
TiDB on Kubernetes Documentation

PingCAP Inc.

20250609

Table of Contents

1 TiDB on Kubernetes Docs 13

2 Introduction 13
2.1 TiDB Operator Overview · 13

2.1.1 Manage TiDB clusters using TiDB Operator· 14
2.2 What’s New in TiDB Operator v1.6 · 16

2.2.1 Compatibility changes · 16
2.2.2 Extensibility · 16
2.2.3 Usability · 16

3 Get Started with TiDB on Kubernetes 16
3.1 Step 1: Create a test Kubernetes cluster · 17

3.1.1 Method 1: Create a Kubernetes cluster using kind · · · · · · · · · · · · · · · · · · 17
3.1.2 Method 2: Create a Kubernetes cluster using minikube· · · · · · · · · · · · · · 18

3.2 Step 2: Deploy TiDB Operator · 19
3.2.1 Install TiDB Operator CRDs · 19
3.2.2 Install TiDB Operator· 20

3.3 Step 3: Deploy a TiDB cluster and its monitoring services · · · · · · · · · · · · · · · · · 21
3.3.1 Deploy a TiDB cluster· 21
3.3.2 Deploy TiDB Dashboard independently · 22
3.3.3 Deploy TiDB monitoring services · 22
3.3.4 View the Pod status · 22

1

3.4 Step 4: Connect to TiDB · 23
3.4.1 Install the MySQL client· 23
3.4.2 Forward port 4000 · 23
3.4.3 Connect to the TiDB service · 24
3.4.4 Access the Grafana dashboard · 27
3.4.5 Access the TiDB Dashboard web UI · 27

3.5 Step 5: Upgrade a TiDB cluster · 28
3.5.1 Modify the TiDB cluster version · 28
3.5.2 Wait for Pods to restart · 28
3.5.3 Forward the TiDB service port · 28
3.5.4 Check the TiDB cluster version · 29

3.6 Step 6: Destroy the TiDB cluster and the Kubernetes cluster · · · · · · · · · · · · · · 29
3.6.1 Destroy the TiDB cluster · 29
3.6.2 Destroy the Kubernetes cluster · 30

3.7 See also · 31

4 Deploy 31
4.1 On Self-Managed Kubernetes · 31

4.1.1 Prerequisites for TiDB on Kubernetes · 31
4.1.2 Persistent Storage Class Configuration on Kubernetes · · · · · · · · · · · · · · · 36
4.1.3 Deploy TiDB Operator on Kubernetes · 43
4.1.4 Configure a TiDB Cluster on Kubernetes· 48
4.1.5 Deploy TiDB on General Kubernetes · 73
4.1.6 Initialize a TiDB Cluster on Kubernetes · 76
4.1.7 Access the TiDB Cluster· 79

4.2 On Public Cloud Kubernetes · 80
4.2.1 Deploy TiDB on AWS EKS · 80
4.2.2 Deploy TiDB on Google Cloud GKE · 98
4.2.3 Deploy TiDB on Azure AKS · 108

2

4.3 Deploy a TiDB Cluster on ARM64 Machines · 122
4.3.1 Prerequisites · 122
4.3.2 Deploy TiDB operator· 122
4.3.3 Deploy a TiDB cluster· 122
4.3.4 Initialize a TiDB cluster · 123
4.3.5 Deploy monitoring for a TiDB cluster· 123

4.4 Deploy the HTAP Storage Engine Tiflash for an Existing TiDB Cluster· · · · · · 123
4.4.1 Usage scenarios· 124
4.4.2 Deploy TiFlash · 124
4.4.3 Adding PVs to TiFlash · 126
4.4.4 Remove TiFlash · 127

4.5 Deploy TiProxy Load Balancer for an Existing TiDB Cluster · · · · · · · · · · · · · · 130
4.5.1 Deploy TiProxy · 130
4.5.2 Remove TiProxy· 132

4.6 Deploy TiDB Across Multiple Kubernetes Clusters · 133
4.6.1 Build Multiple Interconnected AWS EKS Clusters · · · · · · · · · · · · · · · · · · 133
4.6.2 Build Multiple Interconnected Google Cloud GKE Clusters · · · · · · · · · · 142
4.6.3 Deploy a TiDB Cluster across Multiple Kubernetes Clusters · · · · · · · · · 147

4.7 Deploy a Heterogeneous Cluster for an Existing TiDB Cluster · · · · · · · · · · · · · · 162
4.7.1 Usage scenarios· 162
4.7.2 Prerequisites · 162
4.7.3 Deploy a heterogeneous cluster · 162

4.8 Deploy TiCDC on Kubernetes · 167
4.8.1 Prerequisites · 167
4.8.2 Fresh TiCDC deployment · 168
4.8.3 Add TiCDC to an existing TiDB cluster · 168

4.9 Deploy TiDB Binlog · 169
4.9.1 Prerequisites · 169
4.9.2 Deploy TiDB Binlog in a TiDB cluster· 169
4.9.3 Deploy Drainer · 173
4.9.4 Enable TLS· 174
4.9.5 Remove Pump/Drainer nodes · 175

3

5 Monitor and Alert 179
5.1 Deploy Monitoring and Alerts for a TiDB Cluster · 179

5.1.1 Monitor the TiDB cluster · 179
5.1.2 Enable Ingress · 183
5.1.3 Configure alert · 186
5.1.4 Monitor multiple clusters · 187

5.2 Access TiDB Dashboard · 188
5.2.1 Prerequisites: Determine the TiDB Dashboard service· · · · · · · · · · · · · · · 189
5.2.2 Method 1. Access TiDB Dashboard by port forward · · · · · · · · · · · · · · · · 190
5.2.3 Method 2. Access TiDB Dashboard by Ingress · 190
5.2.4 Method 3. Use NodePort Service· 192
5.2.5 Enable Continuous Profiling · 193
5.2.6 Unsupported TiDB Dashboard features · 195

5.3 Aggregate Monitoring Data of Multiple TiDB Clusters · 196
5.3.1 Thanos· 196
5.3.2 Aggregate monitoring data via Thanos Query · 196
5.3.3 RemoteWrite mode · 199

5.4 Monitor a TiDB Cluster across Multiple Kubernetes Clusters · · · · · · · · · · · · · · 200
5.4.1 Push data from Prometheus · 200
5.4.2 Pull data from Prometheus· 202
5.4.3 Visualize monitoring data using Grafana · 209

5.5 Enable Dynamic Configuration for TidbMonitor· 210
5.5.1 Enable the dynamic configuration feature · 210
5.5.2 Disable the dynamic configuration feature · 211

5.6 Enable Shards for TidbMonitor · 211
5.6.1 Shards · 211
5.6.2 Enable shards · 211

6 Migrate 212
6.1 Import Data · 212

6.1.1 Deploy TiDB Lightning· 212
6.1.2 Destroy TiDB Lightning · 219
6.1.3 Troubleshoot TiDB Lightning · 219

4

6.2 Migrate from MySQL · 221
6.2.1 Deploy DM on Kubernetes · 221
6.2.2 Use DM on Kubernetes · 225

6.3 Migrate TiDB to Kubernetes · 227
6.3.1 Prerequisites · 227
6.3.2 Step 1: Configure DNS service in all nodes of the cluster to be migrated227
6.3.3 Step 2: Create a TiDB cluster on Kubernetes · 228
6.3.4 Step 3: Scale in the TiDB nodes of the source cluster · · · · · · · · · · · · · · · 229
6.3.5 Step 4: Scale in the TiKV nodes of the source cluster · · · · · · · · · · · · · · · 229
6.3.6 Step 5: Scale in the PD nodes of the source cluster · · · · · · · · · · · · · · · · · 230
6.3.7 Step 6: Delete the spec.pdAddresses field · 230

7 Manage 230
7.1 Secure · 230

7.1.1 Enable TLS for the MySQL Client · 230
7.1.2 Enable TLS between TiDB Components · 244
7.1.3 Enable TLS for DM · 279
7.1.4 Replicate Data to TLS-enabled Downstream Services · · · · · · · · · · · · · · · 293
7.1.5 Renew and Replace the TLS Certificate · 294
7.1.6 Run Containers as a Non-root User· 301

7.2 Manually Scale TiDB on Kubernetes · 302
7.2.1 Horizontal scaling· 302
7.2.2 Vertical scaling · 306
7.2.3 Scale PD microservice components · 306
7.2.4 Scaling troubleshooting · 308

7.3 Upgrade · 308
7.3.1 Upgrade a TiDB Cluster on Kubernetes· 308
7.3.2 Upgrade TiDB Operator · 311

7.4 Backup and Restore· 317
7.4.1 Backup and Restore Overview · 317
7.4.2 Backup and Restore Custom Resources · 320
7.4.3 Grant Permissions to Remote Storage· 334

5

7.4.4 Amazon S3 Compatible Storage· 338
7.4.5 Google Cloud Storage · 391
7.4.6 Azure Blob Storage · 428
7.4.7 Persistent Volumes · 459
7.4.8 Snapshot Backup and Restore across Multiple Kubernetes · · · · · · · · · · · 468

7.5 Maintain · 494
7.5.1 Restart a TiDB Cluster on Kubernetes · 494
7.5.2 Destroy TiDB Clusters on Kubernetes · 496
7.5.3 View TiDB Logs on Kubernetes · 497
7.5.4 Modify TiDB Cluster Configuration · 498
7.5.5 Automatic failover · 499
7.5.6 Pause Sync of a TiDB Cluster on Kubernetes · 505
7.5.7 Suspend TiDB cluster · 507
7.5.8 Maintain Different TiDB Clusters Separately Using Multiple Sets of

TiDB Operator · 509
7.5.9 Maintain Kubernetes Nodes that Hold the TiDB Cluster · · · · · · · · · · · · 513
7.5.10 Migrate from Helm 2 to Helm 3· 521
7.5.11 Replace Nodes for a TiDB Cluster · 523

