstream database such as MySQL and Mari-
aDB. For more details, refer to Upstream Database Configuration File.

8.3.1.2 DM migration task configuration

283



8.3.1.2.1 Data migration task creation
You can take the following steps to create a data migration task:

1. Load the data source configuration into the DM cluster using dmctl.
2. Refer to the description in the Task Configuration Guide and create the configuration

file your_task.yaml.
3. Create the data migration task using dmctl.

8.3.1.2.2 Important concepts
This section shows description of some important concepts.

Concept Description
Configuration
File

source
↪→ -id

Uniquely
represents a
MySQL or
MariaDB
instance, or
a migration
group with
the
primary-
secondary
structure.
The
maximum
length of
source-id
is 32.

source_id of
source.yaml;
source-id of
task.yaml

DM-
master
ID

Uniquely
represents a
DM-master
(by the
master-
↪→ addr
parameter
of
dm-master
↪→ .toml)

master-addr
of dm-master.
↪→ toml

284



Concept Description
Configuration
File

DM-
worker
ID

Uniquely
represents a
DM-worker
(by the
worker-
↪→ addr
parameter
of
dm-worker
↪→ .toml)

worker-addr
of dm-worker.
↪→ toml

8.3.2 DM-master Configuration File

This document introduces the configuration of DM-master, including a configuration file
template and a description of each configuration parameter in this file.

8.3.2.1 Configuration file template
The following is a configuration file template of DM-master.

name = "dm-master"

### log configuration
log-level = "info"
log-file = "dm-master.log"

### DM-master listening address
master-addr = ":8261"
advertise-addr = "127.0.0.1:8261"

### URLs for peer traffic
peer-urls = "http://127.0.0.1:8291"
advertise-peer-urls = "http://127.0.0.1:8291"

### cluster configuration
initial-cluster = "master1=http://127.0.0.1:8291,master2=http

↪→ ://127.0.0.1:8292,master3=http://127.0.0.1:8293"
join = ""

ssl-ca = "/path/to/ca.pem"
ssl-cert = "/path/to/cert.pem"
ssl-key = "/path/to/key.pem"

285



cert-allowed-cn = ["dm"]

8.3.2.2 Configuration parameters
This section introduces the configuration parameters of DM-master.

8.3.2.2.1 Global configuration

Parameter Description
name The name of the DM-master.
log-level Specifies a log level from debug, info,

warn, error, and fatal. The default log
level is info.

log-file Specifies the log file directory. If the
parameter is not specified, the logs are
printed onto the standard output.

master-addr Specifies the address of DM-master which
provides services. You can omit the IP
address and specify the port number only,
such as “:8261”.

advertise-
↪→ addr

Specifies the address that DM-master
advertises to the outside world.

peer-urls Specifies the peer URL of the DM-master
node.

advertise-
↪→ peer-urls

Specifies the peer URL that DM-master
advertises to the outside world. The value
of advertise-peer-urls is by default the
same as that of peer-urls.

initial-
↪→ cluster

The value of initial-cluster is the
combination of the advertise-peer-urls
value of all DM-master nodes in the initial
cluster.

join The value of join is the combination of the
advertise-peer-urls value of the existed
DM-master nodes in the cluster. If the
DM-master node is newly added, replace
initial-cluster with join.

ssl-ca The path of the file that contains list of
trusted SSL CAs for DM-master to connect
with other components.

ssl-cert The path of the file that contains X509
certificate in PEM format for DM-master
to connect with other components.

286



Parameter Description
ssl-key The path of the file that contains X509 key

in PEM format for DM-master to connect
with other components.

cert-allowed
↪→ -cn

Common Name list.

8.3.3 DM-worker Configuration File

This document introduces the configuration of DM worker, including a configuration file
template and a description of each configuration parameter in this file.

8.3.3.1 Configuration file template
The following is a configuration file template of the DM-worker:

### Worker Configuration.
name = "worker1"

### Log configuration.
log-level = "info"
log-file = "dm-worker.log"

### DM-worker listen address.
worker-addr = ":8262"
advertise-addr = "127.0.0.1:8262"
join = "http://127.0.0.1:8261,http://127.0.0.1:8361,http://127.0.0.1:8461"

keepalive-ttl = 60
relay-keepalive-ttl = 1800 # New in DM v2.0.2.

ssl-ca = "/path/to/ca.pem"
ssl-cert = "/path/to/cert.pem"
ssl-key = "/path/to/key.pem"
cert-allowed-cn = ["dm"]

8.3.3.2 Configuration parameters

8.3.3.2.1 Global

Parameter Description
name The name of the DM-worker.

287



Parameter Description
log-level Specifies a log level from debug, info,

warn, error, and fatal. The default log
level is info.

log-file Specifies the log file directory. If this
parameter is not specified, the logs are
printed onto the standard output.

worker-addr Specifies the address of DM-worker which
provides services. You can omit the IP
address and specify the port number only,
such as “:8262”.

advertise-
↪→ addr

Specifies the address that DM-worker
advertises to the outside world.

join Corresponds to one or more master-addrs
in the DM-master configuration file.

keepalive-
↪→ ttl

The keepalive time (in seconds) of a
DM-worker node to the DM-master node if
the upstream data source of the DM-worker
node does not enable the relay log. The
default value is 60s.

relay-
↪→ keepalive
↪→ -ttl

The keepalive time (in seconds) of a
DM-worker node to the DM-master node if
the upstream data source of the DM-worker
node enables the relay log. The default
value is 1800s. This parameter is added
since DM v2.0.2.

ssl-ca The path of the file that contains list of
trusted SSL CAs for DM-worker to connect
with other components.

ssl-cert The path of the file that contains X509
certificate in PEM format for DM-worker
to connect with other components.

ssl-key The path of the file that contains X509 key
in PEM format for DM-worker to connect
with other components.

cert-allowed
↪→ -cn

Common Name list.

8.3.4 Upstream Database Configuration File

This document introduces the configuration file of the upstream database, including a
configuration file template and the description of each configuration parameter in this file.

288



8.3.4.1 Configuration file template
The following is a configuration file template of the upstream database:

source-id: "mysql-replica-01"

### Whether to enable GTID.
enable-gtid: false

### Whether to enable relay log.
enable-relay: false # Since DM v2.0.2, this configuration item is

↪→ deprecated. To enable the relay log feature, use the `start-relay`
↪→ command instead.

relay-binlog-name: "" # The file name from which DM-worker starts to pull
↪→ the binlog.

relay-binlog-gtid: "" # The GTID from which DM-worker starts to pull the
↪→ binlog.

relay-dir: "relay-dir" # The directory used to store relay log. The default
↪→ value is "relay-dir".

from:
host: "127.0.0.1"
port: 3306
user: "root"
password: "ZqMLjZ2j5khNelDEfDoUhkD5aV5fIJOe0fiog9w=" # The user password

↪→ of the upstream database. It is recommended to use the password
↪→ encrypted with dmctl.

security: # The TLS configuration of the upstream
↪→ database

ssl-ca: "/path/to/ca.pem"
ssl-cert: "/path/to/cert.pem"
ssl-key: "/path/to/key.pem"

### purge:
### interval: 3600
### expires: 0
### remain-space: 15

### checker:
### check-enable: true
### backoff-rollback: 5m0s
### backoff-max: 5m0s # The maximum value of backoff, should be larger

↪→ than 1s

### Configure binlog event filters. New in DM v2.0.2

289



### case-sensitive: false
### filters:
### - schema-pattern: dmctl
### table-pattern: t_1
### events: []
### sql-pattern:
### - alter table .* add column `aaa` int
### action: Ignore

Note:
In DM v2.0.1, DO NOT set enable-gtid and enable-relay to true at the
same time. Otherwise, it may cause loss of incremental data.

8.3.4.2 Configuration parameters
This section describes each configuration parameter in the configuration file.

8.3.4.2.1 Global configuration

Parameter Description
source-id Represents a MySQL instance ID.
enable-gtid Determines whether to pull binlog from the

upstream using GTID. The default value is
false. In general, you do not need to
configure enable-gtid manually. However,
if GTID is enabled in the upstream
database, and the primary/secondary
switch is required, you need to set
enable-gtid to true.

enable-relay Determines whether to enable the relay log
feature. The default value is false. Since
DM v2.0.2, this configuration item is
deprecated. To enable the relay log feature,
use the start-relay command instead.

relay-binlog
↪→ -name

Specifies the file name from which
DM-worker starts to pull the binlog. For
example, "mysql-bin.000002". It only
works when enable_gtid is false. If this
parameter is not specified, DM-worker will
pull the binlogs starting from the latest one.

290



Parameter Description
relay-binlog
↪→ -gtid

Specifies the GTID from which DM-worker
starts to pull the binlog. For example,
"e9a1fc22-ec08-11e9-b2ac-0242
↪→ ac110003:1-7849". It only works when
enable_gtid is true. If this parameter is
not specified, DM-worker will pull the
binlogs starting from the latest GTID.

relay-dir Specifies the relay log directory.
host Specifies the host of the upstream database.
port Specifies the port of the upstream database.
user Specifies the username of the upstream

database.
password Specifies the user password of the upstream

database. It is recommended to use the
password encrypted with dmctl.

security Specifies the TLS config of the upstream
database. The configured file paths of the
certificates must be accessible to all nodes.
If the configured file paths are local paths,
then all the nodes in the cluster need to
store a copy of the certificates in the same
path of each host.

8.3.4.2.2 Relay log cleanup strategy configuration (purge)
Generally, there is no need to manually configure these parameters unless there is a large

amount of relay logs and disk capacity is insufficient.

Parameter Description Default value
interval Sets the time interval at which relay logs

are regularly checked for expiration, in
seconds.

3600

expires Sets the expiration time for relay logs, in
hours. The relay log that is not written by
the relay processing unit, or does not need
to be read by the existing data migration
task will be deleted by DM if it exceeds
the expiration time. If this parameter is
not specified, the automatic purge is not
performed.

0

291



Parameter Description Default value
remain-space Sets the minimum amount of free disk

space, in gigabytes. When the available
disk space is smaller than this value,
DM-worker tries to delete relay logs.

15

Note:
The automatic data purge strategy only takes effect when interval is not 0
and at least one of the two configuration items expires and remain-space
is not 0.

8.3.4.2.3 Task status checker configuration (checker)
DM periodically checks the current task status and error message to determine if resum-

ing the task will eliminate the error. If needed, DM automatically retries to resume the task.
DM adjusts the checking interval using the exponential backoff strategy. Its behaviors can
be adjusted by the following configuration.

Parameter Description
check-enable Whether to enable this feature.
backoff-
↪→ rollback

If the current checking interval of backoff
strategy is larger than this value and the
task status is normal, DM will try to
decrease the interval.

backoff-max The maximum value of checking interval of
backoff strategy, must be larger than 1
second.

8.3.4.2.4 Binlog event filter
Starting from DM v2.0.2, you can configure binlog event filters in the source configuration

file.

Parameter Description
case-
↪→ sensitive

Determines whether the filtering rules are
case-sensitive. The default value is false.

filters Sets binlog event filtering rules. For details,
see Binlog event filter parameter
explanation.

292



9 Secure

9.1 Enable TLS for DM Connections

This document describes how to enable encrypted data transmission for DM connections,
including connections between the DM-master, DM-worker, and dmctl components, and
connections between DM and the upstream or downstream database.

9.1.1 Enable encrypted data transmission between DM-master, DM-worker,
and dmctl

This section introduces how to enable encrypted data transmission between DM-master,
DM-worker, and dmctl.

9.1.1.1 Configure and enable encrypted data transmission

1. Prepare certificates.
It is recommended to prepare a server certificate for DM-master and DM-worker sep-
arately. Make sure that the two components can authenticate each other. You can
choose to share one client certificate for dmctl.
To generate self-signed certificates, you can use openssl, cfssl and other tools based
on openssl, such as easy-rsa.
If you choose openssl, you can refer to generating self-signed certificates.

2. Configure certificates.

Note:
You can configure DM-master, DM-worker, and dmctl to use the same
set of certificates.

• DM-master
Configure in the configuration file or command-line arguments:
ssl-ca = "/path/to/ca.pem"
ssl-cert = "/path/to/master-cert.pem"
ssl-key = "/path/to/master-key.pem"

• DM-worker
Configure in the configuration file or command-line arguments:
ssl-ca = "/path/to/ca.pem"
ssl-cert = "/path/to/worker-cert.pem"
ssl-key = "/path/to/worker-key.pem"

293



• dmctl
After enabling encrypted transmission in a DM cluster, if you need to connect to
the cluster using dmctl, specify the client certificate. For example:
./dmctl --master-addr=127.0.0.1:8261 --ssl-ca /path/to/ca.pem --ssl

↪→ -cert /path/to/client-cert.pem --ssl-key /path/to/client-key
↪→ .pem

9.1.1.2 Verify component caller’s identity
The Common Name is used for caller verification. In general, the callee needs to verify

the caller’s identity, in addition to verifying the key, the certificates, and the CA provided by
the caller. For example, DM-worker can only be accessed by DM-master, and other visitors
are blocked even though they have legitimate certificates.

To verify component caller’s identity, you need to mark the certificate user identity
using Common Name (CN) when generating the certificate, and to check the caller’s identity
by configuring the Common Name list for the callee.

• DM-master
Configure in the configuration file or command-line arguments:
cert-allowed-cn = ["dm"]

• DM-worker
Configure in the configuration file or command-line arguments:
cert-allowed-cn = ["dm"]

9.1.1.3 Reload certificates
To reload the certificates and the keys, DM-master, DM-worker, and dmctl reread the

current certificates and the key files each time a new connection is created.
When the files specified by ssl-ca, ssl-cert or ssl-key are updated, restart DM

components to reload the certificates and the key files and reconnect with each other.

9.1.2 Enable encrypted data transmission between DM components and the
upstream or downstream database

This section introduces how to enable encrypted data transmission between DM compo-
nents and the upstream or downstream database.

294



9.1.2.1 Enable encrypted data transmission for upstream database

1. Configure the upstream database, enable the encryption support, and set the server
certificate. For detailed operations, see Using encrypted connections.

2. Set the MySQL client certificate in the source configuration file:

Note:
Make sure that all DM-master and DM-worker components can read the
certificates and the key files via specified paths.

from:
security:

ssl-ca: "/path/to/mysql-ca.pem"
ssl-cert: "/path/to/mysql-cert.pem"
ssl-key: "/path/to/mysql-key.pem"

9.1.2.2 Enable encrypted data transmission for downstream TiDB

1. Configure the downstream TiDB to use encrypted connections. For detailed operatons,
refer to Configure TiDB to use encrypted connections.