7.6 Disaster Recovery· 529
7.6.1 Recover the Deleted Cluster · 529
7.6.2 Use PD Recover to Recover the PD Cluster· 530

8 Troubleshoot 536
8.1 Tips for troubleshooting TiDB on Kubernetes· 536

8.1.1 Use the debug mode · 537
8.1.2 Modify the configuration of a TiKV instance· 537
8.1.3 Configure forceful upgrade for the TiKV cluster · 539
8.1.4 Configure forceful upgrade for the TiCDC cluster· · · · · · · · · · · · · · · · · · · 540

8.2 Common Deployment Failures of TiDB on Kubernetes · 540
8.2.1 The Pod is not created normally · 540
8.2.2 The Pod is in the Pending state· 541
8.2.3 The high availability scheduling policy of tidb-scheduler is not satisfied 542
8.2.4 The Pod is in the CrashLoopBackOff state · 542

6

8.3 Common Cluster Exceptions of TiDB on Kubernetes· 544
8.3.1 TiKV Store is in Tombstone status abnormally· 544
8.3.2 Persistent connections are abnormally terminated in TiDB· · · · · · · · · · · 545

8.4 Common Network Issues of TiDB on Kubernetes · 546
8.4.1 Network connection failure between Pods· 547
8.4.2 Unable to access the TiDB service · 548

8.5 Troubleshoot TiDB Cluster Using PingCAP Clinic · 549
8.5.1 Usage scenarios· 550
8.5.2 Install Diag client· 550
8.5.3 Use Diag to collect data · 559
8.5.4 Use Diag to perform a quick check on the cluster · · · · · · · · · · · · · · · · · · · 564

9 TiDB FAQs on Kubernetes 566
9.1 How to modify time zone settings？ · 566

9.1.1 For the first deployment · 566
9.1.2 For a running cluster · 566

9.2 Can HPA or VPA be configured on TiDB components?· 567
9.3 What scenarios require manual intervention when I use TiDB Operator to

orchestrate a TiDB cluster? · 567
9.4 What is the recommended deployment topology when I use TiDB Operator

to orchestrate a TiDB cluster on a public cloud? · 567
9.5 Does TiDB Operator support TiSpark? · 567
9.6 How to check the configuration of the TiDB cluster? · 568
9.7 Why does TiDB Operator fail to schedule Pods when I deploy the TiDB

clusters?· 568
9.8 How does TiDB ensure data safety and reliability?· 569
9.9 If the Ready field of a TidbCluster is false, does it mean that the corresponding

TiDBCluster is unavailable? · 569
9.10 After the configuration of a component is modified, why does the new config-

uration not take effect? · 569

10 Reference 569
10.1 Architecture · 569

10.1.1 TiDB Operator Architecture · 569

7

10.1.2 TiDB Scheduler · 572
10.1.3 Advanced StatefulSet Controller · 576
10.1.4 Enable Admission Controller in TiDB Operator · 580

10.2 TiDB on Kubernetes Sysbench Performance Test · 585
10.2.1 Test purpose · 585
10.2.2 Test environment · 585
10.2.3 Test report · 589
10.2.4 Conclusion· 606

10.3 API References · 607
10.4 Command Cheat Sheet for TiDB Cluster Management · 607

10.4.1 kubectl· 607
10.4.2 Helm · 612

10.5 RBAC rules required by TiDB Operator · 614
10.5.1 Manage TiDB clusters at the cluster level · 614
10.5.2 Manage TiDB clusters at the namespace level· 623

10.6 Tools · 633
10.6.1 Tools on Kubernetes · 633

10.7 Configure · 638
10.7.1 TiDB Binlog Drainer Configurations on Kubernetes · · · · · · · · · · · · · · · · 638

10.8 TiDB Log Collection on Kubernetes · 646
10.8.1 Collect logs of TiDB and Kubernetes components · · · · · · · · · · · · · · · · · · 647
10.8.2 Collect system logs· 647

10.9 Monitoring and Alerts on Kubernetes · 647
10.9.1 Monitor the Kubernetes cluster · 648

10.10 PingCAP Clinic Diagnostic Data· 649
10.10.1 TiDB cluster information · 649
10.10.2 TiDB diagnostic data · 650
10.10.3 TiKV diagnostic data · 650
10.10.4 PD diagnostic data · 650
10.10.5 TiFlash diagnostic data· 652
10.10.6 TiCDC diagnostic data · 652
10.10.7 Prometheus monitoring data · 653

8

11 Release Notes 653
11.1 v1.6 · 653

11.1.1 TiDB Operator 1.6.1 Release Notes · 653
11.1.2 TiDB Operator 1.6.0 Release Notes · 654
11.1.3 TiDB Operator 1.6.0-beta.1 Release Notes· 655

11.2 v1.5 · 656
11.2.1 TiDB Operator 1.5.5 Release Notes · 656
11.2.2 TiDB Operator 1.5.4 Release Notes · 657
11.2.3 TiDB Operator 1.5.3 Release Notes · 657
11.2.4 TiDB Operator 1.5.2 Release Notes · 658
11.2.5 TiDB Operator 1.5.1 Release Notes · 659
11.2.6 TiDB Operator 1.5.0 Release Notes · 659
11.2.7 TiDB Operator 1.5.0-beta.1 Release Notes· 660

11.3 v1.4 · 662
11.3.1 TiDB Operator 1.4.7 Release Notes · 662
11.3.2 TiDB Operator 1.4.6 Release Notes · 662
11.3.3 TiDB Operator 1.4.5 Release Notes · 662
11.3.4 TiDB Operator 1.4.4 Release Notes · 663
11.3.5 TiDB Operator 1.4.3 Release Notes · 664
11.3.6 TiDB Operator 1.4.2 Release Notes · 664
11.3.7 TiDB Operator 1.4.1 Release Notes · 664
11.3.8 TiDB Operator 1.4.0 Release Notes · 665
11.3.9 TiDB Operator 1.4.0-beta.3 Release Notes· 665
11.3.10 TiDB Operator 1.4.0-beta.2 Release Notes· 666
11.3.11 TiDB Operator 1.4.0-beta.1 Release Notes· 666
11.3.12 TiDB Operator 1.4.0-alpha.1 Release Notes· 667

11.4 v1.3 · 668
11.4.1 TiDB Operator 1.3.10 Release Notes· 668
11.4.2 TiDB Operator 1.3.9 Release Notes · 668
11.4.3 TiDB Operator 1.3.8 Release Notes · 669
11.4.4 TiDB Operator 1.3.7 Release Notes · 669
11.4.5 TiDB Operator 1.3.6 Release Notes · 670

9

11.4.6 TiDB Operator 1.3.5 Release Notes · 670
11.4.7 TiDB Operator 1.3.4 Release Notes · 670
11.4.8 TiDB Operator 1.3.3 Release Notes · 670
11.4.9 TiDB Operator 1.3.2 Release Notes · 671
11.4.10 TiDB Operator 1.3.1 Release Notes · 671
11.4.11 TiDB Operator 1.3.0 Release Notes · 673
11.4.12 TiDB Operator 1.3.0-beta.1 Release Notes· 674

11.5 v1.2 · 676
11.5.1 TiDB Operator 1.2.7 Release Notes · 676
11.5.2 TiDB Operator 1.2.6 Release Notes · 676
11.5.3 TiDB Operator 1.2.5 Release Notes · 677
11.5.4 TiDB Operator 1.2.4 Release Notes · 677
11.5.5 TiDB Operator 1.2.3 Release Notes · 678
11.5.6 TiDB Operator 1.2.2 Release Notes · 678
11.5.7 TiDB Operator 1.2.1 Release Notes · 679
11.5.8 TiDB Operator 1.2.0 Release Notes · 679
11.5.9 TiDB Operator 1.2.0-rc.2 Release Notes · 680
11.5.10 TiDB Operator 1.2.0-rc.1 Release Notes · 681
11.5.11 TiDB Operator 1.2.0-beta.2 Release Notes· 681
11.5.12 TiDB Operator 1.2.0-beta.1 Release Notes· 682
11.5.13 TiDB Operator 1.2.0-alpha.1 Release Notes· 684

11.6 v1.1 · 685
11.6.1 TiDB Operator 1.1.15 Release Notes· 685
11.6.2 TiDB Operator 1.1.14 Release Notes· 686
11.6.3 TiDB Operator 1.1.13 Release Notes· 686
11.6.4 TiDB Operator 1.1.12 Release Notes· 686
11.6.5 TiDB Operator 1.1.11 Release Notes· 687
11.6.6 TiDB Operator 1.1.10 Release Notes· 687
11.6.7 TiDB Operator 1.1.9 Release Notes · 689
11.6.8 TiDB Operator 1.1.8 Release Notes · 689
11.6.9 TiDB Operator 1.1.7 Release Notes · 690
11.6.10 TiDB Operator 1.1.6 Release Notes · 692

10

11.6.11 TiDB Operator 1.1.5 Release Notes · 693
11.6.12 TiDB Operator 1.1.4 Release Notes · 694
11.6.13 TiDB Operator 1.1.3 Release Notes · 695
11.6.14 TiDB Operator 1.1.2 Release Notes · 697
11.6.15 TiDB Operator 1.1.1 Release Notes · 697
11.6.16 TiDB Operator 1.1 GA Release Notes · 698
11.6.17 TiDB Operator 1.1 RC.4 Release Notes · 700
11.6.18 TiDB Operator 1.1 RC.3 Release Notes · 701
11.6.19 TiDB Operator 1.1 RC.2 Release Notes · 701
11.6.20 TiDB Operator 1.1 RC.1 Release Notes · 702
11.6.21 TiDB Operator 1.1 Beta.2 Release Notes · 704
11.6.22 TiDB Operator 1.1 Beta.1 Release Notes · 705