2. Set the TiDB client certificate in the task configuration file:

Note:
Make sure that all DM-master and DM-worker components can read the
certificates and the key files via specified paths.

target-database:
security:

ssl-ca: "/path/to/tidb-ca.pem"
ssl-cert: "/path/to/tidb-client-cert.pem"
ssl-key: "/path/to/tidb-client-key.pem"

9.2 Generate Self-signed Certificates

This document provides an example of using openssl to generate a self-signed certifi-
cate. You can also generate certificates and keys that meet requirements according to your
demands.

Assume that the topology of the instance cluster is as follows:

295

https://dev.mysql.com/doc/refman/5.7/en/using-encrypted-connections.html
https://docs.pingcap.com/tidb/stable/enable-tls-between-clients-and-servers#configure-tidb-to-use-encrypted-connections


Name Host IP Services
node1 172.16.10.11 DM-master1
node2 172.16.10.12 DM-master2
node3 172.16.10.13 DM-master3
node4 172.16.10.14 DM-worker1
node5 172.16.10.15 DM-worker2
node6 172.16.10.16 DM-worker3

9.2.1 Install OpenSSL

• For Debian or Ubuntu OS:
apt install openssl

• For RedHat or CentOS OS:
yum install openssl

You can also refer to OpenSSL’s official download document for installation.

9.2.2 Generate the CA certificate

A certificate authority (CA) is a trusted entity that issues digital certificates. In practice,
contact your administrator to issue the certificate or use a trusted CA. CA manages multiple
certificate pairs. Here you only need to generate an original pair of certificates as follows.

1. Generate the CA key:
openssl genrsa -out ca-key.pem 4096

2. Generate the CA certificates:
openssl req -new -x509 -days 1000 -key ca-key.pem -out ca.pem

3. Validate the CA certificates:
openssl x509 -text -in ca.pem -noout

296

https://www.openssl.org/source/


9.2.3 Issue certificates for individual components

9.2.3.1 Certificates that might be used in the cluster

• The master certificate used by DM-master to authenticate DM-master for other com-
ponents.

• The worker certificate used by DM-worker to authenticate DM-worker for other com-
ponents.

• The client certificate used by dmctl to authenticate clients for DM-master and DM-
worker.

9.2.3.2 Issue certificates for DM-master
To issue a certificate to a DM-master instance, perform the following steps:

1. Generate the private key corresponding to the certificate:
openssl genrsa -out master-key.pem 2048

2. Make a copy of the OpenSSL configuration template file (Refer to the actual location
of your template file because it might have more than one location):
cp /usr/lib/ssl/openssl.cnf .

If you do not know the actual location, look for it in the root directory:
find / -name openssl.cnf

3. Edit openssl.cnf, add req_extensions = v3_req under the [ req ] field, and add
subjectAltName = @alt_names under the [ v3_req ] field. Finally, create a new
field and edit the information of Subject Alternative Name (SAN) according to the
cluster topology description above.
[ alt_names ]
IP.1 = 127.0.0.1
IP.2 = 172.16.10.11
IP.3 = 172.16.10.12
IP.4 = 172.16.10.13

The following checking items of SAN are currently supported:

• IP
• DNS
• URI

297



Note:
If a special IP such as 0.0.0.0 is to be used for connection or communi-
cation, you must also add it to alt_names.

4. Save the openssl.cnf file, and generate the certificate request file: (When giving in-
put to Common Name (e.g. server FQDN or YOUR name)[]:, you assign a Common
Name (CN) to the certificate, such as dm. It is used by the server to validate the
identity of the client. Each component does not enable the validation by default. You
can enable it in the configuration file.)
openssl req -new -key master-key.pem -out master-cert.pem -config

↪→ openssl.cnf

5. Issue and generate the certificate:
openssl x509 -req -days 365 -CA ca.pem -CAkey ca-key.pem -

↪→ CAcreateserial -in master-cert.pem -out master-cert.pem -
↪→ extensions v3_req -extfile openssl.cnf

6. Verify that the certificate includes the SAN field (optional):
openssl x509 -text -in master-cert.pem -noout

7. Confirm that the following files exist in your current directory:
ca.pem
master-cert.pem
master-key.pem

Note:
The process of issuing certificates for the DM-worker instance is similar and
will not be repeated in this document.

9.2.3.3 Issue certificates for the client (dmctl)
To issue a certificate to the client (dmctl), perform the following steps:

1. Generate the private key corresponding to the certificate:
openssl genrsa -out client-key.pem 2048

298



2. Generate the certificate request file (in this step, you can also assign a Common Name
to the certificate, which is used to allow the server to validate the identity of the client.
Each component does not enable the validation by default, and you can enable it in
the configuration file):
openssl req -new -key client-key.pem -out client-cert.pem

3. Issue and generate the certificate:
openssl x509 -req -days 365 -CA ca.pem -CAkey ca-key.pem -

↪→ CAcreateserial -in client-cert.pem -out client-cert.pem

9.3 Data Migration Monitoring Metrics

If your DM cluster is deployed using TiUP, the monitoring system is also deployed at
the same time. This document describes the monitoring metrics provided by DM-worker.

9.3.1 Task

In the Grafana dashboard, the default name of DM is DM-task.

9.3.1.1 overview

Overview contains some monitoring metrics of all the DM-worker and DM-master in-
stances or sources in the currently selected task. The current default alert rule is only for a
single DM-worker/DM-master instance/source.

Metric
name Description Alert

Severity
level

task
state

The state of
subtasks for
migration

N/A N/A

storage
capac-
ity

The total
storage
capacity of
the disk
occupied by
relay logs

N/A N/A

storage
re-
main

The
remaining
storage
capacity of
the disk
occupied by
relay logs

N/A N/A

299



Metric
name Description Alert

Severity
level

binlog
file
gap
be-
tween
mas-
ter
and
relay

The number
of binlog files
by which the
relay
processing
unit is
behind the
upstream
master

N/A N/A

load
progress

The
percentage of
the
completed
loading
process of the
load unit.
The value is
between
0%~100%

N/A N/A

binlog
file
gap
be-
tween
mas-
ter
and
syncer

The number
of binlog files
by which the
binlog
replication
unit is
behind the
upstream
master

N/A N/A

300



Metric
name Description Alert

Severity
level

shard
lock
resolv-
ing

Whether the
current
subtask is
waiting for
sharding
DDL
migration. A
value greater
than 0 means
that the
current
subtask is
waiting for
sharding
DDL
migration

N/A N/A

9.3.1.2 Operation errors

Metric
name Description Alert

Severity
level

before
any
oper-
ate
error

The number
of errors
before any
operation

N/A N/A

source
bound
error

The number
of errors of
data source
binding
operations

N/A N/A

start
error

The number
of errors
during the
start of a
subtask

N/A N/A

pause
error

The number
of errors
during the
pause of a
subtask

N/A N/A

301



Metric
name Description Alert

Severity
level

resume
error

The number
of errors
during the
resuming of a
subtask

N/A N/A

auto-
resume
error

The number
of errors
during the
auto-
resuming of a
subtask

N/A N/A

update
error

The number
of errors
during the
update of a
subtask

N/A N/A

stop
error

The number
of errors
during the
stop of a
subtask

N/A N/A

9.3.1.3 High availability

Metric
name Description Alert

Severity
level

number
of dm-
masters
start
leader
com-
po-
nents
per
minute

The number
of
DM-master
attempts to
enable leader
related
components
per minute

N/A N/A

302



Metric
name Description Alert

Severity
level

number
of
work-
ers in
differ-
ent
state

The number
of
DM-workers
in different
states

Some
DM-
worker(s)
has
(have)
been
offline
for
more
than
one
hour

critical

workers’
state

The state of
the
DM-worker

N/A N/A

number
of
worker
event
error

The number
of different
types of
DM-worker
errors

N/A N/A

shard
ddl
error
per
minute

The number
of different
types of
sharding
DDL errors
per minute

Any
shard-
ing
DDL
error
occurs

critical

number
of
pend-
ing
shard
ddl

The number
of pending
sharding
DDL
operations

Any
pend-
ing
shard-
ing
DDL
opera-
tion
has
ex-
isted
for
more
than
one
hour

critical

303



9.3.1.4 Task state

Metric
name Description Alert

Severity
level

task
state

The state of
subtasks

An
alert
occurs
when
the
sub-
task
has
been
in the
Paused
↪→
state
for
more
than
20
min-
utes

critical

9.3.1.5 Dump/Load unit
The following metrics show only when task-mode is in the full or all mode.

Metric
name Description Alert

Severity
level

load
progress

The
percentage of
the
completed
loading
process of the
load unit.
The value
range is
0%~100%

N/A N/A

304



Metric
name Description Alert

Severity
level

data
file
size

The total size
of the data
files (includes
the
INSERT INTO
statement) in
the full data
imported by
the load unit

N/A N/A

dump
pro-
cess
exits
with
error

The dump
unit
encounters
an error
within the
DM-worker
and exits

Immediate
alerts

critical

load
pro-
cess
exits
with
error

The load unit
encounters
an error
within the
DM-worker
and exits

Immediate
alerts

critical

table
count

The total
number of
tables in the
full data
imported by
the load unit

N/A N/A

data
file
count

The total
number of
data files
(includes the
INSERT INTO
statement) in
the full data
imported by
the load unit

N/A N/A

305



Metric
name Description Alert

Severity
level

transaction
execu-
tion
la-
tency

The latency
of executing
a transaction
by the load
unit (in
seconds)

N/A N/A

statement
execu-
tion
la-
tency

The duration
of executing
a statement
by the load
unit (in
seconds)

N/A N/A

remaining
time

The
remaining
time of
replicating
data by the
load unit (in
seconds)

N/A N/A

9.3.1.6 Binlog replication
The following metrics show only when task-mode is in the incremental or all mode.

Metric
name Description Alert

Severity
level

remaining
time
to
sync

The
predicted
remaining
time it takes
for syncer to
be
completely
migrated
with the
upstream
master (in
minutes)

N/A N/A

306



Metric
name Description Alert

Severity
level

replicate
lag
gauge

The latency
time it takes
to replicate
the binlog
from
upstream to
downstream
(in seconds)

N/A N/A

replicate
lag
his-
togram

The
histogram of
replicating
the binlog
from
upstream to
downstream
(in seconds).
Note that
due to
different
statistical
mechanisms,
the data
might be
inaccurate

N/A N/A

process
exist
with
error

The binlog
replication
unit
encounters
an error
within the
DM-worker
and exits

Immediate
alerts

critical

307



Metric
name Description Alert

Severity
level

binlog
file
gap
be-
tween
mas-
ter
and
syncer

The number
of binlog files
by which the
syncer
processing
unit is
behind the
upstream
master

An
alert
occurs
when
the
num-
ber of
binlog
files
by
which
the
syncer
↪→
pro-
cess-
ing
unit is
be-
hind
the
up-
stream
mas-
ter
ex-
ceeds
one
(>1)
and
the
condi-
tion
lasts
over
10
min-
utes

critical

308



Metric
name Description Alert

Severity
level

binlog
file
gap
be-
tween
relay
and
syncer

The number
of binlog files
by which
syncer is
behind relay

An
alert
occurs
when
the
num-
ber of
binlog
files
by
which
the
syncer
↪→
pro-
cess-
ing
unit is
be-
hind
the
relay
pro-
cess-
ing
unit
ex-
ceeds
one
(>1)
and
the
condi-
tion
lasts
over
10
min-
utes

critical

309



Metric
name Description Alert

Severity
level

binlog
event
QPS

The number
of binlog
events
received per
unit of time
(this number
does not
include the
events that
need to be
skipped)

N/A N/A

skipped
binlog
event
QPS

The number
of binlog
events
received per
unit of time
that need to
be skipped

N/A N/A

read
binlog
event
dura-
tion

The duration
that the
binlog
replication
unit reads
the binlog
from the
relay log or
the upstream
MySQL (in
seconds)

N/A N/A

transform
binlog
event
dura-
tion

The duration
that the
binlog
replication
unit parses
and
transforms
the binlog
into SQL
statements
(in seconds)

N/A N/A

310



Metric
name Description Alert

Severity
level

dispatch
binlog
event
dura-
tion

The duration
that the
binlog
replication
unit
dispatches a
binlog event
(in seconds)

N/A N/A

transaction
execu-
tion
la-
tency

The duration
that the
binlog
replication
unit executes
the
transaction
to the
downstream
(in seconds)

N/A N/A

binlog
event
size

The size of a
binlog event
that the
binlog
replication
unit reads
from the
relay log or
the upstream
MySQL

N/A N/A

DML
queue
re-
main
length

The length of
the
remaining
DML job
queue

N/A N/A

total
sqls
jobs

The number
of newly
added jobs
per unit of
time

N/A N/A

finished
sqls
jobs

The number
of finished
jobs per unit
of time

N/A N/A

311



Metric
name Description Alert

Severity
level

statement
execu-
tion
la-
tency

The duration
that the
binlog
replication
unit executes
the statement
to the
downstream
(in seconds)

N/A N/A

add
job
dura-
tion

The duration
tht the binlog
replication
unit adds a
job to the
queue (in
seconds)

N/A N/A

DML
con-
flict
detect
dura-
tion

The duration
that the
binlog
replication
unit detects
the conflict
in DML (in
seconds)

N/A N/A

skipped
event
dura-
tion

The duration
that the
binlog
replication
unit skips a
binlog event
(in seconds)

N/A N/A

unsynced
tables

The number
of tables that
have not
received the
shard DDL
statement in
the current
subtask

N/A N/A

312



Metric
name Description Alert

Severity
level

shard
lock
resolv-
ing

Whether the
current
subtask is
waiting for
the shard
DDL lock to
be resolved.
A value
greater than
0 indicates
that it is
waiting for
the shard
DDL lock to
be resolved

N/A N/A

ideal
QPS

The highest
QPS that can
be achieved
when the
running time
of DM is 0

N/A N/A

binlog
event
row

The number
of rows in a
binlog event

N/A N/A

finished
trans-
action
total

The number
of finished
transactions
in total

N/A N/A

replication
trans-
action
batch

The number
of sql rows in
the
transaction
executed to
the
downstream

N/A N/A

flush
check-
points
time
inter-
val

The time
interval for
flushing the
checkpoints
(in seconds)

N/A N/A

313



9.3.1.7 Relay log

Note:
Currently, DM v2.0 does not support enabling the relay log feature.

Metric
name Description Alert

Severity
level

storage
capac-
ity

The storage
capacity of
the disk
occupied by
the relay log

N/A N/A

storage
re-
main

The
remaining
storage
capacity of
the disk
occupied by
the relay log

An
alert
is
needed
once
the
value
is
smaller
than
10G

critical

process
exits
with
error

The relay log
encounters
an error
within the
DM-worker
and exits

Immediate
alerts

critical

relay
log
data
cor-
rup-
tion

The number
of corrupted
relay log files

Immediate
alerts

emergency

314



Metric
name Description Alert

Severity
level

fail to
read
binlog
from
mas-
ter

The number
of errors
encountered
when the
relay log
reads the
binlog from
the upstream
MySQL

Immediate
alerts

critical

fail to
write
relay
log

The number
of errors
encountered
when the
relay log
writes the
binlog to
disks

Immediate
alerts

critical

binlog
file
index

The largest
index number
of relay log
files. For
example,
“value = 1”
indicates
“relay-
log.000001”

N/A N/A

315



Metric
name Description Alert

Severity
level

binlog
file
gap
be-
tween
mas-
ter
and
relay

The number
of binlog files
in the relay
log that are
behind the
upstream
master

An
alert
occurs
when
the
num-
ber of
binlog
files
by
which
the
relay
pro-
cess-
ing
unit is
be-
hind
the
up-
stream
mas-
ter
ex-
ceeds
one
(>1)
and
the
condi-
tion
lasts
over
10
min-
utes

critical

binlog
pos

The write
offset of the
latest relay
log file

N/A N/A

316



Metric
name Description Alert

Severity
level

read
binlog
event
dura-
tion

The duration
that the relay
log reads
binlog from
the upstream
MySQL (in
seconds)

N/A N/A

write
relay
log
dura-
tion

The duration
that the relay
log writes
binlog into
the disks
each time (in
seconds)

N/A N/A

binlog
event
size

The size of a
single binlog
event that
the relay log
writes into
the disks

N/A N/A

9.3.2 Instance

In the Grafana dashboard, the default name of an instance is DM-instance.

9.3.2.1 Relay log

Metric
name Description Alert

Severity
level

storage
capac-
ity

The total
storage
capacity of
the disk
occupied by
the relay log

N/A N/A

317



Metric
name Description Alert

Severity
level

storage
re-
main

The
remaining
storage
capacity
within the
disk occupied
by the relay
log

An
alert
occurs
once
the
value
is
smaller
than
10G

critical

process
exits
with
error

The relay log
encounters
an error in
DM-worker
and exits

Immediate
alerts

critical

relay
log
data
cor-
rup-
tion

The number
of corrupted
relay logs

Immediate
alerts

emergency

fail to
read
binlog
from
mas-
ter

The number
of errors
encountered
when relay
log reads the
binlog from
the upstream
MySQL

Immediate
alerts

critical

fail to
write
relay
log

The number
of errors
encountered
when the
relay log
writes the
binlog to
disks

Immediate
alerts

critical

318



Metric
name Description Alert

Severity
level

binlog
file
index

The largest
index number
of relay log
files. For
example,
“value = 1”
indicates
“relay-
log.000001”

N/A N/A

319



Metric
name Description Alert

Severity
level

binlog
file
gap
be-
tween
mas-
ter
and
relay

The number
of binlog files
by which the
relay
processing
unit is
behind the
upstream
master

An
alert
occurs
when
the
num-
ber of
binlog
files
by
which
the
relay
pro-
cess-
ing
unit is
be-
hind
the
up-
stream
mas-
ter
ex-
ceeds
one
(>1)
and
the
condi-
tion
lasts
over
10
min-
utes

critical

binlog
pos

The write
offset of the
latest relay
log file

N/A N/A

320



Metric
name Description Alert

Severity
level

read
binlog
dura-
tion

The duration
that the relay
log reads the
binlog from
the upstream
MySQL (in
seconds)

N/A N/A

write
relay
log
dura-
tion

The duration
that the relay
log writes the
binlog into
the disk each
time (in
seconds)

N/A N/A

binlog
size

The size of a
single binlog
event that
the relay log
writes into
the disks

N/A N/A

9.3.2.2 Task

Metric
name Description Alert

Severity
level

task
state

The state of
subtasks for
migration

An
alert
occurs
when
the
sub-
task
has
been
paused
for
more
than
10
min-
utes

critical

321



Metric
name Description Alert

Severity
level

load
progress

The
percentage of
the
completed
loading
process of the
load unit.
The value
range is
0%~100%

N/A N/A

binlog
file
gap
be-
tween
mas-
ter
and
syncer

The number
of binlog files
by which the
binlog
replication
unit is
behind the
upstream
master

N/A N/A

shard
lock
resolv-
ing

Whether the
current
subtask is
waiting for
sharding
DDL
migration. A
value greater
than 0 means
that the
current
subtask is
waiting for
sharding
DDL
migration

N/A N/A

9.4 DM Alert Information

The alert system is deployed by default when you deploy a DM cluster using TiUP.
For more information about DM alert rules and the solutions, refer to handle alerts.
Both DM alert information and monitoring metrics are based on Prometheus. For more

322



information about their relationship, refer to DM monitoring metrics.

10 TiDB Data Migration FAQ

This document collects the frequently asked questions (FAQs) about TiDB Data Migra-
tion (DM).

10.1 Does DM support migrating data from Alibaba RDS or other
cloud databases?

Currently, DM only supports decoding the standard version of MySQL or MariaDB
binlog. It has not been tested for Alibaba Cloud RDS or other cloud databases. If you are
confirmed that its binlog is in standard format, then it is supported.

It is a known issue that for an upstream table with no primary key in Alibaba Cloud
RDS, its binlog still contains a hidden primary key column, which is inconsistent with the
original table structure.

Here are some known incompatible issues:

• In Alibaba Cloud RDS, for an upstream table with no primary key, its binlog still
contains a hidden primary key column, which is inconsistent with the original table
structure.

• In HUAWEI Cloud RDS, directly reading binlog files is not supported. For more
details, see Can HUAWEI Cloud RDS Directly Read Binlog Backup Files?

10.2 Does the regular expression of the block and allow list in the
task configuration support non-capturing (?!)?

Currently, DM does not support it and only supports the regular expressions of the
Golang standard library. See regular expressions supported by Golang via re2-syntax.

10.3 If a statement executed upstream contains multiple DDL op-
erations, does DM support such migration?

DM will attempt to split a single statement containing multiple DDL change operations
into multiple statements containing only one DDL operation, but might not cover all cases.
It is recommended to include only one DDL operation in a statement executed upstream,
or verify it in the test environment. If it is not supported, you can file an issue to the DM
repository.

323

https://support.huaweicloud.com/en-us/rds_faq/rds_faq_0210.html
https://github.com/google/re2/wiki/Syntax
https://github.com/pingcap/dm/issues


10.4 How to handle incompatible DDL statements?

When you encounter a DDL statement unsupported by TiDB, you need to manually
handle it using dmctl (skipping the DDL statement or replacing the DDL statement with a
specified DDL statement). For details, see Handle failed DDL statements.

Note:
Currently, TiDB is not compatible with all the DDL statements that MySQL
supports. See MySQL Compatibility.

10.5 How to reset the data migration task?

When an exception occurs during data migration and the data migration task cannot be
resumed, you need to reset the task and re-migrate the data:

1. Execute the stop-task command to stop the abnormal data migration task.

2. Purge the data migrated to the downstream.

3. Use one of the following ways to restart the data migration task.

• Specify a new task name in the task configuration file. Then execute start-task {
↪→ task-config-file}.

• Execute start-task --remove-meta {task-config-file}.

10.6 How to handle the error returned by the DDL operation
related to the gh-ost table, after online-ddl-scheme: "gh-ost"
is set?

[unit=Sync] ["error information"="{\"msg\":\"[code=36046:class=sync-unit:
↪→ scope=internal:level=high] online ddls on ghost table `xxx`.`
↪→ _xxxx_gho`\\ngithub.com/pingcap/dm/pkg/terror.(*Error).Generate
↪→ ......

The above error can be caused by the following reason:
In the last rename ghost_table to origin table step, DM reads the DDL informa-

tion in memory, and restores it to the DDL of the origin table.
However, the DDL information in memory is obtained in either of the two ways:

324

https://pingcap.com/docs/dev/reference/mysql-compatibility/#ddl


• DM processes the gh-ost table during the alter ghost_table operation and records
the DDL information of ghost_table;

• When DM-worker is restarted to start the task, DM reads the DDL from dm_meta.{
↪→ task_name}_onlineddl.

Therefore, in the process of incremental replication, if the specified Pos has skipped
the alter ghost_table DDL but the Pos is still in the online-ddl process of gh-ost, the
ghost_table is not written into memory or dm_meta.{task_name}_onlineddl correctly. In
such cases, the above error is returned.

You can avoid this error by the following steps:

1. Remove the online-ddl-scheme configuration of the task.

2. Configure _{table_name}_gho, _{table_name}_ghc, and _{table_name}_del in
block-allow-list.ignore-tables.

3. Execute the upstream DDL in the downstream TiDB manually.

4. After the Pos is replicated to the position after the gh-ost process, re-enable the online
↪→ -ddl-scheme and comment out block-allow-list.ignore-tables.

10.7 How to add tables to the existing data migration tasks?

If you need to add tables to a data migration task that is running, you can address it in
the following ways according to the stage of the task.

Note:
Because adding tables to an existing data migration task is complex, it is
recommended that you perform this operation only when necessary.

10.7.1 In the Dump stage

Since MySQL cannot specify a snapshot for export, it does not support updating data
migration tasks during the export and then restarting to resume the export through the
checkpoint. Therefore, you cannot dynamically add tables that need to be migrated at the
Dump stage.

If you really need to add tables for migration, it is recommended to restart the task
directly using the new configuration file.

325



10.7.2 In the Load stage

During the export, multiple data migration tasks usually have different binlog positions.
If you merge the tasks in the Load stage, they might not be able to reach consensus on binlog
positions. Therefore, it is not recommended to add tables to a data migration task in the
Load stage.

10.7.3 In the Sync stage

When the data migration task is in the Sync stage, if you add additional tables to the
configuration file and restart the task, DM does not re-execute full export and import for
the newly added tables. Instead, DM continues incremental replication from the previous
checkpoint.

Therefore, if the full data of the newly added table has not been imported to the down-
stream, you need to use a separate data migration task to export and import the full data
to the downstream.

Record the position information in the global checkpoint (is_global=1) correspond-
ing to the existing migration task as checkpoint-T, such as (mysql-bin.000100, 1234).
Record the position information of the full export metedata (or the checkpoint of another
data migration task in the Sync stage) of the table to be added to the migration task as
checkpoint-S, such as (mysql-bin.000099, 5678). You can add the table to the migration
task by the following steps:

1. Use stop-task to stop an existing migration task. If the table to be added belongs to
another running migration task, stop that task as well.

2. Use a MySQL client to connect the downstream TiDB database and manually update
the information in the checkpoint table corresponding to the existing migration task
to the smaller value between checkpoint-T and checkpoint-S. In this example, it is
(mysql- bin.000099, 5678).

• The checkpoint table to be updated is {task-name}_syncer_checkpoint in the
{dm_meta} schema.

• The checkpoint rows to be updated match id=(source-id) and is_global=1.
• The checkpoint columns to be updated are binlog_name and binlog_pos.

3. Set safe-mode: true for the syncers in the task to ensure reentrant execution.

4. Start the task using start-task.

5. Observe the task status through query-status. When syncerBinlog exceeds the
larger value of checkpoint-T and checkpoint-S, restore safe-mode to the original
value and restart the task. In this example, it is (mysql-bin.000100, 1234).

326



10.8 How to handle the error packet for query is too large. Try
adjusting the 'max_allowed_packet' variable that occurs
during the full import?

Set the parameters below to a value larger than the default 67108864 (64M).

• The global variable of the TiDB server: max_allowed_packet.
• The configuration item in the task configuration file: target-database.max-allowed

↪→ -packet. For details, refer to DM Advanced Task Configuration File.

For details, see Loader solution.

10.9 How to handle the error Error 1054: Unknown column
'binlog_gtid' in 'field list' that occurs when existing
DM migration tasks of an DM 1.0 cluster are running on a
DM 2.0 or newer cluster?

Since DM v2.0, if you directly run the start-task command with the task configuration
file of the DM 1.0 cluster to continue the incremental data replication, the error Error 1054:
↪→ Unknown column 'binlog_gtid' in 'field list' occurs.

This error can be handled by manually importing DM migration tasks of a DM 1.0
cluster to a DM 2.0 cluster.

10.10 Why does TiUP fail to deploy some versions of DM (for
example, v2.0.0-hotfix)？

You can use the tiup list dm-master command to view the DM versions that TiUP
supports to deploy. TiUP does not manage DM versions which are not shown by this
command.

10.11 How to handle the error parse mydumper metadata error:
EOF that occurs when DM is replicating data？

You need to check the error message and log files to further analyze this error. The cause
might be that the dump unit does not produce the correct metadata file due to a lack of
permissions.

10.12 Why does DM report no fatal error when replicating
sharded schemas and tables, but downstream data is lost?

Check the configuration items block-allow-list and table-route:

327

https://docs.pingcap.com/tidb/stable/loader-overview#solution


• You need to configure the names of upstream databases and tables under block-allow
↪→ -list. You can add “~” before do-tables to use regular expressions to match
names.

• table-route uses wildcard characters instead of regular expressions to match ta-
ble names. For example, table_parttern_[0-63] only matches 7 tables, from
table_parttern_0 to table_pattern_6.

10.13 Why does the replicate lag monitor metric show no data
when DM is not replicating from upstream?

In DM 1.0, you need to enable enable-heartbeat to generate the monitor data. In DM
2.0 and later versions, it is expected to have no data in the monitor metric replicate lag
because this feature is not supported.

10.14 How to handle the error fail to initial unit Sync of
subtask when DM is starting a task, with the RawCause in
the error message showing context deadline exceeded?

This is a known issue in DM 2.0.0 version and will be fixed in DM 2.0.1 version. It
is likely to be triggered when a replication task has a lot of tables to process. If you use
TiUP to deploy DM, you can upgrade DM to the nightly version to fix this issue. Or you
can download the 2.0.0-hotfix version from the release page of DM on GitHub and manually
replace the executable files.

10.15 How to handle the error duplicate entry when DM is repli-
cating data?

You need to first check and confirm the following things:

• disable-detect is not configured in the replication task ( in v2.0.7 and earlier ver-
sions).

• The data is not inserted manually or by other replication programs.
• No DML filter associated with this table is configured.

To facilitate troubleshooting, you can first collect general log files of the downstream
TiDB instance and then ask for technical support at TiDB Community slack channel. The
following example shows how to collect general log files:
# Enable general log collection
curl -X POST -d "tidb_general_log=1" http://{TiDBIP}:10080/settings
# Disable general log collection
curl -X POST -d "tidb_general_log=0" http://{TiDBIP}:10080/settings

328

https://github.com/pingcap/tiflow/releases
https://tidbcommunity.slack.com/archives/CH7TTLL7P


When the duplicate entry error occurs, you need to check the log files for the records
that contain conflict data.

10.16 Why do some monitoring panels show No data point?

It is normal for some panels to have no data. For example, when there is no error
reported, no DDL lock, or the relay log feature is not enabled, the corresponding panels
show No data point. For detailed description of each panel, see DM Monitoring Metrics.