11.7 v1.0 · 710
11.7.1 TiDB Operator 1.0.7 Release Notes · 710
11.7.2 TiDB Operator 1.0.6 Release Notes · 710
11.7.3 TiDB Operator 1.0.5 Release Notes · 711
11.7.4 TiDB Operator 1.0.4 Release Notes · 712
11.7.5 TiDB Operator 1.0.3 Release Notes · 714
11.7.6 TiDB Operator 1.0.2 Release Notes · 715
11.7.7 TiDB Operator 1.0.1 Release Notes · 716
11.7.8 TiDB Operator 1.0 GA Release Notes · 719
11.7.9 TiDB Operator 1.0 RC.1 Release Notes · 722
11.7.10 TiDB Operator 1.0 Beta.3 Release Notes · 724
11.7.11 TiDB Operator 1.0 Beta.2 Release Notes · 727
11.7.12 TiDB Operator 1.0 Beta.1 P2 Release Notes · 730
11.7.13 TiDB Operator 1.0 Beta.1 P1 Release Notes · 731
11.7.14 TiDB Operator 1.0 Beta.1 Release Notes · 731
11.7.15 TiDB Operator 1.0 Beta.0 Release Notes · 732

11.8 v0 · 732
11.8.1 TiDB Operator 0.4 Release Notes · 732
11.8.2 TiDB Operator 0.3.1 Release Notes · 733
11.8.3 TiDB Operator 0.3.0 Release Notes · 733

11

11.8.4 TiDB Operator 0.2.1 Release Notes · 734
11.8.5 TiDB Operator 0.2.0 Release Notes · 734
11.8.6 TiDB Operator 0.1.0 Release Notes · 734

12

1 TiDB on Kubernetes Docs

2 Introduction

2.1 TiDB Operator Overview

TiDB Operator is an automatic operation system for TiDB clusters on Kubernetes.
It provides a full management life-cycle for TiDB including deployment, upgrades, scaling,
backup, fail-over, and configuration changes. With TiDB Operator, TiDB can run seamlessly
in the Kubernetes clusters deployed on a public cloud or in a self-managed environment.

The corresponding relationship between TiDB Operator and TiDB versions is as follows:

TiDB
ver-
sions

Compatible
TiDB
Oper-
ator
ver-
sions

dev dev
TiDB
>=
8.0

1.6
(Rec-
om-
mended),
1.5

7.1
<=
TiDB
< 8.0

1.5
(Rec-
om-
mended),
1.4

6.5
<=
TiDB
< 7.1

1.5,
1.4
(Rec-
om-
mended),
1.3

5.4
<=
TiDB
< 6.5

1.4,
1.3
(Rec-
om-
mended)

13

https://docs.pingcap.com/tidb-in-kubernetes/stable/
https://github.com/pingcap/tidb-operator

TiDB
ver-
sions

Compatible
TiDB
Oper-
ator
ver-
sions

5.1
<=
TiDB
< 5.4

1.4,
1.3
(Rec-
om-
mended),
1.2
(End
of
sup-
port)

3.0
<=
TiDB
< 5.1

1.4,
1.3
(Rec-
om-
mended),
1.2
(End
of
sup-
port),
1.1
(End
of
sup-
port)

2.1
<=
TiDB
<
v3.0

1.0
(End
of
sup-
port)

2.1.1 Manage TiDB clusters using TiDB Operator

TiDB Operator provides several ways to deploy TiDB clusters on Kubernetes:

• For test environment:

– Get Started using kind, Minikube, or the Google Cloud Shell

14

• For production environment:

– On public cloud:
* Deploy TiDB on AWS EKS
* Deploy TiDB on Google Cloud GKE
* Deploy TiDB on Azure AKS

– In an existing Kubernetes cluster:
First install TiDB Operator on a Kubernetes cluster according to Deploy TiDB
Operator on Kubernetes, then deploy your TiDB clusters according to Deploy
TiDB on General Kubernetes.
You also need to adjust the configuration of the Kubernetes cluster based on Pre-
requisites for TiDB on Kubernetes and configure the local PV for your Kubernetes
cluster to achieve low latency of local storage for TiKV according to Local PV
Configuration.

Before deploying TiDB on any of the above two environments, you can always refer to
TiDB Cluster Configuration Document to customize TiDB configurations.

After the deployment is complete, see the following documents to use, operate, and
maintain TiDB clusters on Kubernetes:

• Access the TiDB Cluster
• Scale TiDB Cluster
• Upgrade a TiDB Cluster
• Change the Configuration of TiDB Cluster
• Back up and Restore a TiDB Cluster
• Automatic Failover
• Monitor a TiDB Cluster on Kubernetes
• View TiDB Logs on Kubernetes
• Maintain Kubernetes Nodes that Hold the TiDB Cluster

When a problem occurs and the cluster needs diagnosis, you can:

• See TiDB FAQs on Kubernetes for any available solution;
• See Troubleshoot TiDB on Kubernetes to shoot troubles.

Some of TiDB’s tools are used differently on Kubernetes. You can see Tools on Kuber-
netes to understand how TiDB tools are used on Kubernetes.

Finally, when a new version of TiDB Operator is released, you can refer to Upgrade
TiDB Operator to upgrade to the latest version.

15

2.2 What’s New in TiDB Operator v1.6

TiDB Operator 1.6 introduces the following key features, which helps you manage TiDB
clusters and the tools more easily in terms of extensibility and usability.

2.2.1 Compatibility changes

• Upgrade Kubernetes dependency to v1.28, and it is not recommended to deploy tidb
↪→ -scheduler.

• When deploying using Helm chart, support setting lock resource used by tidb-
↪→ controller-manager for leader election, with the default value of .Values.
↪→ controllerManager.leaderResourceLock: leases. When upgrading TiDB
Operator to v1.6.0-beta.1 or a later version, it is recommended to first set .Values
↪→ .controllerManager.leaderResourceLock: endpointsleases and wait for
the new tidb-controller-manager to run normally before setting it to .Values.
↪→ controllerManager.leaderResourceLock: leases to update the deployment.

2.2.2 Extensibility

• Support deploying PD v8.0.0 and later versions in microservice mode (experimental).
• Support scaling out or in TiDB components in parallel.

2.2.3 Usability

• Support automatically setting location labels for TiProxy.
• Support setting maxSkew, minDomains, and nodeAffinityPolicy in topologySpreadConstraints

↪→ for components of a TiDB cluster.
• Support setting startupProbe for TiDB components.
• Support setting additional command-line arguments for TiDB components.
• Support setting livenessProbe and readinessProbe for the Discovery component.
• Support setting nodeSelector for the TidbInitializer component.
• Enable TiFlash to directly mount ConfigMap without relying on an InitContainer to

process configuration files.

3 Get Started with TiDB on Kubernetes

This document introduces how to create a simple Kubernetes cluster and use it to deploy
a basic test TiDB cluster using TiDB Operator.

Warning:

16

https://docs.pingcap.com/tidb/dev/pd-microservices

This document is for demonstration purposes only. Do not follow it in pro-
duction environments. For deployment in production environments, refer to
the instructions in See also.

To deploy TiDB Operator and a TiDB cluster, follow these steps:

1. Create a test Kubernetes cluster
2. Deploy TiDB Operator
3. Deploy a TiDB cluster and its monitoring services
4. Connect to a TiDB cluster
5. Upgrade a TiDB cluster
6. Destroy the TiDB cluster and the Kubernetes cluster

You can watch the following video (approximately 12 minutes) to learn how to get started
with TiDB Operator.

3.1 Step 1: Create a test Kubernetes cluster

This section describes two methods for creating a simple Kubernetes cluster. After
creating a Kubernetes cluster, you can use it to test TiDB clusters managed by TiDB
Operator. Choose the method that best suits your environment.

• Method 1: Create a Kubernetes cluster using kind: Deploy a Kubernetes cluster in
Docker using kind, a common and recommended method.

• Method 2: Create a Kubernetes cluster using minikube: Deploy a Kubernetes cluster
locally in a VM using minikube.

Alternatively, you can deploy a Kubernetes cluster on Google Kubernetes Engine on
Google Cloud using the Google Cloud Shell.

3.1.1 Method 1: Create a Kubernetes cluster using kind

This section explains how to deploy a Kubernetes cluster using kind.
kind is a popular tool for running local Kubernetes clusters using Docker containers as

cluster nodes. For available tags, see Docker Hub. The latest version of kind is used by
default.

Before deployment, ensure that the following requirements are met:

• Docker: version >= 18.09
• kubectl: version >= 1.24

17

https://console.cloud.google.com/cloudshell/open?cloudshell_git_repo=https://github.com/pingcap/docs-tidb-operator&cloudshell_tutorial=en/deploy-tidb-from-kubernetes-gke.md
https://kind.sigs.k8s.io/
https://hub.docker.com/r/kindest/node/tags
https://docs.docker.com/install/
https://kubernetes.io/docs/tasks/tools/install-kubectl/

• kind: version >= 0.19.0
• For Linux, the value of the sysctl parameter net.ipv4.ip_forward should be set to 1.

Here is an example using kind v0.19.0:
kind create cluster

Expected output
Creating cluster "kind" ...
� Ensuring node image (kindest/node:v1.27.1) �
� Preparing nodes �
� Writing configuration �
� Starting control-plane �
� Installing CNI �
� Installing StorageClass �

Set kubectl context to "kind-kind"
You can now use your cluster with:

kubectl cluster-info --context kind-kind

Thanks for using kind! �

Check whether the cluster is successfully created:
kubectl cluster-info

Expected output
Kubernetes master is running at https://127.0.0.1:51026
KubeDNS is running at https://127.0.0.1:51026/api/v1/namespaces/kube-system/

↪→ services/kube-dns:dns/proxy

To further debug and diagnose cluster problems, use 'kubectl cluster-info
↪→ dump'.

You are now ready to deploy TiDB Operator.

3.1.2 Method 2: Create a Kubernetes cluster using minikube

You can create a Kubernetes cluster in a VM using minikube, which supports macOS,
Linux, and Windows.