10.17 In DM v1.0, why does the command sql-skip fail to skip
some statements when the task is in error?

You need to first check whether the binlog position is still advancing after you execute
sql-skip. If so, it means that sql-skip has taken effect. The reason why this error keeps
occurring is that the upstream sends multiple unsupported DDL statements. You can use
sql-skip -s <sql-pattern> to set a pattern to match these statements.

Sometimes, the error message contains the parse statement information, for example:
if the DDL is not needed, you can use a filter rule with \"*\" schema-

↪→ pattern to ignore it.\n\t : parse statement: line 1 column 11 near \"
↪→ EVENT `event_del_big_table` \r\nDISABLE\" %!!(MISSING)(EXTRA string=
↪→ ALTER EVENT `event_del_big_table` \r\nDISABLE

The reason for this type of error is that the TiDB parser cannot parse DDL statements
sent by the upstream, such as ALTER EVENT, so sql-skip does not take effect as expected.
You can add binlog event filters in the configuration file to filter those statements and
set schema-pattern: "*". Starting from DM v2.0.1, DM pre-filters statements related to
EVENT.

Since DM v2.0, handle-error replaces sql-skip. You can use handle-error instead
to avoid this issue.

10.18 Why do REPLACE statements keep appearing in the down-
stream when DM is replicating?

You need to check whether the safe mode is automatically enabled for the task. If the
task is automatically resumed after an error, or if there is high availability scheduling, then
the safe mode is enabled because it is within 1 minutes after the task is started or resumed.

You can check the DM-worker log file and search for a line containing change count.
If the new count in the line is not zero, the safe mode is enabled. To find out why it is
enabled, check when it happens and if any errors are reported before.

329



10.19 In DM v2.0, why does the full import task fail if DM restarts
during the task?

In DM v2.0.1 and earlier versions, if DM restarts before the full import completes, the
bindings between upstream data sources and DM-worker nodes might change. For example,
it is possible that the intermediate data of the dump unit is on DM-worker node A but the
load unit is run by DM-worker node B, thus causing the operation to fail.

The following are two solutions to this issue:

• If the data volume is small (less than 1 TB) or the task merges sharded tables, take
these steps:

1. Clean up the imported data in the downstream database.
2. Remove all files in the directory of exported data.
3. Delete the task using dmctl and run the command start-task --remove-meta

to create a new task.

After the new task starts, it is recommended to ensure that there is no redundant DM
worker node and avoid restarting or upgrading the DM cluster during the full import.

• If the data volume is large (more than 1 TB), take these steps:

1. Clean up the imported data in the downstream database.
2. Deploy TiDB-Lightning to the DM worker nodes that process the data.
3. Use the Local-backend mode of TiDB-Lightning to import data that DM dump

units export.
4. After the full import completes, edit the task configuration file in the following

ways and restart the task:
– Change task-mode to incremental.
– Set the value of mysql-instance.meta.pos to the position recorded in the

metadata file that the dump unit outputs.

10.20 Why does DM report the error ERROR 1236 (HY000):
The slave is connecting using CHANGE MASTER TO
MASTER_AUTO_POSITION = 1, but the master has purged
binary logs containing GTIDs that the slave requires. if
it restarts during an incremental task?

This error indicates that the upstream binlog position recorded in the metadata file
output by the dump unit has been purged during the full migration.

If this issue occurs, you need to pause the task, delete all migrated data in the down-
stream database, and start a new task with the --remove-meta option.

You can avoid this issue in advance by configuring in the following ways:

330



1. Increase the value of expire_logs_days in the upstream MySQL database to avoid
wrongly purging needed binlog files before the full migration task completes. If the
data volume is large, it is recommended to use dumpling and TiDB-Lightning at the
same time to speed up the task.

2. Enable the relay log feature for this task so that DM can read data from relay logs
even though the binlog position is purged.

10.21 Why does the Grafana dashboard of a DM cluster display
failed to fetch dashboard if the cluster is deployed using
TiUP v1.3.0 or v1.3.1?

This is a known bug of TiUP, which is fixed in TiUP v1.3.2. The following are two
solutions to this issue:

• Solution one:
1. Upgrade TiUP to a later version using the command tiup update --self &&

↪→ tiup update dm.
2. Scale in and then scale out Grafana nodes in the cluster to restart the Grafana

service.
• Solution two:

1. Back up the deploy/grafana-$port/bin/public folder.
2. Download the TiUP DM offline package and unpack it.
3. Unpack the grafana-v4.0.3-**.tar.gz in the offline package.
4. Replace the folder deploy/grafana-$port/bin/public with the public folder

in grafana-v4.0.3-**.tar.gz.
5. Execute tiup dm restart $cluster_name -R grafana to restart the Grafana

service.

10.22 In DM v2.0, why does the query result of the command
query-status show that the Syncer checkpoint GTIDs are
inconsecutive if the task has enable-relay and enable-gtid
enabled at the same time?

This is a known bug in DM, which is fixed in DM v2.0.2. The bug is triggered when the
following two conditions are fully met at the same time:

1. Parameters enable-relay and enable-gtid are set to true in the source configuration
file.

2. The upstream database is a MySQL secondary database. If you execute the
command show binlog events in '<newest-binlog>' limit 2 to query the
previous_gtids of the database, the result is inconsecutive, such as the following
example:

331

https://download.pingcap.org/tidb-dm-v2.0.1-linux-amd64.tar.gz


mysql> show binlog events in 'mysql-bin.000005' limit 2;
+------------------+------+----------------+-----------+-------------+--------------------------------------------------------------------+

↪→
| Log_name | Pos | Event_type | Server_id | End_log_pos | Info

↪→ |
+------------------+------+----------------+-----------+-------------+--------------------------------------------------------------------+

↪→
| mysql-bin.000005 | 4 | Format_desc | 123452 | 123 | Server ver:

↪→ 5.7.32-35-log, Binlog ver: 4 |
| mysql-bin.000005 | 123 | Previous_gtids | 123452 | 194 | d3618e68

↪→ -6052-11eb-a68b-0242ac110002:6-7 |
+------------------+------+----------------+-----------+-------------+--------------------------------------------------------------------+

↪→

The bug occurs if you run query-status <task> in dmctl to query task information
and find that subTaskStatus.sync.syncerBinlogGtid is inconsecutive but subTaskStatus
↪→ .sync.masterBinlogGtid is consecutive. See the following example:
query-status test
{

...
"sources": [

{
...
"sourceStatus": {

"source": "mysql1",
...
"relayStatus": {

"masterBinlog": "(mysql-bin.000006, 744)",
"masterBinlogGtid": "f8004e25-6067-11eb-9fa3-0242ac110003

↪→ :1-50",
...

}
},
"subTaskStatus": [

{
...
"sync": {

...
"masterBinlog": "(mysql-bin.000006, 744)",
"masterBinlogGtid": "f8004e25-6067-11eb-9fa3-0242

↪→ ac110003:1-50",
"syncerBinlog": "(mysql-bin|000001.000006, 738)",
"syncerBinlogGtid": "f8004e25-6067-11eb-9fa3-0242

↪→ ac110003:1-20:40-49",

332



...
"synced": false,
"binlogType": "local"

}
}

]
},
{

...
"sourceStatus": {

"source": "mysql2",
...
"relayStatus": {

"masterBinlog": "(mysql-bin.000007, 1979)",
"masterBinlogGtid": "ddb8974e-6064-11eb-8357-0242ac110002

↪→ :1-25",
...

}
},
"subTaskStatus": [

{
...
"sync": {

"masterBinlog": "(mysql-bin.000007, 1979)",
"masterBinlogGtid": "ddb8974e-6064-11eb-8357-0242

↪→ ac110002:1-25",
"syncerBinlog": "(mysql-bin|000001.000008, 1979)",
"syncerBinlogGtid": "ddb8974e-6064-11eb-8357-0242

↪→ ac110002:1-25",
...
"synced": true,
"binlogType": "local"

}
}

]
}

]
}

In the example, the syncerBinlogGtid of the data source mysql1 is inconsecutive. In
this case, you can do one of the following to handle the data loss:

• If upstream binlogs from the current time to the position recorded in the metadata of
the full export task have not been purged, you can take these steps:

333



1. Stop the current task and delete all data sources with inconsecutive GTIDs.
2. Set enable-relay to false in all source configuration files.
3. For data sources with inconsecutive GTIDs (such as mysql1 in the above example),

change the task to an incremental task and configure related mysql-instances.
↪→ meta with metadata information of each full export task, including the binlog
↪→ -name, binlog-pos, and binlog-gtid information.

4. Set syncers.safe-mode to true in task.yaml of the incremental task and restart
the task.

5. After the incremental task replicates all missing data to the downstream, stop the
task and change safe-mode to false in the task.yaml.

6. Restart the task again.

• If upstream binlogs have been purged but local relay logs remain, you can take these
steps:

1. Stop the current task.
2. For data sources with inconsecutive GTIDs (such as mysql1 in the above example),

change the task to an incremental task and configure related mysql-instances.
↪→ meta with metadata information of each full export task, including the binlog
↪→ -name, binlog-pos, and binlog-gtid information.

3. In the task.yaml of the incremental task, change the previous value of binlog-
↪→ gtid to the previous value of previous_gtids. For the above example, change
1-y to 6-y.

4. Set syncers.safe-mode to true in the task.yaml and restart the task.
5. After the incremental task replicates all missing data to the downstream, stop the

task and change safe-mode to false in the task.yaml.
6. Restart the task again.
7. Restart the data source and set either enable-relay or enable-gtid to false

in the source configuration file.

• If none of the above conditions is met or if the data volume of the task is small, you
can take these steps:

1. Clean up imported data in the downstream database.
2. Restart the data source and set either enable-relay or enable-gtid to false

in the source configuration file.
3. Create a new task and run the command start-task task.yaml --remove-

↪→ meta to migrate data from the beginning again.

For data sources that can be replicated normally (such as mysql2 in the above exam-
ple) in the first and second solutions above, configure related mysql-instances.meta with
syncerBinlog and syncerBinlogGtid information from subTaskStatus.sync when setting
the incremental task.

334



10.23 In DM v2.0, how do I handle the error “heartbeat config
is different from previous used: serverID not equal” when
switching the connection between DM-workers and MySQL
instances in a virtual IP environment with the heartbeat
feature enabled?

The heartbeat feature is disabled by default in DM v2.0 and later versions. If you enable
the feature in the task configuration file, it interferes with the high availability feature. To
solve this issue, you can disable the heartbeat feature by setting enable-heartbeat to
false in the task configuration file, and then reload the task configuration file. DM will
forcibly disable the heartbeat feature in subsequent releases.

10.24 Why does a DM-master fail to join the cluster after it
restarts and DM reports the error “fail to start embed etcd,
RawCause: member xxx has already been bootstrapped”?

When a DM-master starts, DM records the etcd information in the current directory.
If the directory changes after the DM-master restarts, DM cannot get access to the etcd
information, and thus the restart fails.

To solve this issue, you are recommended to maintain DM clusters using TiUP. In the
case that you need to deploy using binary files, you need to configure data-dir with absolute
paths in the configuration file of the DM-master, or pay attention to the current directory
where you run the command.

10.25 Why DM-master cannot be connected when I use dmctl to
execute commands?

When using dmctl execute commands, you might find the connection to DM master fails
(even if you have specified the parameter value of --master-addr in the command), and
the error message is like RawCause: context deadline exceeded, Workaround: please
↪→ check your network connection.. But afer checking the network connection using
commands like telnet <master-addr>, no exception is found.

In this case, you can check the environment variable https_proxy (note that it is https).
If this variable is configured, dmctl automatically connects the host and port specified by
https_proxy. If the host does not have a corresponding proxy forwarding service, the
connection fails.

To solve this issue, check whether https_proxy is mandatory. If not, cancel the setting.
Otherwise, add the environment variable setting https_proxy="" ./dmctl --master-addr
↪→ "x.x.x.x:8261" before the oringial dmctl commands.

335



Note:
The environment variables related to proxy include http_proxy,
https_proxy, and no_proxy. If the connection error persists after you
perform the above steps, check whether the configuration parameters of
http_proxy and no_proxy are correct.

10.26 How to handle the returned error when executing start-
relay command for DM versions from 2.0.2 to 2.0.6?

flush local meta, Rawcause: open relay-dir/xxx.000001/relay.metayyyy: no
↪→ such file or directory

The above error might be made in the following cases:

• DM has been upgraded from v2.0.1 and earlier to v2.0.2 - v2.0.6, and relay log is
started before the upgrade and restarted after the upgrade.

• Execute the stop-relay command to pause the relay log and then restart it.

You can avoid this error by the following options:

• Restart relay log:
» stop-relay -s sourceID workerName
» start-relay -s sourceID workerName

• Upgrade DM to v2.0.7 or later versions.

11 TiDB Data Migration Glossary

This document lists the terms used in the logs, monitoring, configurations, and docu-
mentation of TiDB Data Migration (DM).

11.1 B

11.1.1 Binlog

In TiDB DM, binlogs refer to the binary log files generated in the TiDB database. It
has the same indications as that in MySQL or MariaDB. Refer to MySQL Binary Log and
MariaDB Binary Log for details.

336

https://dev.mysql.com/doc/internals/en/binary-log.html
https://mariadb.com/kb/en/library/binary-log/


11.1.2 Binlog event

Binlog events are information about data modification made to a MySQL or MariaDB
server instance. These binlog events are stored in the binlog files. Refer to MySQL Binlog
Event and MariaDB Binlog Event for details.

11.1.3 Binlog event filter

Binlog event filter is a more fine-grained filtering feature than the block and allow lists
filtering rule. Refer to binlog event filter for details.

11.1.4 Binlog position

The binlog position is the offset information of a binlog event in a binlog file. Refer to
MySQL SHOW BINLOG EVENTS and MariaDB SHOW BINLOG EVENTS for details.

11.1.5 Binlog replication processing unit/sync unit

Binlog replication processing unit is the processing unit used in DM-worker to read
upstream binlogs or local relay logs, and to migrate these logs to the downstream. Each
subtask corresponds to a binlog replication processing unit. In the current documentation,
the binlog replication processing unit is also referred to as the sync processing unit.

11.1.6 Block & allow table list

Block & allow table list is the feature that filters or only migrates all operations of some
databases or some tables. Refer to block & allow table lists for details. This feature is similar
to MySQL Replication Filtering and MariaDB Replication Filters.

11.2 C

11.2.1 Checkpoint

A checkpoint indicates the position from which a full data import or an incremental
replication task is paused and resumed, or is stopped and restarted.

• In a full import task, a checkpoint corresponds to the offset and other information of
the successfully imported data in a file that is being imported. A checkpoint is updated
synchronously with the data import task.

• In an incremental replication, a checkpoint corresponds to the binlog position and
other information of a binlog event that is successfully parsed and migrated to the
downstream. A checkpoint is updated after the DDL operation is successfully migrated
or 30 seconds after the last update.