Before deployment, ensure that the following requirements are met:

• minikube: version 1.0.0 or later versions. Newer versions like v1.24 are recommended.
minikube requires a compatible hypervisor. For details, refer to minikube installation
instructions.

• kubectl: version >= 1.24

18

https://kind.sigs.k8s.io/docs/user/quick-start/
https://linuxconfig.org/how-to-turn-on-off-ip-forwarding-in-linux
https://minikube.sigs.k8s.io/docs/start/
https://minikube.sigs.k8s.io/docs/start/
https://kubernetes.io/docs/tasks/tools/install-kubectl/

3.1.2.1 Start a minikube Kubernetes cluster
After installing minikube, run the following command to start a minikube Kubernetes

cluster:
minikube start

3.1.2.2 Use kubectl to interact with the cluster
To interact with the cluster, you can use kubectl, which is included as a sub-command

in minikube. To make the kubectl command available, you can either add the following
alias definition command to your shell profile or run the following alias definition command
after opening a new shell.
alias kubectl='minikube kubectl --'

Run the following command to check the status of Kubernetes and ensure that kubectl
can connect to it:
kubectl cluster-info

Expected output
Kubernetes master is running at https://192.168.64.2:8443
KubeDNS is running at https://192.168.64.2:8443/api/v1/namespaces/kube-

↪→ system/services/kube-dns:dns/proxy

To further debug and diagnose cluster problems, use 'kubectl cluster-info
↪→ dump'.

You are now ready to deploy TiDB Operator.

3.2 Step 2: Deploy TiDB Operator

To deploy TiDB Operator, you need to follow these steps:

3.2.1 Install TiDB Operator CRDs

First, you need to install the Custom Resource Definitions (CRDs) that are required for
TiDB Operator. These CRDs implement different components of the TiDB cluster.

To install the CRDs, run the following command:
kubectl create -f https://raw.githubusercontent.com/pingcap/tidb-operator/v1

↪→ .6.1/manifests/crd.yaml

Expected output

19

customresourcedefinition.apiextensions.k8s.io/tidbclusters.pingcap.com
↪→ created

customresourcedefinition.apiextensions.k8s.io/backups.pingcap.com created
customresourcedefinition.apiextensions.k8s.io/restores.pingcap.com created
customresourcedefinition.apiextensions.k8s.io/backupschedules.pingcap.com

↪→ created
customresourcedefinition.apiextensions.k8s.io/tidbmonitors.pingcap.com

↪→ created
customresourcedefinition.apiextensions.k8s.io/tidbinitializers.pingcap.com

↪→ created
customresourcedefinition.apiextensions.k8s.io/tidbclusterautoscalers.pingcap

↪→ .com created

3.2.2 Install TiDB Operator

To install TiDB Operator, you can use Helm 3. Follow these steps:

1. Add the PingCAP repository:
helm repo add pingcap https://charts.pingcap.org/

Expected output
"pingcap" has been added to your repositories

2. Create a namespace for TiDB Operator:
kubectl create namespace tidb-admin

Expected output
namespace/tidb-admin created

3. Install TiDB Operator:
helm install --namespace tidb-admin tidb-operator pingcap/tidb-operator

↪→ --version v1.6.1

Expected output
NAME: tidb-operator
LAST DEPLOYED: Mon Jun 1 12:31:43 2020
NAMESPACE: tidb-admin
STATUS: deployed
REVISION: 1
TEST SUITE: None

20

https://helm.sh/docs/intro/install/

NOTES:
Make sure tidb-operator components are running:

kubectl get pods --namespace tidb-admin -l app.kubernetes.io/
↪→ instance=tidb-operator

To confirm that the TiDB Operator components are running, run the following command:
kubectl get pods --namespace tidb-admin -l app.kubernetes.io/instance=tidb-

↪→ operator

Expected output
NAME READY STATUS RESTARTS AGE
tidb-controller-manager-6d8d5c6d64-b8lv4 1/1 Running 0 2m22s

Once all the Pods are in the “Running” state, you can proceed to the next step.

3.3 Step 3: Deploy a TiDB cluster and its monitoring services

This section describes how to deploy a TiDB cluster and its monitoring services.

3.3.1 Deploy a TiDB cluster

kubectl create namespace tidb-cluster && \
kubectl -n tidb-cluster apply -f https://raw.githubusercontent.com/

↪→ pingcap/tidb-operator/v1.6.1/examples/basic/tidb-cluster.yaml

Expected output
namespace/tidb-cluster created
tidbcluster.pingcap.com/basic created

If you need to deploy a TiDB cluster on an ARM64 machine, refer to Deploying a TiDB
Cluster on ARM64 Machines.

Note:
Starting from v8.0.0, PD supports the microservice mode (experimental). To
deploy PD microservices, use the following command:
kubectl create namespace tidb-cluster && \

kubectl -n tidb-cluster apply -f https://raw.
↪→ githubusercontent.com/pingcap/tidb-operator/v1.6.1/
↪→ examples/basic/pd-micro-service-cluster.yaml

21

https://docs.pingcap.com/tidb/dev/pd-microservices

View the Pod status:
watch kubectl get po -n tidb-cluster

NAME READY STATUS RESTARTS AGE
basic-discovery-6bb656bfd-xl5pb 1/1 Running 0 9m
basic-pd-0 1/1 Running 0 9m
basic-scheduling-0 1/1 Running 0 9m
basic-tidb-0 2/2 Running 0 7m
basic-tikv-0 1/1 Running 0 8m
basic-tso-0 1/1 Running 0 9m
basic-tso-1 1/1 Running 0 9m

3.3.2 Deploy TiDB Dashboard independently

kubectl -n tidb-cluster apply -f https://raw.githubusercontent.com/pingcap/
↪→ tidb-operator/v1.6.1/examples/basic/tidb-dashboard.yaml

Expected output
tidbdashboard.pingcap.com/basic created

3.3.3 Deploy TiDB monitoring services

kubectl -n tidb-cluster apply -f https://raw.githubusercontent.com/pingcap/
↪→ tidb-operator/v1.6.1/examples/basic/tidb-monitor.yaml

Expected output
tidbmonitor.pingcap.com/basic created

3.3.4 View the Pod status

watch kubectl get po -n tidb-cluster

Expected output
NAME READY STATUS RESTARTS AGE
basic-discovery-6bb656bfd-xl5pb 1/1 Running 0 9m9s
basic-monitor-5fc8589c89-gvgjj 3/3 Running 0 8m58s
basic-pd-0 1/1 Running 0 9m8s

22

basic-tidb-0 2/2 Running 0 7m14s
basic-tikv-0 1/1 Running 0 8m13s

Wait until all Pods for each service are started. Once you see that the Pods for each
type (-pd, -tikv, and -tidb) are in the “Running” state, you can press Ctrl+C to return
to the command line and proceed with connecting to your TiDB cluster.

3.4 Step 4: Connect to TiDB

To connect to TiDB, you can use the MySQL client since TiDB supports the MySQL
protocol and most of its syntax.

3.4.1 Install the MySQL client

Before connecting to TiDB, make sure you have a MySQL-compatible client installed on
the host where kubectl is installed. This can be the mysql executable from an installation
of MySQL Server, MariaDB Server, Percona Server, or a standalone client executable from
your operating system’s package.

3.4.2 Forward port 4000

To connect to TiDB, you need to forward a port from the local host to the TiDB service
on Kubernetes.

First, get a list of services in the tidb-cluster namespace:
kubectl get svc -n tidb-cluster

Expected output
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

↪→ AGE
basic-discovery ClusterIP 10.101.69.5 <none> 10261/TCP

↪→ 10m
basic-grafana ClusterIP 10.106.41.250 <none> 3000/TCP

↪→ 10m
basic-monitor-reloader ClusterIP 10.99.157.225 <none> 9089/TCP

↪→ 10m
basic-pd ClusterIP 10.104.43.232 <none> 2379/TCP

↪→ 10m
basic-pd-peer ClusterIP None <none> 2380/TCP

↪→ 10m
basic-prometheus ClusterIP 10.106.177.227 <none> 9090/TCP

↪→ 10m
basic-tidb ClusterIP 10.99.24.91 <none> 4000/TCP,10080/

↪→ TCP 8m40s

23

basic-tidb-peer ClusterIP None <none> 10080/TCP
↪→ 8m40s

basic-tikv-peer ClusterIP None <none> 20160/TCP
↪→ 9m39s

In this case, the TiDB service is called basic-tidb. Run the following command to
forward this port from the local host to the cluster:
kubectl port-forward -n tidb-cluster svc/basic-tidb 14000:4000 > pf14000.out

↪→ &

If port 14000 is already occupied, you can replace it with an available port. This com-
mand runs in the background and writes its output to a file named pf14000.out. You can
continue to run the command in the current shell session.

3.4.3 Connect to the TiDB service

Note:
To connect to TiDB (version < v4.0.7) using a MySQL 8.0 client, if the
user account has a password, you must explicitly specify --default-auth=
↪→ mysql_native_password. This is because mysql_native_password is no
longer the default plugin.

mysql --comments -h 127.0.0.1 -P 14000 -u root

Expected output
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 76
Server version: 5.7.25-TiDB-v4.0.0 MySQL Community Server (Apache License

↪→ 2.0)

Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
↪→ statement.

mysql>

24

https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html#upgrade-caching-sha2-password
https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html#upgrade-caching-sha2-password

After connecting to the cluster, you can run the following commands to verify that
some features are available in TiDB. Note that some commands require TiDB 4.0 or higher
versions. If you have deployed an earlier version, you need to upgrade the TiDB cluster.