337

https://dev.mysql.com/doc/internals/en/binlog-event.html
https://dev.mysql.com/doc/internals/en/binlog-event.html
https://mariadb.com/kb/en/library/1-binlog-events/
https://dev.mysql.com/doc/refman/8.0/en/show-binlog-events.html
https://mariadb.com/kb/en/library/show-binlog-events/
https://dev.mysql.com/doc/refman/5.6/en/replication-rules.html
https://mariadb.com/kb/en/replication-filters/


In addition, the relay.meta information corresponding to a relay processing unit works
similarly to a checkpoint. A relay processing unit pulls the binlog event from the upstream
and writes this event to the relay log, and writes the binlog position or the GTID information
corresponding to this event to relay.meta.

11.3 D

11.3.1 Dump processing unit/dump unit

The dump processing unit is the processing unit used in DM-worker to export all data
from the upstream. Each subtask corresponds to a dump processing unit.

11.4 G

11.4.1 GTID

The GTID is the global transaction ID of MySQL or MariaDB. With this feature enabled,
the GTID information is recorded in the binlog files. Multiple GTIDs form a GTID set. Refer
to MySQL GTID Format and Storage and MariaDB Global Transaction ID for details.

11.5 L

11.5.1 Load processing unit/load unit

The load processing unit is the processing unit used in DM-worker to import the fully
exported data to the downstream. Each subtask corresponds to a load processing unit. In the
current documentation, the load processing unit is also referred to as the import processing
unit.

11.6 M

11.6.1 Migrate/migration

The process of using the TiDB Data Migration tool to copy the full data of the upstream
database to the downstream database.

In the case of clearly mentioning “full”, not explicitly mentioning “full or incremental”,
and clearly mentioning “full + incremental”, use migrate/migration instead of replicate/repli-
cation.

338

https://dev.mysql.com/doc/refman/5.7/en/replication-gtids-concepts.html
https://mariadb.com/kb/en/library/gtid/


11.7 R

11.7.1 Relay log

The relay log refers to the binlog files that DM-worker pulls from the upstream MySQL
or MariaDB, and stores in the local disk. The format of the relay log is the standard binlog
file, which can be parsed by tools such as mysqlbinlog of a compatible version. Its role is
similar to MySQL Relay Log and MariaDB Relay Log.

For more details such as the relay log’s directory structure, initial migration rules, and
data purge in TiDB DM, see TiDB DM relay log.

11.7.2 Relay processing unit

The relay processing unit is the processing unit used in DM-worker to pull binlog files
from the upstream and write data into relay logs. Each DM-worker instance has only one
relay processing unit.

11.7.3 Replicate/replication

The process of using the TiDB Data Migration tool to copy the incremental data of
the upstream database to the downstream database.

In the case of clearly mentioning “incremental”, use replicate/replication instead of mi-
grate/migration.

11.8 S

11.8.1 Safe mode

Safe mode is the mode in which DML statements can be imported more than once when
the primary key or unique index exists in the table schema. In this mode, some statements
from the upstream are migrated to the downstream only after they are re-written. The
INSERT statement is re-written as REPLACE; the UPDATE statement is re-written as DELETE
and REPLACE.

This mode is enabled in any of the following situations:

• The safe mode remains enabled when the safe-mode parameter in the task configura-
tion file is set to true.

• In shard merge scenarios, the safe mode remains enabled before DDL statements are
replicated in all sharded tables.

• If the argument --consistency none is configured for the dump processing unit of
a full migration task, it cannot be determined whether the binlog changes at the
beginning of the export affect the exported data or not. Therefore, the safe mode
remains enabled for the incremental replication of these binlog changes.

339

https://dev.mysql.com/doc/refman/8.0/en/mysqlbinlog.html
https://dev.mysql.com/doc/refman/5.7/en/replica-logs-relaylog.html
https://mariadb.com/kb/en/library/relay-log/


• If the task is paused by error and then resumed, the operations on some data might
be executed twice.

11.8.2 Shard DDL

The shard DDL is the DDL statement that is executed on the upstream sharded tables.
It needs to be coordinated and migrated by TiDB DM in the process of merging the sharded
tables. In the current documentation, the shard DDL is also referred to as the sharding
DDL.

11.8.3 Shard DDL lock

The shard DDL lock is the lock mechanism that coordinates the migration of shard DDL.
Refer to the implementation principles of merging and migrating data from sharded tables
in the pessimistic mode for details. In the current documentation, the shard DDL lock is
also referred to as the sharding DDL lock.

11.8.4 Shard group

A shard group is all the upstream sharded tables to be merged and migrated to the same
table in the downstream. Two-level shard groups are used for implementation of TiDB DM.
Refer to the implementation principles of merging and migrating data from sharded tables
in the pessimistic mode for details. In the current documentation, the shard group is also
referred to as the sharding group.

11.8.5 Subtask

The subtask is a part of a data migration task that is running on each DM-worker
instance. In different task configurations, a single data migration task might have one
subtask or multiple subtasks.

11.8.6 Subtask status

The subtask status is the status of a data migration subtask. The current status options
include New, Running, Paused, Stopped, and Finished. Refer to subtask status for more
details about the status of a data migration task or subtask.

11.9 T

11.9.1 Table routing

The table routing feature enables DM to migrate a certain table of the upstream MySQL
or MariaDB instance to the specified table in the downstream, which can be used to merge
and migrate sharded tables. Refer to table routing for details.

340



11.9.2 Task

The data migration task, which is started after you successfully execute a start-task
↪→ command. In different task configurations, a single migration task can run on a single
DM-worker instance or on multiple DM-worker instances at the same time.

11.9.3 Task status

The task status refers to the status of a data migration task. The task status depends
on the statuses of all its subtasks. Refer to subtask status for details.

12 Release Notes

12.1 v5.3

12.1.1 DM 5.3.0 Release Notes

Release date: November 30, 2021
DM version: 5.3.0

12.1.1.1 Special Notes
In earlier versions (v1.0 and v2.0), DM uses version numbers that are independent of

TiDB. Since v5.3, DM uses the same version number as TiDB. The next version of DM v2.0
is DM v5.3. There are no compatibility changes from DM v2.0 to v5.3, and the upgrade
process is no different from a normal upgrade, only an increase in version number.

12.1.1.2 Improvements

• Reduce latency when Relay Log is enabled #2225
• Compress/merge DML statements for incremental replication to reduce replication

latency #3162 #3167
• Support OpenAPI feature to better manage DM clusters (experimental feature) #1928
• Optimize the user experience of dmctl and add subcommands #1746
• Support for maintaining transaction atomicity when stopping or pausing replication

tasks #1928
• Support for reading Relay Log files with file names longer than 999999 #1933
• Load and sync units support more monitoring metrics #1778
• Support for concurrently manipulating tasks via dmctl #1995
• Optimize DML concurrency for incremental replication #2043
• Prompt user when HTTP proxy-related environment variables are detected #1960
• Optimize log display when handling RowEvent #2006
• Optimize log display when SQL execution is too slow #2024

341

https://github.com/pingcap/dm/pull/2225
https://github.com/pingcap/tiflow/pull/3162
https://github.com/pingcap/tiflow/pull/3167
https://github.com/pingcap/dm/issues/1982
https://github.com/pingcap/dm/pull/1746
https://github.com/pingcap/dm/pull/1928
https://github.com/pingcap/dm/pull/1933
https://github.com/pingcap/dm/pull/1778
https://github.com/pingcap/dm/pull/1955
https://github.com/pingcap/dm/pull/2043
https://github.com/pingcap/dm/pull/1960
https://github.com/pingcap/dm/pull/2006
https://github.com/pingcap/dm/pull/2024


• Optimize logic for fetching status data from upstream sources to reduce pressure on
upstream #2076

• Report errors and prompt users when encountering unsupported binlog formats #2099
• Support for batch manipulation of all sync tasks in a data source via dmctl #2166
• Generate DML WHERE statements from downstream table schemas #3168
• Support for automatic acquisition and configuration of upstream and downstream time

zones #3403

12.1.1.3 Bug fixes

• Fix the issue of high availability scheduling failure when configuring SSL certificates
upstream and downstream #1910

• Fix the issue that pausing tasks takes too much time #1945
• Fix the issue that handle-error revert returns unclear error messages #1969
• Fix the issue that a replication task fails when you use binlog filter to skip certain DDL

#1975
• Fix the issue that evict-leader fails in certain circumstances #1986
• Fix the issue that dmctl returns unclear error messages #2063
• Fix the issue of DM-worker scheduling failure when Relay Log is enabled #2199
• Fix the issue that DM-worker fails to connect to the upstream database and to start

when Relay Log is enabled #2227
• Fix the issue of a meta file writing failure when Relay Log is enabled and upstream

database switches #3164

12.1.1.4 Known issues
GitHub issues

12.2 v2.0

12.2.1 DM 2.0.7 Release Notes

Release date: September 29, 2021
DM version: 2.0.7

12.2.1.1 Bug fixes

• Fix the error that binlog event is purged when switching enable-gtid in source con-
figuration from false to true #2094

• Fix the memory leak problem of schema-tracker #2133

342

https://github.com/pingcap/dm/pull/2076
https://github.com/pingcap/dm/pull/2099
https://github.com/pingcap/dm/pull/2166
https://github.com/pingcap/tiflow/pull/3168
https://github.com/pingcap/tiflow/pull/3403
https://github.com/pingcap/dm/pull/1910
https://github.com/pingcap/dm/pull/1954
https://github.com/pingcap/dm/pull/1969
https://github.com/pingcap/dm/pull/1975
https://github.com/pingcap/dm/pull/1986
https://github.com/pingcap/dm/pull/2063
https://github.com/pingcap/dm/pull/2219
https://github.com/pingcap/dm/pull/2227
https://github.com/pingcap/tiflow/pull/3164
https://github.com/pingcap/tiflow/issues?q=is%3Aissue+is%3Aopen+label%3Atype%2Fbug+label%3Aarea%2Fdm
https://github.com/pingcap/dm/pull/2094
https://github.com/pingcap/dm/pull/2133


12.2.1.2 Improvements

• Disable background statistic job in schema tracker to reduce CPU consumption #2065
• Support regular expressions for online DDL shadow and trash tables #2139

12.2.1.3 Known issues
GitHub issues

12.2.2 DM 2.0.6 Release Notes

Release date: August 13, 2021
DM version: 2.0.6

12.2.2.1 Bug fixes

• Fix the issue that the metadata inconsistency between DDL infos and upstream tables
in the optimistic sharding DDL mode causes DM-master panic #1971

12.2.2.2 Known issues
GitHub issues

12.2.3 DM 2.0.5 Release Notes

Release date: July 30, 2021
DM version: 2.0.5

12.2.3.1 Improvements

• Support for filtering certain DML using SQL expressions #1832
• Add config import/export command to import and export cluster sources and tasks

configuration files for downgrade #1921
• Optimize safe-mode to improve replication efficiency #1920
• Maximize compatibility with upstream SQL_MODE #1894
• Support upstream using both pt and gh-ost online DDL modes in one task #1918
• Improve the efficiency of replication of DECIMAL types #1841
• Support for automatic retry of transaction-related retryable errors #1916

343

https://github.com/pingcap/dm/pull/2065
https://github.com/pingcap/dm/pull/2139
https://github.com/pingcap/dm/issues?q=is%3Aissue+label%3Aaffected-v2.0.6
https://github.com/pingcap/dm/pull/1971
https://github.com/pingcap/dm/issues?q=is%3Aissue+label%3Aaffected-v2.0.6
https://github.com/pingcap/dm/pull/1832
https://github.com/pingcap/dm/pull/1921
https://github.com/pingcap/dm/pull/1920
https://github.com/pingcap/dm/pull/1894
https://github.com/pingcap/dm/pull/1918
https://github.com/pingcap/dm/pull/1841
https://github.com/pingcap/dm/pull/1916


12.2.3.2 Bug fixes

• Fix the issue that the inconsistency of upstream and downstream primary keys might
lead to data loss #1919

• Fix the issue that too many upstream sources cause cluster upgrade failure and DM-
master OOM #1868

• Fix the issue of the configuration item case-sensitive #1886
• Fix the issue that the default value of tidb_enable_change_column_type inside DM

is wrong #1843
• Fix the issue that the auto_random column in downstreammay causes task interruption

#1847
• Fix the issue that operate-schema set -flush command causes DM-worker panic

#1829
• Fix the issue that DDL fails to coordinate within DM-worker due to repeated execution

of the same DDL in pessimistic mode #1816
• Fix the issue that wrong configuration causes DM-worker panic #1842
• Fix the issue that redoing tasks causes loader panic #1822
• Fix the issue that DM binlog file name is not timely updated after upstream master-

slave switch #1874
• Fix the issue of incorrect value of replication delay monitoring #1880
• Fix the issue that block-allow-list fails to filter online DDL in some cases #1867
• Fix the issue that the task cannot be stopped manually due to the error after automatic

resuming #1917

12.2.3.3 Known issues
GitHub issues

12.2.4 DM 2.0.4 Release Notes

Release date: June 18, 2021
DM version: 2.0.4

12.2.4.1 Improvements

• Support rescheduling and automatically resuming tasks after a DM-worker goes offline
first and then comes back online during the full import #1784

• Add the metric replicationLagGauge to monitor replication delay #1759
• Restore schemas in parallel during the full import #1701
• Support automatically adjusting the time_zone settings of both the upstream and

downstream databases #1714
• Improve the speed of rolling back incremental replication tasks after the tasks meet

errors #1705

344

https://github.com/pingcap/dm/pull/1919
https://github.com/pingcap/dm/pull/1868
https://github.com/pingcap/dm/pull/1886
https://github.com/pingcap/dm/pull/1843
https://github.com/pingcap/dm/pull/1847
https://github.com/pingcap/dm/pull/1829
https://github.com/pingcap/dm/pull/1816
https://github.com/pingcap/dm/pull/1842
https://github.com/pingcap/dm/pull/1822
https://github.com/pingcap/dm/pull/1874
https://github.com/pingcap/dm/pull/1880
https://github.com/pingcap/dm/pull/1867
https://github.com/pingcap/dm/pull/1917
https://github.com/pingcap/dm/issues?q=is%3Aissue+label%3Aaffected-v2.0.5
https://github.com/pingcap/dm/pull/1784
https://github.com/pingcap/dm/pull/1759
https://github.com/pingcap/dm/pull/1701
https://github.com/pingcap/dm/pull/1714
https://github.com/pingcap/dm/pull/1705


• Automatically adjust GTID according to checkpoints when GTID is enabled during
the incremental replication #1745

• Detect the versions of upstream and downstream databases and record the versions in
log files #1693

• Use the schema from the dump stage of the full export as the initial schema for the
incremental replication task of the same data source #1754

• Decrease the time that the safe mode lasts after the incremental task is restarted to
one minute to improve the replication speed #1779

• Improve the usability of dmctl
– Support setting the address of DM-master as an environment variable #1726
– Support specifying the master-addr parameter anywhere in a dmctl command