Create ahello_worldtable
mysql> use test;
mysql> create table hello_world (id int unsigned not null auto_increment

↪→ primary key, v varchar(32));
Query OK, 0 rows affected (0.17 sec)

mysql> select * from information_schema.tikv_region_status where db_name=
↪→ database() and table_name='hello_world'\G

*************************** 1. row ***************************
REGION_ID: 2
START_KEY: 7480000000000000FF3700000000000000F8
END_KEY:
TABLE_ID: 55
DB_NAME: test

TABLE_NAME: hello_world
IS_INDEX: 0
INDEX_ID: NULL

INDEX_NAME: NULL
EPOCH_CONF_VER: 5
EPOCH_VERSION: 23
WRITTEN_BYTES: 0

READ_BYTES: 0
APPROXIMATE_SIZE: 1
APPROXIMATE_KEYS: 0
1 row in set (0.03 sec)

Query the TiDB version
mysql> select tidb_version()\G
*************************** 1. row ***************************

tidb_version(): Release Version: v8.5.0
Edition: Community

Git Commit Hash: d13e52ed6e22cc5789bed7c64c861578cd2ed55b
Git Branch: heads/refs/tags/v8.5.0

UTC Build Time: 2024-12-19 14:38:24
GoVersion: go1.23.2

Race Enabled: false
Check Table Before Drop: false

Store: tikv
1 row in set (0.01 sec)

Query the TiKV store status

25

mysql> select * from information_schema.tikv_store_status\G
*************************** 1. row ***************************

STORE_ID: 4
ADDRESS: basic-tikv-0.basic-tikv-peer.tidb-cluster.svc:20160

STORE_STATE: 0
STORE_STATE_NAME: Up

LABEL: null
VERSION: 5.2.1
CAPACITY: 58.42GiB
AVAILABLE: 36.18GiB

LEADER_COUNT: 3
LEADER_WEIGHT: 1
LEADER_SCORE: 3
LEADER_SIZE: 3
REGION_COUNT: 21
REGION_WEIGHT: 1
REGION_SCORE: 21
REGION_SIZE: 21

START_TS: 2020-05-28 22:48:21
LAST_HEARTBEAT_TS: 2020-05-28 22:52:01

UPTIME: 3m40.598302151s
1 rows in set (0.01 sec)

Query the TiDB cluster information
This command is effective only in TiDB 4.0 or later versions. If your TiDB does not

support the command, you need to upgrade the TiDB cluster.
mysql> select * from information_schema.cluster_info\G
*************************** 1. row ***************************

TYPE: tidb
INSTANCE: basic-tidb-0.basic-tidb-peer.tidb-cluster.svc:4000

STATUS_ADDRESS: basic-tidb-0.basic-tidb-peer.tidb-cluster.svc:10080
VERSION: 5.2.1
GIT_HASH: 689a6b6439ae7835947fcaccf329a3fc303986cb

START_TIME: 2020-05-28T22:50:11Z
UPTIME: 3m21.459090928s

*************************** 2. row ***************************
TYPE: pd

INSTANCE: basic-pd:2379
STATUS_ADDRESS: basic-pd:2379

VERSION: 5.2.1
GIT_HASH: 56d4c3d2237f5bf6fb11a794731ed1d95c8020c2

START_TIME: 2020-05-28T22:45:04Z
UPTIME: 8m28.459091915s

26

*************************** 3. row ***************************
TYPE: tikv

INSTANCE: basic-tikv-0.basic-tikv-peer.tidb-cluster.svc:20160
STATUS_ADDRESS: 0.0.0.0:20180

VERSION: 5.2.1
GIT_HASH: 198a2cea01734ce8f46d55a29708f123f9133944

START_TIME: 2020-05-28T22:48:21Z
UPTIME: 5m11.459102648s

3 rows in set (0.01 sec)

3.4.4 Access the Grafana dashboard

To access the Grafana dashboard locally, you need to forward the port for Grafana:
kubectl port-forward -n tidb-cluster svc/basic-grafana 3000 > pf3000.out &

You can access the Grafana dashboard at http://localhost:3000 on the host where you
run kubectl. The default username and password in Grafana are both admin.

Note that if you run kubectl in a Docker container or on a remote host instead of your
local host, you cannot access the Grafana dashboard at http://localhost:3000 from your
browser. In this case, you can run the following command to listen on all addresses:
kubectl port-forward --address 0.0.0.0 -n tidb-cluster svc/basic-grafana

↪→ 3000 > pf3000.out &

Then access Grafana through http://$%7Bremote-server-IP%7D:3000.
For more information about monitoring the TiDB cluster in TiDB Operator, refer to

Deploy Monitoring and Alerts for a TiDB Cluster.

3.4.5 Access the TiDB Dashboard web UI

To access the TiDB Dashboard web UI locally, you need to forward the port for TiDB
Dashboard:
kubectl port-forward -n tidb-cluster svc/basic-tidb-dashboard-exposed 12333

↪→ > pf12333.out &

You can access the panel of TiDB Dashboard at http://localhost:12333 on the host where
you run kubectl.

Note that if you run kubectl port-forward in a Docker container or on a remote host
instead of your local host, you cannot access TiDB Dashboard using localhost from your
local browser. In this case, you can run the following command to listen on all addresses:
kubectl port-forward --address 0.0.0.0 -n tidb-cluster svc/basic-tidb-

↪→ dashboard-exposed 12333 > pf12333.out &

27

http://localhost:3000
http://localhost:3000
http://$%7Bremote-server-IP%7D:3000
http://localhost:12333

Then access TiDB Dashboard through http://${remote-server-IP}:12333.

3.5 Step 5: Upgrade a TiDB cluster

TiDB Operator simplifies the process of performing a rolling upgrade of a TiDB cluster.
This section describes how to upgrade your TiDB cluster to the “nightly” release.

Before proceeding, it is important to familiarize yourself with the kubectl patch sub-
command. This command lets you directly apply changes to the running cluster resources.
There are different patch strategies available, each with its own capabilities, limitations, and
allowed formats. For more information, refer to the Kubernetes Patch document.

3.5.1 Modify the TiDB cluster version

To update the version of the TiDB cluster to “nightly,” you can use a JSON merge patch.
Execute the following command:
kubectl patch tc basic -n tidb-cluster --type merge -p '{"spec": {"version":

↪→ "nightly"} }'

Expected output
tidbcluster.pingcap.com/basic patched

3.5.2 Wait for Pods to restart

To monitor the progress of the cluster upgrade and observe the restart of its components,
run the following command. You should see some Pods transitioning from Terminating to
ContainerCreating and finally to Running.
watch kubectl get po -n tidb-cluster

Expected output
NAME READY STATUS RESTARTS AGE
basic-discovery-6bb656bfd-7lbhx 1/1 Running 0 24m
basic-pd-0 1/1 Terminating 0 5m31s
basic-tidb-0 2/2 Running 0 2m19s
basic-tikv-0 1/1 Running 0 4m13s

3.5.3 Forward the TiDB service port

Once all Pods have been restarted, you can verify that the cluster’s version number has
been updated.

Note that if you had previously set up port forwarding, you will need to reset it because
the Pods it forwarded to have been destroyed and recreated.

28

https://kubernetes.io/docs/tasks/manage-kubernetes-objects/update-api-object-kubectl-patch/

kubectl port-forward -n tidb-cluster svc/basic-tidb 24000:4000 > pf24000.out
↪→ &

If port 24000 is already in use, you can replace it with an available port.

3.5.4 Check the TiDB cluster version

To confirm the TiDB cluster’s version, execute the following command:
mysql --comments -h 127.0.0.1 -P 24000 -u root -e 'select tidb_version()\G'

Expected output
Note that nightly is not a fixed version and the version might vary depending on the

time the command is run.
*************************** 1. row ***************************
tidb_version(): Release Version: v8.5.0
Edition: Community
Git Commit Hash: d13e52ed6e22cc5789bed7c64c861578cd2ed55b
Git Branch: heads/refs/tags/v8.5.0
UTC Build Time: 2024-12-19 14:38:24
GoVersion: go1.23.2
Race Enabled: false
Check Table Before Drop: false
Store: tikv

3.6 Step 6: Destroy the TiDB cluster and the Kubernetes cluster

After you finish testing, you can destroy the TiDB cluster and the Kubernetes cluster.

3.6.1 Destroy the TiDB cluster

To destroy the TiDB cluster, follow these steps:

3.6.1.1 Stop kubectl port forwarding
If you have any running kubectl processes that are forwarding ports, make sure to end

them by running the following command:
pgrep -lfa kubectl

29

3.6.1.2 Delete the TiDB cluster
To delete the TiDB cluster, use the following command:

kubectl delete tc basic -n tidb-cluster

In this command, tc is short for tidbclusters.

3.6.1.3 Delete TiDB monitoring services
To delete the TiDB monitoring services, run the following command:

kubectl delete tidbmonitor basic -n tidb-cluster

3.6.1.4 Delete PV data
If your deployment includes persistent data storage, deleting the TiDB cluster does not

remove the data in the cluster. If you do not need the data, you can clean it by running the
following commands:
kubectl delete pvc -n tidb-cluster -l app.kubernetes.io/instance=basic,app.

↪→ kubernetes.io/managed-by=tidb-operator && \
kubectl get pv -l app.kubernetes.io/namespace=tidb-cluster,app.kubernetes.io

↪→ /managed-by=tidb-operator,app.kubernetes.io/instance=basic -o name |
↪→ xargs -I {} kubectl patch {} -p '{"spec":{"
↪→ persistentVolumeReclaimPolicy":"Delete"}}'

3.6.1.5 Delete namespaces
To ensure that there are no remaining resources, delete the namespace used for your

TiDB cluster by running the following command:
kubectl delete namespace tidb-cluster

3.6.2 Destroy the Kubernetes cluster

The method for destroying a Kubernetes cluster depends on how it was created. Here
are the steps for destroying a Kubernetes cluster based on the creation method:

If you created the Kubernetes cluster using kind, use the following command to destroy
it:
kind delete cluster

If you created the Kubernetes cluster using minikube, use the following command to
destroy it:
minikube delete

30

3.7 See also

If you are interested in deploying a TiDB cluster in production environments, refer to
the following documents:

On public clouds:

• Deploy TiDB on AWS EKS
• Deploy TiDB on Google Cloud GKE
• Deploy TiDB on Azure AKS

In a self-managed Kubernetes cluster:

• Familiarize yourself with the Prerequisites for TiDB on Kubernetes
• Configure the local PV for your Kubernetes cluster to achieve high performance for

TiKV
• Deploy TiDB Operator on Kubernetes
• Deploy TiDB on General Kubernetes

4 Deploy

4.1 On Self-Managed Kubernetes

4.1.1 Prerequisites for TiDB on Kubernetes

This document introduces the hardware and software prerequisites for deploying a TiDB
cluster on Kubernetes.

4.1.1.1 Software version

Software Name Version
Kubernetes v1.24+
CentOS 7.6 and kernel 3.10.0-957 or later
Helm v3.0.0+

4.1.1.2 Configure the firewall
It is recommended that you disable the firewall.

systemctl stop firewalld
systemctl disable firewalld

31

If you cannot stop the firewalld service, to ensure the normal operation of Kubernetes,
take the following steps:

1. Enable the following ports on the master, and then restart the service:
firewall-cmd --permanent --add-port=6443/tcp
firewall-cmd --permanent --add-port=2379-2380/tcp
firewall-cmd --permanent --add-port=10250/tcp
firewall-cmd --permanent --add-port=10251/tcp
firewall-cmd --permanent --add-port=10252/tcp
firewall-cmd --permanent --add-port=10255/tcp
firewall-cmd --permanent --add-port=8472/udp
firewall-cmd --add-masquerade --permanent

Set it when you need to expose NodePort on the master node.
firewall-cmd --permanent --add-port=30000-32767/tcp
systemctl restart firewalld

2. Enable the following ports on the nodes, and then restart the service:
firewall-cmd --permanent --add-port=10250/tcp
firewall-cmd --permanent --add-port=10255/tcp
firewall-cmd --permanent --add-port=8472/udp
firewall-cmd --permanent --add-port=30000-32767/tcp
firewall-cmd --add-masquerade --permanent

systemctl restart firewalld

4.1.1.3 Configure Iptables
The FORWARD chain is configured to ACCEPT by default and is set in the startup script:

iptables -P FORWARD ACCEPT

4.1.1.4 Disable SELinux
setenforce 0
sed -i 's/^SELINUX=enforcing$/SELINUX=permissive/' /etc/selinux/config

4.1.1.5 Disable swap
To make kubelet work, you need to turn off swap and comment out the swap-related line

in the /etc/fstab file.
swapoff -a
sed -i 's/^\(.*swap.*\)$/#\1/' /etc/fstab

32

4.1.1.6 Configure kernel parameters
Configure the kernel parameters as follows. You can also adjust them according to your

environment:
modprobe br_netfilter

cat <<EOF > /etc/sysctl.d/k8s.conf
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
net.bridge.bridge-nf-call-arptables = 1
net.core.somaxconn = 32768
vm.swappiness = 0
net.ipv4.tcp_syncookies = 0
net.ipv4.ip_forward = 1
fs.file-max = 1000000
fs.inotify.max_user_watches = 1048576
fs.inotify.max_user_instances = 1024
net.ipv4.conf.all.rp_filter = 1
net.ipv4.neigh.default.gc_thresh1 = 80000
net.ipv4.neigh.default.gc_thresh2 = 90000
net.ipv4.neigh.default.gc_thresh3 = 100000
EOF

sysctl --system

4.1.1.7 Configure the Irqbalance service
The Irqbalance service binds the interrupts of each equipment to different CPUs respec-

tively. This avoids the performance bottleneck when all interrupt requests are sent to the
same CPU.
systemctl enable irqbalance
systemctl start irqbalance

4.1.1.8 Configure the CPUfreq governor mode
To make full use of CPU performance, set the CPUfreq governor mode to performance.

For details, see Configure the CPUfreq governor mode on the target machine.
cpupower frequency-set --governor performance

4.1.1.9 Configure ulimit

The TiDB cluster uses many file descriptors by default. The ulimit of the worker node
must be greater than or equal to 1048576.

33

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/performance_tuning_guide/sect-red_hat_enterprise_linux-performance_tuning_guide-tool_reference-irqbalance
https://docs.pingcap.com/tidb/stable/check-before-deployment#check-and-configure-the-optimal-parameters-of-the-operating-system

cat <<EOF >> /etc/security/limits.conf
root soft nofile 1048576
root hard nofile 1048576
root soft stack 10240
EOF
sysctl --system

4.1.1.10 Docker service
It is recommended to install Docker CE 18.09.6 or later versions. See Install Docker for

details.
After the installation, take the following steps:

1. Save the Docker data to a separate disk. The data mainly contains images and the
container logs. To implement this, set the --data-root parameter:
cat > /etc/docker/daemon.json <<EOF
{
"exec-opts": ["native.cgroupdriver=systemd"],
"log-driver": "json-file",
"log-opts": {
"max-size": "100m"

},
"storage-driver": "overlay2",
"storage-opts": [
"overlay2.override_kernel_check=true"

],
"data-root": "/data1/docker"

}
EOF

The above command sets the data directory of Docker to /data1/docker.

2. Set ulimit for the Docker daemon:

1. Create the systemd drop-in directory for the docker service:
mkdir -p /etc/systemd/system/docker.service.d

2. Create a file named as /etc/systemd/system/docker.service.d/limit-
↪→ nofile.conf, and configure the value of the LimitNOFILE parameter. The
value must be a number equal to or greater than 1048576.
cat > /etc/systemd/system/docker.service.d/limit-nofile.conf <<EOF
[Service]

34

https://docs.docker.com/engine/install/centos/
https://docs.docker.com/config/daemon/systemd/#runtime-directory-and-storage-driver

LimitNOFILE=1048576
EOF

Note:
DO NOT set the value of LimitNOFILE to infinity. Due to a bug of
systemd, the infinity value of systemd in some versions is 65536.

3. Reload the configuration.
systemctl daemon-reload && systemctl restart docker

4.1.1.11 Kubernetes service
To deploy a multi-master, highly available cluster, see Kubernetes documentation.
The configuration of the Kubernetes master depends on the number of nodes. More

nodes consumes more resources. You can adjust the number of nodes as needed.

Nodes in a Kubernetes cluster Kubernetes master configuration
1-5 1vCPUs 4GB Memory
6-10 2vCPUs 8GB Memory
11-100 4vCPUs 16GB Memory
101-250 8vCPUs 32GB Memory
251-500 16vCPUs 64GB Memory
501-5000 32vCPUs 128GB Memory

After Kubelet is installed, take the following steps:

1. Save the Kubelet data to a separate disk (it can share the same disk with Docker).
The data mainly contains the data used by emptyDir. To implement this, set the
--root-dir parameter:
echo "KUBELET_EXTRA_ARGS=--root-dir=/data1/kubelet" > /etc/sysconfig/

↪→ kubelet
systemctl restart kubelet

The above command sets the data directory of Kubelet to /data1/kubelet.

2. Reserve compute resources by using Kubelet, to ensure that the system process of the
machine and the kernel process of Kubernetes have enough resources for operation in
heavy workloads. This maintains the stability of the entire system.

4.1.1.12 TiDB cluster’s requirements for resources

35

https://github.com/systemd/systemd/commit/6385cb31ef443be3e0d6da5ea62a267a49174688#diff-108b33cf1bd0765d116dd401376ca356L1186
https://github.com/systemd/systemd/commit/6385cb31ef443be3e0d6da5ea62a267a49174688#diff-108b33cf1bd0765d116dd401376ca356L1186
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/high-availability/
https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/docs/tasks/administer-cluster/reserve-compute-resources/

To determine the machine configuration, see Server recommendations.
In a production environment, avoid deploying TiDB instances on a kubernetes master,

or deploy as few TiDB instances as possible. Due to the NIC bandwidth, if the NIC of the
master node works at full capacity, the heartbeat report between the worker node and the
master node will be affected and might lead to serious problems.

4.1.2 Persistent Storage Class Configuration on Kubernetes

TiDB cluster components such as PD, TiKV, TiDB monitoring, TiDB Binlog, and tidb
↪→ -backup require persistent storage for data. To achieve this on Kubernetes, you need
to use PersistentVolume (PV). Kubernetes supports different types of storage classes, which
can be categorized into two main types:

• Network storage
Network storage is not located on the current node but is mounted to the node through
the network. It usually has redundant replicas to ensure high availability. In the event
of a node failure, the corresponding network storage can be remounted to another node
for continued use.

• Local storage
Local storage is located on the current node and typically provides lower latency com-
pared to network storage. However, it does not have redundant replicas, so data might
be lost if the node fails. If the node is an IDC server, data can be partially restored,
but if it is a virtual machine using local disk on a public cloud, data cannot be retrieved
after a node failure.

PVs are automatically created by the system administrator or volume provisioner. PVs
and Pods are bound by PersistentVolumeClaim (PVC). Instead of creating a PV directly,
users request to use a PV through a PVC. The corresponding volume provisioner creates a
PV that meets the requirements of the PVC and then binds the PV to the PVC.

Warning:
Do not delete a PV under any circumstances unless you are familiar with
the underlying volume provisioner. Manually deleting a PV can result in
orphaned volumes and unexpected behavior.

4.1.2.1 Recommended storage classes for TiDB clusters
TiKV uses the Raft protocol to replicate data. When a node fails, PD automatically

schedules data to fill the missing data replicas. TiKV requires low read and write latency,
so it is strongly recommended to use local SSD storage in a production environment.

36

https://docs.pingcap.com/tidb/stable/hardware-and-software-requirements#production-environment
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims

PD also uses Raft to replicate data. PD is not an I/O-intensive application, but rather
a database for storing cluster meta information. Therefore, a local SAS disk or network SSD
storage such as EBS General Purpose SSD (gp2) volumes on AWS or SSD persistent disks
on Google Cloud can meet the requirements.