#1771
– Use the encrypt/decrypt command instead of the --decrypt/-encrypt param-

eter to encrypt or decrypt the database password #1771

12.2.4.2 Bug fixes

• Fix the issue that data may be lost after a non-GTID task restarts from interruption
#1781

• Fix the issue that the data source binding information may be lost after upgrading a
DM cluster which has been downgraded before #1713

• Fix the issue that etcd reports that the wal directory does not exist when DM-master
restarts #1680

• Fix the issue that the number of error messages reported from precheck exceeds the
grpc limit #1688

• Fix the issue that DM-worker panics when replicating unsupported statements from a
MariaDB database of an earlier version #1734

• Fix the issue that DM does not update the metric of relay log disk capacity #1753
• Fix the issue that DM may panic when getting the master status of the upstream

database binlog #1774

12.2.4.3 Known issues
GitHub issues

12.2.5 DM 2.0.3 Release Notes

Release date: May 11, 2021
DM version: 2.0.3

12.2.5.1 Improvements

• Support deleting residual DDL locks using the command unlock-ddl-lock after the
migration task is stopped #1612

345

https://github.com/pingcap/dm/pull/1745
https://github.com/pingcap/dm/pull/1693
https://github.com/pingcap/dm/pull/1754
https://github.com/pingcap/dm/pull/1779
https://github.com/pingcap/dm/pull/1726
https://github.com/pingcap/dm/pull/1771
https://github.com/pingcap/dm/pull/1771
https://github.com/pingcap/dm/pull/1781
https://github.com/pingcap/dm/pull/1713
https://github.com/pingcap/dm/pull/1680
https://github.com/pingcap/dm/pull/1688
https://github.com/pingcap/dm/pull/1734
https://github.com/pingcap/dm/pull/1753
https://github.com/pingcap/dm/pull/1774
https://github.com/pingcap/dm/issues?q=is%3Aissue+label%3Aaffected-v2.0.4
https://github.com/pingcap/dm/pull/1612


• Support limiting the number of errors and warnings that DM reports during the
precheck process #1621

• Optimize the behavior of the command query-status to get the status of upstream
binlogs #1630

• Optimize the format of sharded tables’ migration status output by the command query
↪→ -status in the pessimistic mode #1650

• Print help message first when dmtcl processes commands with the --help input #1637
• Automatically remove the related information from monitoring panels after a DDL

lock is deleted #1631
• Automatically remove the related task status from monitoring panels after a task is

stopped or completed #1614

12.2.5.2 Bug fixes

• Fix the issue that DM-master becomes out of memory after DM is updated to v2.0.2
in the process of shard DDL coordination using the optimistic mode #1643 #1649

• Fix the issue that the source binding information is lost when DM is started for the
first time after updated to v2.0.2 #1649

• Fix the issue that the flag in the command operate-source show -s does not take
effect #1587

• Fix the issue that the command operate-source stop <config-file> fails because
DM cannot connect to the source #1587

• Fix the finer-grained issue that some migration errors might be wrongly ignored #1599
• Fix the issue that the migration is interrupted when DM filters online DDL statements

according to binlog event filtering rules that are configured #1668

12.2.5.3 Known issues
GitHub issues

12.2.6 DM 2.0.2 Release Notes

Release date: April 9, 2021
DM version: 2.0.2

12.2.6.1 Improvements

• Relay log GA

– The relay log feature is no longer enabled by setting the source configuration
file. Now, the feature is enabled by running commands in dmctl for specified
DM-workers #1499

– DM sends the commands query-status -s and purge-relay to all DM-workers
that pull relay logs #1533

346

https://github.com/pingcap/dm/pull/1621
https://github.com/pingcap/dm/pull/1630
https://github.com/pingcap/dm/pull/1650
https://github.com/pingcap/dm/pull/1637
https://github.com/pingcap/dm/pull/1631
https://github.com/pingcap/dm/pull/1614
https://github.com/pingcap/dm/pull/1643
https://github.com/pingcap/dm/pull/1649
https://github.com/pingcap/dm/pull/1649
https://github.com/pingcap/dm/pull/1587
https://github.com/pingcap/dm/pull/1587
https://github.com/pingcap/dm/pull/1599
https://github.com/pingcap/dm/pull/1668
https://github.com/pingcap/dm/issues?q=is%3Aissue+label%3Aaffected-v2.0.3
https://github.com/pingcap/dm/pull/1499
https://github.com/pingcap/dm/pull/1533


– Align the relay unit‘s behavior of pulling and sending binlogs with that of the
secondary MySQL database #1390

– Reduce the scenarios where relay logs need to be purged #1400
– Support sending heartbeat events when the relay log feature is enabled to display

task progress with regular updates #1404

• Optimistic sharding DDL mode

– Optimize operations for resolving DDL conflicts #1496 #1506 #1518 #1551
– Adjust the DDL coordination behavior in the optimistic mode to avoid data in-

consistency in advance #1510 #1512

• Support automatically recognizing the switching of upstream data sources when the
source configuration needs no update, for example, when the IP address does not
change #1364

• Precheck the privileges of the upstream MySQL instance at a finer granularity #1336
• Support configuring binlog event filtering rules in the source configuration file #1370
• When binding an idle upstream data source to an idle DM-worker node, DM-master

nodes firstly choose the most recent binding of that DM-worker node #1373
• Improve the stability of DM automatically getting the SQL mode from the binlog file

#1382 #1552
• Support automatically parsing GTIDs of different formats in the source configuration

file #1385
• Extend DM-worker’s TTL for keepalive to reduce scheduling caused by poor network

#1405
• Support reporting an error when the configuration file contains configuration items

that are not referenced #1410
• Improve the display of a GTID set by sorting it in dictionary order #1424
• Optimize monitoring and alerting rules #1438
• Support manually transferring an upstream data source to a specified DM-worker

#1492
• Add configurations of etcd compaction and disk quota #1521

12.2.6.2 Bug fixes

• Fix the issue of data loss during the full data migration occurred because DM frequently
restarts the task #1378

• Fix the issue that an incremental replication task fails to start when the binlog position
is not specified together with GTID in the task configuration #1393

• Fix the issue that DM-worker’s binding relationships become abnormal when the disk
and network environments are poor #1396

• Fix the issue that enabling the relay log feature might cause data loss when the GTIDs
specified in upstream binlog previous_gtids events are not consecutive #1390 #1430

• Disable the heartbeat feature of DM v1.0 to avoid the failure of high availability schedul-
ing #1467

347

https://github.com/pingcap/dm/pull/1390
https://github.com/pingcap/dm/pull/1400
https://github.com/pingcap/dm/pull/1404
https://github.com/pingcap/dm/pull/1496
https://github.com/pingcap/dm/pull/1506
https://github.com/pingcap/dm/pull/1518
https://github.com/pingcap/dm/pull/1551
https://github.com/pingcap/dm/pull/1510
https://github.com/pingcap/dm/pull/1512
https://github.com/pingcap/dm/pull/1364
https://github.com/pingcap/dm/pull/1366
https://github.com/pingcap/dm/pull/1370
https://github.com/pingcap/dm/pull/1373
https://github.com/pingcap/dm/pull/1382
https://github.com/pingcap/dm/pull/1552
https://github.com/pingcap/dm/pull/1385
https://github.com/pingcap/dm/pull/1405
https://github.com/pingcap/dm/pull/1410
https://github.com/pingcap/dm/pull/1424
https://github.com/pingcap/dm/pull/1438
https://github.com/pingcap/dm/pull/1492
https://github.com/pingcap/dm/pull/1521
https://github.com/pingcap/dm/pull/1378
https://github.com/pingcap/dm/pull/1393
https://github.com/pingcap/dm/pull/1396
https://github.com/pingcap/dm/pull/1390
https://github.com/pingcap/dm/pull/1430
https://github.com/pingcap/dm/pull/1467


• Fix the issue that the migration fails if the upstream binlog sequence number is larger
than 999999 #1476

• Fix the issue that DM commands hang when DM gets stuck in pinging the upstream
and downstream databases #1477

• Fix the issue that the full import fails when the upstream database enables the
ANSI_QUOTES mode #1497

• Fix the issue that DM might duplicate binlog events when the GTID and the relay log
are enabled at the same time #1525

12.2.6.3 Known issues
GitHub issues

12.2.7 DM 2.0.1 Release Notes

Release date: December 25, 2020
DM version: 2.0.1

12.2.7.1 Improvements

• Support the relay log feature in high availability scenarios #1353

– DM-worker supports storing relay logs only locally.
– In scenarios where a DM-worker node is down or is offline due to network fluctu-

ations, the newly scheduled DM-worker pulls the upstream binlog again.

• Restrict the handle-error command to only handle DDL errors to avoid misuse #1303
• Support simultaneously connecting multiple DM-master nodes and automatically

switching connected nodes in dmctl #1349
• Add the get-config command to get the configuration of migration tasks and DM

components #1348
• Support migrating SQL statements like ALTER TABLE ADD COLUMN (xx, xx) #1345
• Support automatically filtering SQL statements like CREATE/ALTER/DROP EVENT

#1343
• Support checking whether server-id is set for the upstream MySQL/MariaDB in-

stance before the incremental replication task starts #1315
• Support replicating schemas and tables with sql in their names during the full import

#1259

12.2.7.2 Bug fixes

• Fix the issue that restarting a task might cause fail to initial unit Sync of
↪→ subtask error #1274

348

https://github.com/pingcap/dm/pull/1476
https://github.com/pingcap/dm/pull/1477
https://github.com/pingcap/dm/pull/1497
https://github.com/pingcap/dm/pull/1525
https://github.com/pingcap/dm/issues?q=is%3Aissue+label%3Aaffected-v2.0.2
https://github.com/pingcap/dm/pull/1353
https://github.com/pingcap/dm/pull/1303
https://github.com/pingcap/dm/pull/1349
https://github.com/pingcap/dm/pull/1348
https://github.com/pingcap/dm/pull/1345
https://github.com/pingcap/dm/pull/1343
https://github.com/pingcap/dm/pull/1315
https://github.com/pingcap/dm/pull/1259
https://github.com/pingcap/dm/pull/1274


• Fix the issue that the pause-task command might be blocked when it is executed
during the full import #1269 #1277

• Fix the issue that DM fails to create a data source for a MariaDB instance when
enable-gtid: true is configured #1344

• Fix the issue that the query-status command might be blocked when it is executed
#1293

• Fix the issue that concurrently coordinating multiple DDL statements in the pessimistic
shard DDL mode might block the task #1263

• Fix the issue that running the pause-task command might get the meaningless sql:
↪→ connection is already closed error #1304

• Fix the issue that the full migration fails when the upstream instance does not have
the REPLICATION privilege #1326

• Fix the issue that the route-rules configuration of a shard merge task does not take
effect in the full import when the SQL_MODE of the task contains ANSI_QUOTES #1314

• Fix the issue that DM fails to automatically apply the SQL_MODE of the upstream
database during the incremental replication #1307

• Fix the issue that DM logs the fail to parse binlog status_vars warning when
automatically parsing the SQL_MODE of the upstream database #1299

12.2.8 DM 2.0 GA Release Notes

Release date: October 30, 2020
DM version: 2.0.0

12.2.8.1 Improvements

• Optimize the setting of safe-mode to ensure the eventual consistency of data when
the upstream database, such as Amazon Aurora and Aliyun RDS, does not support
FTWRL in the full export #981 #1017

• Support automatic configuration of sql_mode for data migration based on the global
sql_mode of upstream and downstream databases and sql_mode of binlog events #1005
#1071 #1137

• Support automatic configuration of the max_allowed_packet from DM to the down-
stream TiDB, based on the global max_allowed_packet value of the downstream TiDB
#1071

• Optimize the incremental replication speed compared with DM 2.0 RC version #1203
• Improve performance by using optimistic transaction to migrate data to TiDB by

default #1107
• Support DM-worker automatically fetching and using the list of DM-master nodes in

the cluster #1180
• Disable auto-resume behavior for more errors that cannot be automatically recovered

#979 #1085 #1216

349

https://github.com/pingcap/dm/pull/1269
https://github.com/pingcap/dm/pull/1277
https://github.com/pingcap/dm/pull/1344
https://github.com/pingcap/dm/pull/1293
https://github.com/pingcap/dm/pull/1263
https://github.com/pingcap/dm/pull/1304
https://github.com/pingcap/dm/pull/1326
https://github.com/pingcap/dm/pull/1314
https://github.com/pingcap/dm/pull/1307
https://github.com/pingcap/dm/pull/1299
https://github.com/pingcap/dm/pull/981
https://github.com/pingcap/dm/pull/1017
https://github.com/pingcap/dm/pull/1005
https://github.com/pingcap/dm/pull/1071
https://github.com/pingcap/dm/pull/1137
https://github.com/pingcap/dm/pull/1071
https://github.com/pingcap/dm/pull/1203
https://github.com/pingcap/dm/pull/1107
https://github.com/pingcap/dm/pull/1180
https://github.com/pingcap/dm/pull/979
https://github.com/pingcap/dm/pull/1085
https://github.com/pingcap/dm/pull/1216


12.2.8.2 Bug fixes

• Fix the issue that failure to automatically set the default value of statement-size for
full export might cause the packet for query is too large error or the OOM issue
in TiDB #1133

• Fix DM-worker panic when there are concurrent checkpoint operations during the full
import #1182

• Fix the issue that the migration task might have table checkpoint position *
↪→ less than global checkpoint position error and be interrupted after the up-
stream MySQL/MariaDB instance is restarted #1041

• Fix the issue that migration tasks might be interrupted when the upstream database
does not enable GTID #1123

• Fix the issue that the DM-master node does not start properly after conflicts occur
during the shard DDL coordination #1199

• Fix the issue that the incremental replication might be too slow when there are multiple
common indexes in the table to be migrated #1063

• Fix the issue that the progress display is abnormal after restarting the migration task
during the full import #1043

• Fix the issue that paused migration subtasks cannot be obtained by query-status
after being scheduled to another DM-worker #1183

• Fix the issue that FileSize might not take effect during the full export #1191
• Fix the issue that the -s parameter in extra-args does not take effect during the full

export #1196
• Fix the issue that enabling the online DDL feature might cause not allowed

↪→ operation: alter multiple tables in one statement error #1192
• Fix the issue that during the incremental replication, the migration task might be

interrupted when the DDL statements to be migrated are associated with other tables,
such as DDL statements related to foreign keys #1101 #1108

• Fix the issue that database names and table names with character / are not correctly
parsed during the full migration #991

• Fix the issue that after failing to migrate DDL statements to the downstream TiDB
database during the incremental replication, migration tasks might not be paused and
the corresponding error cannot be obtained from query-status #1059

• Fix the issue that concurrently coordinating multiple DDL statements in the optimistic
shard DDL mode might block the task #1051

• Fix the issue that a DM-master might try to forward requests to other DM-master
nodes after it becomes the leader #1157