To ensure availability, it is recommended to use network storage for components such
as TiDB monitoring, TiDB Binlog, and tidb-backup because they do not have redundant
replicas. TiDB Binlog’s Pump and Drainer components are I/O-intensive applications that
require low read and write latency, so it is recommended to use high-performance network
storage such as EBS Provisioned IOPS SSD (io1) volumes on AWS or SSD persistent disks
on Google Cloud.

When deploying TiDB clusters or tidb-backup with TiDB Operator, you can configure
the StorageClass for the components that require persistent storage via the corresponding
storageClassName field in the values.yaml configuration file. The StorageClassName is
set to local-storage by default.

4.1.2.2 Network PV configuration
To enable volume expansion for the corresponding StorageClass, run the following

command:
kubectl patch storageclass ${storage_class} -p '{"allowVolumeExpansion":

↪→ true}'

After enabling volume expansion, you can expand the PV using the following method:

1. Edit the PersistentVolumeClaim (PVC) object:
Suppose the PVC is currently 10 Gi and you need to expand it to 100 Gi.
kubectl patch pvc -n ${namespace} ${pvc_name} -p '{"spec": {"resources

↪→ ": {"requests": {"storage": "100Gi"}}}}'

2. View the size of the PV:
After the expansion, the size displayed by running kubectl get pvc -n ${namespace
↪→ } ${pvc_name} still shows the original size. However, if you run the following
command to view the size of the PV, it shows that the size has been expanded to the
expected value.
kubectl get pv | grep ${pvc_name}

4.1.2.3 Local PV configuration
Currently, Kubernetes supports statically allocated local storage. To create a local stor-

age object, use local-volume-provisioner in the local-static-provisioner repository.

37

https://github.com/kubernetes-sigs/sig-storage-local-static-provisioner

4.1.2.3.1 Step 1: Pre-allocate local storage

• For a disk that stores TiKV data, you can mount the disk into the /mnt/ssd directory.
To achieve high performance, it is recommended to allocate a dedicated disk for TiDB,
with SSD being the recommended disk type.

• For a disk that stores PD data, follow the steps to mount the disk. First, create mul-
tiple directories on the disk and bind mount the directories into the /mnt/sharedssd
directory.

Note:
The number of directories you create depends on the planned number
of TiDB clusters and the number of PD servers in each cluster. Each
directory has a corresponding PV created, and each PD server uses one
PV.

• For a disk that stores monitoring data, follow the steps to mount the disk. First,
create multiple directories on the disk and bind mount the directories into the /mnt/
↪→ monitoring directory.

Note:
The number of directories you create depends on the planned number of
TiDB clusters. Each directory has a corresponding PV created, and each
TiDB cluster’s monitoring data uses one PV.

• For a disk that stores TiDB Binlog and backup data, follow the steps to mount the
disk. First, create multiple directories on the disk and bind mount the directories into
the /mnt/backup directory.

Note:
The number of directories you create depends on the planned number of
TiDB clusters, the number of Pumps in each cluster, and your backup
method. Each directory has a corresponding PV created, and each Pump
and Drainer use one PV. All Ad-hoc full backup tasks and scheduled full
backup tasks share one PV.

The /mnt/ssd, /mnt/sharedssd, /mnt/monitoring, and /mnt/backup directories men-
tioned above are discovery directories used by local-volume-provisioner. For each subdirec-
tory in the discovery directory, local-volume-provisioner creates a corresponding PV.

38

https://github.com/kubernetes-sigs/sig-storage-local-static-provisioner/blob/master/docs/operations.md#use-a-whole-disk-as-a-filesystem-pv
https://github.com/kubernetes-sigs/sig-storage-local-static-provisioner/blob/master/docs/operations.md#sharing-a-disk-filesystem-by-multiple-filesystem-pvs
https://github.com/kubernetes-sigs/sig-storage-local-static-provisioner/blob/master/docs/operations.md#sharing-a-disk-filesystem-by-multiple-filesystem-pvs
https://github.com/kubernetes-sigs/sig-storage-local-static-provisioner/blob/master/docs/operations.md#sharing-a-disk-filesystem-by-multiple-filesystem-pvs

4.1.2.3.2 Step 2: Deploy local-volume-provisioner
Online deployment

1. Download the deployment file for the local-volume-provisioner.
wget https://raw.githubusercontent.com/pingcap/tidb-operator/v1.6.1/

↪→ examples/local-pv/local-volume-provisioner.yaml

2. If you are using the same discovery directory as described in Step 1: Pre-allocate
local storage, you can skip this step. If you are using a different path for the discovery
directory than in the previous step, you need to modify the ConfigMap and DaemonSet
spec.

• Modify the data.storageClassMap field in the ConfigMap spec:
apiVersion: v1
kind: ConfigMap
metadata:
name: local-provisioner-config
namespace: kube-system

data:
...
storageClassMap: |
ssd-storage:
hostDir: /mnt/ssd
mountDir: /mnt/ssd

shared-ssd-storage:
hostDir: /mnt/sharedssd
mountDir: /mnt/sharedssd

monitoring-storage:
hostDir: /mnt/monitoring
mountDir: /mnt/monitoring

backup-storage:
hostDir: /mnt/backup
mountDir: /mnt/backup

For more configuration options for the local-volume-provisioner, refer to the Con-
figuration document.

• Modify the volumes and volumeMounts fields in the DaemonSet spec to ensure
that the discovery directory can be mounted to the corresponding directory in the
Pod:
......

volumeMounts:
- mountPath: /mnt/ssd
name: local-ssd

39

https://github.com/kubernetes-sigs/sig-storage-local-static-provisioner/blob/master/docs/provisioner.md#configuration
https://github.com/kubernetes-sigs/sig-storage-local-static-provisioner/blob/master/docs/provisioner.md#configuration

mountPropagation: "HostToContainer"
- mountPath: /mnt/sharedssd
name: local-sharedssd
mountPropagation: "HostToContainer"

- mountPath: /mnt/backup
name: local-backup
mountPropagation: "HostToContainer"

- mountPath: /mnt/monitoring
name: local-monitoring
mountPropagation: "HostToContainer"

volumes:
- name: local-ssd
hostPath:
path: /mnt/ssd

- name: local-sharedssd
hostPath:
path: /mnt/sharedssd

- name: local-backup
hostPath:
path: /mnt/backup

- name: local-monitoring
hostPath:
path: /mnt/monitoring

......

3. Deploy the local-volume-provisioner.
kubectl apply -f https://raw.githubusercontent.com/pingcap/tidb-

↪→ operator/v1.6.1/manifests/local-dind/local-volume-provisioner.
↪→ yaml

4. Check the status of the Pod and PV.
kubectl get po -n kube-system -l app=local-volume-provisioner && \
kubectl get pv | grep -e ssd-storage -e shared-ssd-storage -e

↪→ monitoring-storage -e backup-storage

The local-volume-provisioner creates a PV for each mounting point under the
discovery directory.

Note:
If there are no mount points in the discovery directory, no PV is created
and the output is empty.

40

For more information, refer to the Kubernetes local storage and local-static-provisioner
documents.

Offline deployment
The steps for offline deployment are the same as for online deployment, except for the

following:

• Download the local-volume-provisioner.yaml file on a machine with Internet ac-
cess, then upload it to the server and install it.

• The local-volume-provisioner is a DaemonSet that starts a Pod on every Kuber-
netes worker node. The Pod uses the quay.io/external_storage/local-volume-
↪→ provisioner:v2.5.0 image. If the server does not have access to the Internet,
download this Docker image on a machine with Internet access:
docker pull quay.io/external_storage/local-volume-provisioner:v2.5.0
docker save -o local-volume-provisioner-v2.5.0.tar quay.io/

↪→ external_storage/local-volume-provisioner:v2.5.0

Copy the local-volume-provisioner-v2.5.0.tar file to the server, and execute the
docker load command to load the file on the server:
docker load -i local-volume-provisioner-v2.5.0.tar

4.1.2.3.3 Best practices

• The unique identifier for a local PV is its path. To avoid conflicts, it is recommended
to generate a unique path using the UUID of the device.

• To ensure I/O isolation, it is recommended to use a dedicated physical disk per PV for
hardware-based isolation.

• For capacity isolation, it is recommended to use either a partition per PV or a physical
disk per PV.

For more information on local PV on Kubernetes, refer to the Best Practices document.

4.1.2.4 Data safety
In general, when a PVC is deleted and no longer in use, the PV bound to it is reclaimed

and placed in the resource pool for scheduling by the provisioner. To prevent accidental
data loss, you can configure the reclaim policy of the StorageClass to Retain globally or
change the reclaim policy of a single PV to Retain. With the Retain policy, a PV is not
automatically reclaimed.

41

https://kubernetes.io/docs/concepts/storage/volumes/#local
https://github.com/kubernetes-sigs/sig-storage-local-static-provisioner#overview
https://github.com/kubernetes-sigs/sig-storage-local-static-provisioner/blob/master/docs/best-practices.md

• To configure globally:
The reclaim policy of a StorageClass is set at creation time and cannot be updated
once created. If it is not set during creation, you can create another StorageClass with
the same provisioner. For example, the default reclaim policy of the StorageClass
↪→ for persistent disks on Google Kubernetes Engine (GKE) is Delete. You can
create another StorageClass named pd-standard with a reclaim policy of Retain
and change the storageClassName of the corresponding component to pd-standard
when creating a TiDB cluster.
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: pd-standard

parameters:
type: pd-standard

provisioner: kubernetes.io/gce-pd
reclaimPolicy: Retain
volumeBindingMode: Immediate

• To configure a single PV:
kubectl patch pv ${pv_name} -p '{"spec":{"persistentVolumeReclaimPolicy

↪→ ":"Retain"}}'

Note:
By default, to ensure data safety, TiDB Operator automatically changes the
reclaim policy of the PVs of PD and TiKV to Retain.