• Fix the issue that DM cannot parse GRANT CREATE TABLESPACE during the precheck
#1113

• Fix the issue that migration tasks are interrupted when migrating DROP TABLE state-
ments but corresponding tables don’t exist #990

• Fix the issue that operate-schema might not work properly when the --source pa-
rameter is specified #1106

• Fix the issue that list-member cannot be executed correctly after enabling TLS #1050

350

https://github.com/pingcap/dm/pull/1133
https://github.com/pingcap/dm/pull/1182
https://github.com/pingcap/dm/pull/1041
https://github.com/pingcap/dm/pull/1123
https://github.com/pingcap/dm/pull/1199
https://github.com/pingcap/dm/pull/1063
https://github.com/pingcap/dm/pull/1043
https://github.com/pingcap/dm/pull/1183
https://github.com/pingcap/dm/pull/1191
https://github.com/pingcap/dm/pull/1196
https://github.com/pingcap/dm/pull/1192
https://github.com/pingcap/dm/pull/1101
https://github.com/pingcap/dm/pull/1108
https://github.com/pingcap/dm/pull/991
https://github.com/pingcap/dm/pull/1059
https://github.com/pingcap/dm/pull/1051
https://github.com/pingcap/dm/pull/1157
https://github.com/pingcap/dm/pull/1113
https://github.com/pingcap/dm/pull/990
https://github.com/pingcap/dm/pull/1106
https://github.com/pingcap/dm/pull/1050


• Fix the issue that mixing https and http in the config items might cause the cluster
to not work properly after enabling TLS #1220

• Fix the issue that the HTTP API cannot work properly after configuring the cert-
↪→ allowed-cn parameter for DM-masters #1036

• Fix the issue that for incremental replication tasks, the configuration check fails when
binlog-gtid is only specified in the meta of the task configuration #987

• Fix the issue that in the interactive mode, dmctl cannot correctly execute some com-
mands starting or ending with blank characters #1202

• Fix the issue that the converting NULL to string is unsupported error is output
to the log file during the full export #1014

• Fix the issue that the progress might be displayed as NaN during the full import #1209

12.2.9 DM 2.0 RC.2 Release Notes

Release date: September 1, 2020
DM version: 2.0.0-rc.2

12.2.9.1 Improvements

• Support more AWS Aurora-specific privileges when pre-checking the data migration
task #950

• Check whether GTID is enabled for the upstream MySQL/MariaDB when configuring
enable-gtid: true and creating a data source #957

12.2.9.2 Bug fixes

• Fix the Column count doesn't match value count error that occurs in the running
migration task after automatically upgrading the DM cluster from v1.0.x to v2.0.0-rc
#952

• Fix the issue that the DM-worker or DM-master component might not correctly exit
#963

• Fix the issue that the --no-locks argument does not take effect on the dump process-
ing unit in DM v2.0 #961

• Fix the field remove-meta not found in type config.TaskConfig error that oc-
curs when using the task configuration file of the v1.0.x cluster to start the task of a
v2.0 cluster #965

• Fix the issue that when the domain name is used as the connection address of each
component, the component might not be correctly started #955

• Fix the issue that the connection between the upstream and downstream might not be
released after the migration task is stopped #943

• Fix the issue that in the optimistic sharding DDL mode, concurrently executing the
DDL statement on multiple sharded tables might block the sharding DDL coordination
#944

351

https://github.com/pingcap/dm/pull/1220
https://github.com/pingcap/dm/pull/1036
https://github.com/pingcap/dm/pull/987
https://github.com/pingcap/dm/pull/1202
https://github.com/pingcap/dm/pull/1014
https://github.com/pingcap/dm/pull/1209
https://github.com/pingcap/dm/pull/950
https://github.com/pingcap/dm/pull/957
https://github.com/pingcap/dm/pull/952
https://github.com/pingcap/dm/pull/963
https://github.com/pingcap/dm/pull/961
https://github.com/pingcap/dm/pull/965
https://github.com/pingcap/dm/pull/955
https://github.com/pingcap/dm/pull/943
https://github.com/pingcap/dm/pull/944


• Fix the issue that the newly started DM-master might cause the list-member to panic
#970

12.2.10 DM 2.0 RC Release Notes

Release date: August 21, 2020
DM version: 2.0.0-rc

12.2.10.1 Improvements

• Support high availability for data migration tasks
• Add an optimistic mode for sharding DDL statements
• Add the handle-error command to handle errors during DDL incremental replication
• Add a workaround field in the error returned by query-status to suggest the error

handling method
• Improve the monitoring dashboards and alert rules
• Replace Mydumper with Dumpling as the full export unit
• Support the GTID mode when performing incremental replication to the downstream
• Support TLS connections between upstream and downstream databases, and between

DM components
• Support the incremental replication scenarios where the table of the downstream has

more columns than that of the upstream
• Add a --remove-meta option to the start-task command to clean up metadata

related to data migration tasks
• Support dropping columns with single-column indices
• Support automatically cleaning up temporary files after a successful full import
• Support checking whether the table to be migrated has a primary key or a unique key

before starting a migration task
• Support connectivity check between dmctl and DM-master while starting dmctl
• Support connectivity check for downstream TiDB during the execution of start-task

↪→ /check-task
• Support replacing task names with task configuration files for some commands such as

pause-task
• Support logs in json format for DM-master and DM-worker components
• Remove the call stack information and redundant fields in the error message returned

by query-status
• Improve the binlog position information of the upstream database returned by query

↪→ -status
• Improve the processing of auto resume when an error is encountered during the full

export

12.2.10.2 Bug fixes

• Fix the issue of goroutine leak after executing stop-task

352

https://github.com/pingcap/dm/pull/970


• Fix the issue that the task might not be paused after executing pause-task
• Fix the issue that the checkpoint might not be saved correctly in the initial stage of

incremental replication
• Fix the issue that the BIT data type is incorrectly handled during incremental replica-

tion

12.2.10.3 Detailed bug fixes and changes

• Support high availability for data migration tasks #473
• Add an optimistic mode for sharding DDL statements #568
• Add the handle-error command to handle errors during DDL incremental replication

#850
• Add a workaround field in the error returned by query-status to suggest the error

handling method #753
• Improve the monitoring dashboards and alert rules #853
• Replace Mydumper with Dumpling as the full export unit #540
• Support the GTID mode when performing incremental replication to the downstream

#521
• Support TLS connections between upstream and downstream databases, and between

DM components #569
• Support the incremental replication scenarios where the table of the downstream has

more columns than that of the upstream #379
• Add a --remove-meta option to the start-task command to clean up metadata

related to data migration tasks #651
• Support dropping columns with single-column indices #801
• Support automatically cleaning up temporary files after a successful full import #770
• Support checking whether the table to be migrated has a primary key or a unique key

before starting a migration task #870
• Support connectivity check between dmctl and DM-master while starting dmctl #786
• Support connectivity check for downstream TiDB during the execution of start-task

↪→ /check-task #769
• Support replacing task names with task configuration files for some commands such as

pause-task #854
• Support logs in json format for DM-master and DM-worker components #808
• Remove the call stack information in the error message returned by query-status

#746
• Remove the redundant fields in the error message returned by query-status #771
• Improve the binlog position information of the upstream database returned by query

↪→ -status #830
• Improve the processing of auto resume when an error is encountered during the full

export #872
• Fix the issue of goroutine leak after executing stop-task #731
• Fix the issue that the task might not be paused after executing pause-task #644
• Fix the issue that the checkpoint might not be saved correctly in the initial stage of

incremental replication #758

353

https://github.com/pingcap/dm/pull/473
https://github.com/pingcap/dm/pull/568
https://github.com/pingcap/dm/pull/850
https://github.com/pingcap/dm/pull/753
https://github.com/pingcap/dm/pull/853
https://github.com/pingcap/dm/pull/540
https://github.com/pingcap/dm/pull/521
https://github.com/pingcap/dm/pull/569
https://github.com/pingcap/dm/pull/379
https://github.com/pingcap/dm/pull/651
https://github.com/pingcap/dm/pull/801
https://github.com/pingcap/dm/pull/770
https://github.com/pingcap/dm/pull/870
https://github.com/pingcap/dm/pull/786
https://github.com/pingcap/dm/pull/769
https://github.com/pingcap/dm/pull/854
https://github.com/pingcap/dm/pull/808
https://github.com/pingcap/dm/pull/746
https://github.com/pingcap/dm/pull/771
https://github.com/pingcap/dm/pull/830
https://github.com/pingcap/dm/pull/872
https://github.com/pingcap/dm/pull/731
https://github.com/pingcap/dm/pull/644
https://github.com/pingcap/dm/pull/758


• Fix the issue that the BIT data type is incorrectly handled during incremental replica-
tion #876

12.3 v1.0

12.3.1 DM 1.0.7 Release Notes

Release date: June 21, 2021
DM version: 1.0.7

12.3.1.1 Bug fixes

• Fix the issue that data may be lost after a task restarts from interruption #1783

12.3.2 DM 1.0.6 Release Notes

Release date: June 17, 2020
DM version: 1.0.6
DM-Ansible version: 1.0.6

12.3.2.1 Improvements

• Support the original plaintext passwords for upstream and downstream databases
• Support configuring session variables for DM’s connections to upstream and down-

stream databases
• Remove the call stack information in some error messages returned by the query-

↪→ status command when the data migration task encounters an exception
• Filter out the items that pass the precheck from the message returned when the

precheck of the data migration task fails

12.3.2.2 Bug fixes

• Fix the issue that the data migration task is not automatically paused and the error
cannot be identified by executing the query-status command if an error occurs when
the load unit creates a table

• Fix possible DM-worker panics when data migration tasks run simultaneously
• Fix the issue that the existing data migration task cannot be automatically restarted

when the DM-worker process is restarted if the enable-heartbeat parameter of the
task is set to true

• Fix the issue that the shard DDL conflict error may not be returned after the task is
resumed

354

https://github.com/pingcap/dm/pull/876
https://github.com/pingcap/dm/pull/1783


• Fix the issue that the replicate lag information is displayed incorrectly for an initial
period of time when the enable-heartbeat parameter of the data migration task is
set to true

• Fix the issue that replicate lag cannot be calculated using the heartbeat information
when lower_case_table_names is set to 1 in the upstream database

• Disable the meaningless auto-resume tasks triggered by the unsupported collation
error during data migration

12.3.2.3 Detailed bug fixes and changes

• Support the original plaintext passwords for upstream and downstream databases #676
• Support configuring session variables for DM’s connections to upstream and down-

stream databases #692
• Remove the call stack information in some error messages returned by the query-

↪→ status command when the data migration task encounters an exception #733
#747

• Filter out the items that pass the precheck from the message returned when the
precheck of the data migration task fails #730

• Fix the issue that the data migration task is not automatically paused and the error
cannot be identified by executing the query-status command if an error occurs when
the load unit creates a table #747

• Fix possible DM-worker panics when data migration tasks run simultaneously #710
• Fix the issue that the existing data migration task cannot be automatically restarted

when the DM-worker process is restarted if the enable-heartbeat parameter of the
task is set to true #739

• Fix the issue that the shard DDL conflict error may not be returned after the task is
resumed #739 #742

• Fix the issue that the replicate lag information is displayed incorrectly for an initial
period of time when the enable-heartbeat parameter of the data migration task is
set to true #704

• Fix the issue that replicate lag cannot be calculated using the heartbeat information
when lower_case_table_names is set to 1 in the upstream database #704

• Disable the meaningless auto-resume tasks triggered by the unsupported collation
error during data migration #735

• Optimize some logs #660 #724 #738

12.3.3 DM 1.0.5 Release Notes

Release date: April 27, 2020
DM version: 1.0.5
DM-Ansible version: 1.0.5

355

https://github.com/pingcap/dm/pull/676
https://github.com/pingcap/dm/pull/692
https://github.com/pingcap/dm/pull/733
https://github.com/pingcap/dm/pull/747
https://github.com/pingcap/dm/pull/730
https://github.com/pingcap/dm/pull/747
https://github.com/pingcap/dm/pull/710
https://github.com/pingcap/dm/pull/739
https://github.com/pingcap/dm/pull/739
https://github.com/pingcap/dm/pull/742
https://github.com/pingcap/dm/pull/704
https://github.com/pingcap/dm/pull/704
https://github.com/pingcap/dm/pull/735
https://github.com/pingcap/dm/pull/660
https://github.com/pingcap/dm/pull/724
https://github.com/pingcap/dm/pull/738


12.3.3.1 Improvements

• Improve the incremental replication speed when the UNIQUE KEY column has the NULL
value

• Add retry for the Write conflict (9007 and 8005) error returned by TiDB

12.3.3.2 Bug fixes

• Fix the issue that the Duplicate entry error might occur during the full data import
• Fix the issue that the migration task cannot be stopped or paused when the full data

import is completed and the upstream has no written data

• Fix the issue the monitoring metrics still display data after the migration task is
stopped

12.3.3.3 Detailed bug fixes and changes

• Improve the incremental replication speed when the UNIQUE KEY column has the NULL
value #588 #597

• Add retry for the Write conflict (9007 and 8005) error returned by TiDB #632
• Fix the issue that the Duplicate entry error might occur during the full data import

#554
• Fix the issue that the migration task cannot be stopped or paused when the full data

import is completed and the upstream has no written data #622
• Fix the issue the monitoring metrics still display data after the migration task is

stopped #616
• Fix the issue that the Column count doesn't match value count error might be

returned during the sharding DDL migration #624
• Fix the issue that some metrics such as data file size are incorrectly displayed when

the paused task of full data import is resumed #570
• Add and fix multiple monitoring metrics #590 #594

12.3.4 DM 1.0.4 Release Notes

Release date: March 13, 2020
DM version: 1.0.4
DM-Ansible version: 1.0.4

12.3.4.1 Improvements

• Add English UI for DM-portal
• Add the --more parameter in the query-status command to show complete migration

status information

356

https://github.com/pingcap/dm/pull/588
https://github.com/pingcap/dm/pull/597
https://github.com/pingcap/dm/pull/632
https://github.com/pingcap/dm/pull/554
https://github.com/pingcap/dm/pull/622
https://github.com/pingcap/dm/pull/616
https://github.com/pingcap/dm/pull/624
https://github.com/pingcap/dm/pull/570
https://github.com/pingcap/dm/pull/590
https://github.com/pingcap/dm/pull/594


12.3.4.2 Bug fixes

• Fix the issue that resume-task might fail to resume the migration task which is
interrupted by the abnormal connection to the downstream TiDB server

• Fix the issue that the online DDL operation cannot be properly migrated after a failed
migration task is restarted because the online DDL meta information has been cleared
after the DDL operation failure

• Fix the issue that query-error might cause the DM-worker to panic after start-task
goes into error

• Fix the issue that the relay log file and relay.meta cannot be correctly recovered when
restarting an abnormally stopped DM-worker process before relay.meta is successfully
written

12.3.4.3 Detailed bug fixes and changes

• Add English UI for DM-portal #480
• Add the --more parameter in the query-status command to show complete migration

status information #533
• Fix the issue that resume-task might fail to resume the migration task which is

interrupted by the abnormal connection to the downstream TiDB server #436
• Fix the issue that the online DDL operation cannot be properly migrated after a failed

migration task is restarted because the online DDL meta information is cleared after
the DDL operation failure #465

• Fix the issue that query-error might cause the DM-worker to panic after start-task
goes into error #519

• Fix the issue that the relay log file and relay.meta cannot be correctly recovered when
restarting an abnormally stopped DM-worker process before relay.meta is successfully
written #534

• Fix the issue that the value out of range error might be reported when getting
server-id from the upstream #538

• Fix the issue that when Prometheus is not configured DM-Ansible prints the wrong
error message that DM-master is not configured #438

12.3.5 DM 1.0.3 Release Notes

Release date: December 13, 2019
DM version: 1.0.3
DM-Ansible version: 1.0.3

12.3.5.1 Improvements

• Add the command mode in dmctl
• Support migrating the ALTER DATABASE DDL statement
• Optimize the error message output

357

https://github.com/pingcap/dm/pull/480
https://github.com/pingcap/dm/pull/533
https://github.com/pingcap/dm/pull/436
https://github.com/pingcap/dm/pull/465
https://github.com/pingcap/dm/pull/519
https://github.com/pingcap/dm/pull/534
https://github.com/pingcap/dm/pull/538
https://github.com/pingcap/dm/pull/438


12.3.5.2 Bug fixes

• Fix the panic-causing data race issue occurred when the full import unit pauses or
exits

• Fix the issue that stop-task and pause-task might not take effect when retrying
SQL operations to the downstream

12.3.5.3 Detailed bug fixes and changes

• Add the command mode in dmctl #364
• Optimize the error message output #351
• Optimize the output of the query-status command #357
• Optimize the privilege check for different task modes #374
• Support checking the duplicate quoted route-rules or filter-rules in task config #385
• Support migrating the ALTER DATABASE DDL statement #389
• Optimize the retry mechanism for anomalies #391
• Fix the panic issue caused by the data race when the import unit pauses or exits #353
• Fix the issue that stop-task and pause-task might not take effect when retrying

SQL operations to the downstream #400
• Upgrade Golang to v1.13 and upgrade the version of other dependencies #362
• Filter the error that the context is canceled when a SQL statement is being executed

#382
• Fix the issue that the error occurred when performing a rolling update to DM monitor

using DM-ansible causes the update to fail #408

12.3.6 DM 1.0.2 Release Notes

Release date: October 30, 2019
DM version: 1.0.2
DM-Ansible version: 1.0.2

12.3.6.1 Improvements

• Generate some config items for DM-worker automatically
• Generate some config items for migration task automatically
• Simplify the output of query-status without arguments
• Manage DB connections directly for downstream

12.3.6.2 Bug fixes

• Fix some panic when starting up or executing SQL statements
• Fix abnormal sharding DDL migration on DDL execution timeout
• Fix starting task failure caused by the checking timeout or any inaccessible DM-worker
• Fix SQL execution retry for some error

358

https://github.com/pingcap/dm/pull/364
https://github.com/pingcap/dm/pull/351
https://github.com/pingcap/dm/pull/357
https://github.com/pingcap/dm/pull/374
https://github.com/pingcap/dm/pull/385
https://github.com/pingcap/dm/pull/389
https://github.com/pingcap/dm/pull/391
https://github.com/pingcap/dm/pull/353
https://github.com/pingcap/dm/pull/400
https://github.com/pingcap/dm/pull/362
https://github.com/pingcap/dm/pull/382
https://github.com/pingcap/dm/pull/408


12.3.6.3 Detailed bug fixes and changes

• Generate random server-id for DM-worker config automatically #337
• Generate flavor for DM-worker config automatically #328
• Generate relay-binlog-name and relay-binlog-gtid for DM-worker config auto-

matically #318
• Generate the name list of tables to be dumped in task config from black & white table

lists automatically #326
• Add concurrency items (mydumper-thread, loader-thread and syncer-thread) for

task config #314
• Simplify the output of query-status without arguments #340
• Fix abnormal sharding DDL migration on DDL execution timeout #338
• Fix potential DM-worker panic when restoring subtask from local meta #311
• Fix DM-worker panic when committing a DML transaction failed #313
• Fix DM-worker or DM-master panic when the listening port is being used #301
• Fix retry for error code 1105 #321, #332
• Fix retry for Duplicate entry and Data too long for column #313
• Fix task check timeout when having large amounts of tables in upstream #327
• Fix starting task failure when any DM-worker is not accessible #319
• Fix potential DM-worker startup failure in GTID mode after being recovered from

corrupt relay log #339
• Fix in-memory TPS count for sync unit #294
• Manage DB connections directly for downstream #325
• Improve the error system by refining error information passed between components

#320

©2019 PingCAP All Rights Reversed.

359

https://github.com/pingcap/dm/pull/337
https://github.com/pingcap/dm/pull/328
https://github.com/pingcap/dm/pull/318
https://github.com/pingcap/dm/pull/326
https://github.com/pingcap/dm/pull/314
https://github.com/pingcap/dm/pull/340
https://github.com/pingcap/dm/pull/338
https://github.com/pingcap/dm/pull/311
https://github.com/pingcap/dm/pull/313
https://github.com/pingcap/dm/pull/301
https://github.com/pingcap/dm/pull/321
https://github.com/pingcap/dm/pull/332
https://github.com/pingcap/dm/pull/313
https://github.com/pingcap/dm/pull/327
https://github.com/pingcap/dm/pull/319
https://github.com/pingcap/dm/pull/339
https://github.com/pingcap/dm/pull/294
https://github.com/pingcap/dm/pull/325
https://github.com/pingcap/dm/pull/320

	About DM
	Data Migration Overview
	Basic features
	Advanced features
	Usage restrictions

	DM 5.3.0 Release Notes
	Special Notes
	Improvements
	Bug fixes
	Known issues

	Basic Features
	Key Features

	Advanced Features
	Merge and Migrate Data from Sharded Tables
	Migrate from Databases that Use GH-ost/PT-osc
	Filter Certain Row Changes Using SQL Expressions

	Data Migration Architecture
	Architecture components
	Architecture features

	DM 5.3.0 Benchmark Report
	Test purpose
	Test environment
	Test scenario
	Recommended parameter configuration


	Quick Start
	Quick Start Guide for TiDB Data Migration
	Sample scenario
	Deploy DM using the binary package
	Migrate data from MySQL to TiDB

	Deploy a DM Cluster Using TiUP
	Prerequisites
	Step 1: Install TiUP on the control machine
	Step 2: Edit the initialization configuration file
	Step 3: Execute the deployment command
	Step 4: Check the clusters managed by TiUP
	Step 5: Check the status of the deployed DM cluster
	Step 6: Start the TiDB cluster
	Step 7: Verify the running status of the TiDB cluster
	Step 8: Managing migration tasks using dmctl

	Create a Data Source
	Step 1: Configure the data source
	Step 2: Create a data source
	Step 3: Query the data source you created

	Data Migration Scenarios
	Data Migration Scenario Overview
	Using Migrate Data from Multiple Data Sources to TiDB
	Data Migration Shard Merge Scenario
	Incremental Data Migration Scenario
	Migration when There Are More Columns in the Downstream TiDB Table


	Deploy
	Software and Hardware Requirements
	Recommended server requirements

	Deploy a DM Cluster
	Deploy a DM Cluster Using TiUP
	Deploy a DM Cluster Offline Using TiUP (Experimental)
	Deploy Data Migration Using DM Binary
	Use Kubernetes

	Migrate Data Using Data Migration
	Step 1: Deploy the DM cluster
	Step 2: Check the cluster information
	Step 3: Create data source
	Step 4: Configure the data migration task
	Step 5: Start the data migration task
	Step 6: Check the data migration task
	Step 7: Stop the data migration task
	Step 8: Monitor the task and check logs

	DM Cluster Performance Test
	Migration data flow
	Deploy test environment
	Performance test


	Maintain
	Tools
	Maintain a DM Cluster Using TiUP
	Maintain DM Clusters Using dmctl
	Maintain DM Clusters Using OpenAPI

	Cluster Upgrade
	Manually Upgrade TiDB Data Migration from v1.0.x to v2.0+

	Manage Data Source Configurations
	Encrypt the database password
	Operate data source
	Change the bindings between upstream MySQL instances and DM-workers

	Manage a Data Migration Task
	Data Migration Task Configuration Guide
	Precheck the Upstream MySQL Instance Configurations
	Create a Data Migration Task
	Query Status
	Pause a Data Migration Task
	Resume a Data Migration Task
	Stop a Data Migration Task
	Export and Import Data Sources and Task Configuration of Clusters
	Handle Failed DDL Statements

	Handle Sharding DDL Locks Manually in DM
	Command
	Supported scenarios

	Manage Table Schemas of Tables to be Migrated
	Implementation principles
	Command
	Parameters
	Usage example

	Handle Alerts
	Alerts related to high availability
	Alert rules related to task status
	Alert rules related to relay log
	Alert rules related to Dump/Load
	Alert rules related to binlog replication

	Daily Check

	Usage Scenarios
	Migrate from a MySQL-compatible Database - Taking Amazon Aurora MySQL as an Example
	Step 1: Precheck
	Step 2: Deploy the DM cluster
	Step 3: Configure the data source
	Step 4: Configure the task
	Step 5: Start the task
	Step 6: Query the task and validate the data

	Migration when There Are More Columns in the Downstream TiDB Table
	The table shcema of the data source
	Migration requirements
	Only migrate incremental data to TiDB and the downstream TiDB table has more columns

	Switch DM-worker Connection between Upstream MySQL Instances
	Switch DM-worker connection via virtual IP
	Change the address of the upstream MySQL instance that DM-worker connects to


	Troubleshoot
	Handle Errors
	Error system
	Troubleshooting
	Handle common errors

	Handle Performance Issues
	relay log unit
	Load unit
	Binlog replication unit


	Performance Tuning
	Optimize Configuration of DM
	Full data export
	Full data import
	Incremental data replication


	Reference
	Architecture
	Data Migration Overview
	DM-worker Introduction

	Command-line Flags
	DM-master
	DM-worker
	dmctl

	Configuration
	Data Migration Configuration File Overview
	DM-master Configuration File
	DM-worker Configuration File
	Upstream Database Configuration File


	Secure
	Enable TLS for DM Connections
	Enable encrypted data transmission between DM-master, DM-worker, and dmctl
	Enable encrypted data transmission between DM components and the upstream or downstream database

	Generate Self-signed Certificates
	Install OpenSSL
	Generate the CA certificate
	Issue certificates for individual components

	Data Migration Monitoring Metrics
	Task
	Instance

	DM Alert Information

	TiDB Data Migration FAQ
	Does DM support migrating data from Alibaba RDS or other cloud databases?
	Does the regular expression of the block and allow list in the task configuration support non-capturing (?!)?
	If a statement executed upstream contains multiple DDL operations, does DM support such migration?
	How to handle incompatible DDL statements?
	How to reset the data migration task?
	How to handle the error returned by the DDL operation related to the gh-ost table, after online-ddl-scheme: "gh-ost" is set?
	How to add tables to the existing data migration tasks?
	In the Dump stage
	In the Load stage
	In the Sync stage

	How to handle the error packet for query is too large. Try adjusting the 'max_allowed_packet' variable that occurs during the full import?
	How to handle the error Error 1054: Unknown column 'binlog_gtid' in 'field list' that occurs when existing DM migration tasks of an DM 1.0 cluster are running on a DM 2.0 or newer cluster?
	Why does TiUP fail to deploy some versions of DM (for example, v2.0.0-hotfix)？
	How to handle the error parse mydumper metadata error: EOF that occurs when DM is replicating data？
	Why does DM report no fatal error when replicating sharded schemas and tables, but downstream data is lost?
	Why does the replicate lag monitor metric show no data when DM is not replicating from upstream?
	How to handle the error fail to initial unit Sync of subtask when DM is starting a task, with the RawCause in the error message showing context deadline exceeded?
	How to handle the error duplicate entry when DM is replicating data?
	Why do some monitoring panels show No data point?
	In DM v1.0, why does the command sql-skip fail to skip some statements when the task is in error?
	Why do REPLACE statements keep appearing in the downstream when DM is replicating?
	In DM v2.0, why does the full import task fail if DM restarts during the task?
	Why does DM report the error ERROR 1236 (HY000): The slave is connecting using CHANGE MASTER TO MASTER_AUTO_POSITION = 1, but the master has purged binary logs containing GTIDs that the slave requires. if it restarts during an incremental task?
	Why does the Grafana dashboard of a DM cluster display failed to fetch dashboard if the cluster is deployed using TiUP v1.3.0 or v1.3.1?
	In DM v2.0, why does the query result of the command query-status show that the Syncer checkpoint GTIDs are inconsecutive if the task has enable-relay and enable-gtid enabled at the same time?
	In DM v2.0, how do I handle the error heartbeat config is different from previous used: serverID not equal when switching the connection between DM-workers and MySQL instances in a virtual IP environment with the heartbeat feature enabled?
	Why does a DM-master fail to join the cluster after it restarts and DM reports the error fail to start embed etcd, RawCause: member xxx has already been bootstrapped?
	Why DM-master cannot be connected when I use dmctl to execute commands?
	How to handle the returned error when executing start-relay command for DM versions from 2.0.2 to 2.0.6?

	TiDB Data Migration Glossary
	B
	Binlog
	Binlog event
	Binlog event filter
	Binlog position
	Binlog replication processing unit/sync unit
	Block & allow table list

	C
	Checkpoint

	D
	Dump processing unit/dump unit

	G
	GTID

	L
	Load processing unit/load unit

	M
	Migrate/migration

	R
	Relay log
	Relay processing unit
	Replicate/replication

	S
	Safe mode
	Shard DDL
	Shard DDL lock
	Shard group
	Subtask
	Subtask status

	T
	Table routing
	Task
	Task status


	Release Notes
	v5.3
	DM 5.3.0 Release Notes

	v2.0
	DM 2.0.7 Release Notes
	DM 2.0.6 Release Notes
	DM 2.0.5 Release Notes
	DM 2.0.4 Release Notes
	DM 2.0.3 Release Notes
	DM 2.0.2 Release Notes
	DM 2.0.1 Release Notes
	DM 2.0 GA Release Notes
	DM 2.0 RC.2 Release Notes
	DM 2.0 RC Release Notes

	v1.0
	DM 1.0.7 Release Notes
	DM 1.0.6 Release Notes
	DM 1.0.5 Release Notes
	DM 1.0.4 Release Notes
	DM 1.0.3 Release Notes
	DM 1.0.2 Release Notes