4.1.2.4.1 Delete PV and data
When the reclaim policy of PVs is set to Retain, if you have confirmed that the data of

a PV can be deleted, you can delete the PV and its corresponding data by following these
steps:

1. Delete the PVC object corresponding to the PV:
kubectl delete pvc ${pvc_name} --namespace=${namespace}

2. Set the reclaim policy of the PV to Delete. This automatically deletes and reclaims
the PV.

42

kubectl patch pv ${pv_name} -p '{"spec":{"persistentVolumeReclaimPolicy
↪→ ":"Delete"}}'

For more details, refer to the Change the Reclaim Policy of a PersistentVolume document.

4.1.3 Deploy TiDB Operator on Kubernetes

This document describes how to deploy TiDB Operator on Kubernetes.

4.1.3.1 Prerequisites
Before deploying TiDB Operator, make sure the following items are installed on your

machine:

• Kubernetes >= v1.24
• DNS addons
• PersistentVolume
• RBAC enabled (optional)
• Helm 3

4.1.3.1.1 Deploy the Kubernetes cluster
TiDB Operator runs in the Kubernetes cluster. You can refer to the document of how to

set up Kubernetes to set up a Kubernetes cluster. Make sure that the Kubernetes version is
v1.24 or higher. If you want to deploy a very simple Kubernetes cluster for testing purposes,
consult the Get Started document.

For some public cloud environments, refer to the following documents:

• Deploy on AWS EKS
• Deploy on Google Cloud GKE

TiDB Operator uses Persistent Volumes to persist the data of TiDB cluster (including
the database, monitoring data, and backup data), so the Kubernetes cluster must provide
at least one kind of persistent volumes.

It is recommended to enable RBAC in the Kubernetes cluster.

4.1.3.1.2 Install Helm
Refer to Use Helm to install Helm and configure it with the official PingCAP chart

repository.

4.1.3.2 Deploy TiDB Operator

43

https://kubernetes.io/docs/tasks/administer-cluster/change-pv-reclaim-policy/
https://kubernetes.io/docs/tasks/access-application-cluster/configure-dns-cluster/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://helm.sh
https://kubernetes.io/docs/setup/
https://kubernetes.io/docs/setup/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/

4.1.3.2.1 Create CRD
TiDB Operator uses Custom Resource Definition (CRD) to extend Kubernetes. There-

fore, to use TiDB Operator, you must first create the TidbCluster CRD, which is a one-time
job in your Kubernetes cluster.
kubectl create -f https://raw.githubusercontent.com/pingcap/tidb-operator/v1

↪→ .6.1/manifests/crd.yaml

If the server cannot access the Internet, you need to download the crd.yaml file on a
machine with Internet access before installing:
wget https://raw.githubusercontent.com/pingcap/tidb-operator/v1.6.1/

↪→ manifests/crd.yaml
kubectl create -f ./crd.yaml

If the following message is displayed, the CRD installation is successful:
kubectl get crd

NAME CREATED AT
backups.pingcap.com 2020-06-11T07:59:40Z
backupschedules.pingcap.com 2020-06-11T07:59:41Z
restores.pingcap.com 2020-06-11T07:59:40Z
tidbclusterautoscalers.pingcap.com 2020-06-11T07:59:42Z
tidbclusters.pingcap.com 2020-06-11T07:59:38Z
tidbinitializers.pingcap.com 2020-06-11T07:59:42Z
tidbmonitors.pingcap.com 2020-06-11T07:59:41Z

4.1.3.2.2 Customize TiDB Operator deployment
To deploy TiDB Operator quickly, you can refer to Deploy TiDB Operator. This section

describes how to customize the deployment of TiDB Operator.
After creating CRDs in the step above, there are two methods to deploy TiDB Operator

on your Kubernetes cluster: online and offline.
When you use TiDB Operator, tidb-scheduler is not mandatory. Refer to tidb-

scheduler and default-scheduler to confirm whether you need to deploy tidb-scheduler.
If you do not need tidb-scheduler, you can configure scheduler.create: false in the
values.yaml file, so tidb-scheduler is not deployed.

Online deployment

1. Get the values.yaml file of the tidb-operator chart you want to deploy:
mkdir -p ${HOME}/tidb-operator && \
helm inspect values pingcap/tidb-operator --version=${chart_version} >

↪→ ${HOME}/tidb-operator/values-tidb-operator.yaml

44

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions

Note:
${chart_version} represents the chart version of TiDB Operator. For
example, v1.6.1. You can view the currently supported versions by
running the helm search repo -l tidb-operator command.

2. Configure TiDB Operator
TiDB Operator manages all TiDB clusters in the Kubernetes cluster by default. If you
only need it to manage clusters in a specific namespace, you can set clusterScoped:
↪→ false in values.yaml.

Note:
After setting clusterScoped: false, TiDB Operator will still operate
Nodes, Persistent Volumes, and Storage Classes in the Kubernetes cluster
by default. If the role that deploys TiDB Operator does not have the
permissions to operate these resources, you can set the corresponding
permission request under controllerManager.clusterPermissions to
false to disable TiDB Operator’s operations on these resources.

You can modify other items such as limits, requests, and replicas as needed.

3. Deploy TiDB Operator
helm install tidb-operator pingcap/tidb-operator --namespace=tidb-admin

↪→ --version=${chart_version} -f ${HOME}/tidb-operator/values-tidb-
↪→ operator.yaml && \

kubectl get po -n tidb-admin -l app.kubernetes.io/name=tidb-operator

Note:
If the corresponding tidb-admin namespace does not exist, you can cre-
ate the namespace first by running the kubectl create namespace
↪→ tidb-admin command.

4. Upgrade TiDB Operator
If you need to upgrade the TiDB Operator, modify the ${HOME}/tidb-operator/
↪→ values-tidb-operator.yaml file, and then execute the following command to
upgrade:
helm upgrade tidb-operator pingcap/tidb-operator --namespace=tidb-admin

↪→ -f ${HOME}/tidb-operator/values-tidb-operator.yaml

45

Offline installation
If your server cannot access the Internet, install TiDB Operator offline by the following

steps:

1. Download the tidb-operator chart
If the server has no access to the Internet, you cannot configure the Helm repository to
install the TiDB Operator component and other applications. At this time, you need
to download the chart file needed for cluster installation on a machine with Internet
access, and then copy it to the server.
Use the following command to download the tidb-operator chart file:
wget http://charts.pingcap.org/tidb-operator-v1.6.1.tgz

Copy the tidb-operator-v1.6.1.tgz file to the target server and extract it to the
current directory:
tar zxvf tidb-operator.v1.6.1.tgz

2. Download the Docker images used by TiDB Operator
If the server has no access to the Internet, you need to download all Docker images
used by TiDB Operator on a machine with Internet access and upload them to the
server, and then use docker load to install the Docker image on the server.
The Docker images used by TiDB Operator are:
pingcap/tidb-operator:v1.6.1
pingcap/tidb-backup-manager:v1.6.1
bitnami/kubectl:latest
pingcap/advanced-statefulset:v0.7.0

Next, download all these images using the following command:
docker pull pingcap/tidb-operator:v1.6.1
docker pull pingcap/tidb-backup-manager:v1.6.1
docker pull bitnami/kubectl:latest
docker pull pingcap/advanced-statefulset:v0.7.0

docker save -o tidb-operator-v1.6.1.tar pingcap/tidb-operator:v1.6.1
docker save -o tidb-backup-manager-v1.6.1.tar pingcap/tidb-backup-

↪→ manager:v1.6.1
docker save -o bitnami-kubectl.tar bitnami/kubectl:latest
docker save -o advanced-statefulset-v0.3.3.tar pingcap/advanced-

↪→ statefulset:v0.7.0

Next, upload these Docker images to the server, and execute docker load to install
these Docker images on the server:

46

docker load -i tidb-operator-v1.6.1.tar
docker load -i tidb-backup-manager-v1.6.1.tar
docker load -i bitnami-kubectl.tar
docker load -i advanced-statefulset-v0.3.3.tar

3. Configure TiDB Operator
Modify the ./tidb-operator/values.yaml file to configure TiDB Operator.

4. Install TiDB Operator
Install TiDB Operator using the following command:
helm install tidb-operator ./tidb-operator --namespace=tidb-admin

Note:
If the corresponding tidb-admin namespace does not exist, you can cre-
ate the namespace first by running the kubectl create namespace
↪→ tidb-admin command.

5. Upgrade TiDB Operator
If you need to upgrade TiDB Operator, modify the ./tidb-operator/values.yaml
file, and then execute the following command to upgrade:
helm upgrade tidb-operator ./tidb-operator --namespace=tidb-admin

4.1.3.3 Customize TiDB Operator
To customize TiDB Operator, modify ${HOME}/tidb-operator/values-tidb-

↪→ operator.yaml. The rest sections of the document use values.yaml to refer to
${HOME}/tidb-operator/values-tidb-operator.yaml

TiDB Operator contains two components:

• tidb-controller-manager
• tidb-scheduler

These two components are stateless and deployed via Deployment. You can customize
resource limit, request, and replicas in the values.yaml file.

After modifying values.yaml, run the following command to apply this modification:
helm upgrade tidb-operator pingcap/tidb-operator --version=${chart_version}

↪→ --namespace=tidb-admin -f ${HOME}/tidb-operator/values-tidb-operator.
↪→ yaml

47

4.1.4 Configure a TiDB Cluster on Kubernetes

This document introduces how to configure a TiDB cluster for production deployment.
It covers the following content:

• Configure resources

• Configure TiDB deployment

• Configure high availability

4.1.4.1 Configure resources
Before deploying a TiDB cluster, it is necessary to configure the resources for each

component of the cluster depending on your needs. PD, TiKV, and TiDB are the core
service components of a TiDB cluster. In a production environment, you need to configure
resources of these components according to their needs. For details, refer to Hardware
Recommendations.

To ensure the proper scheduling and stable operation of the components of the TiDB
cluster on Kubernetes, it is recommended to set Guaranteed-level quality of service (QoS) by
making limits equal to requests when configuring resources. For details, refer to Configure
Quality of Service for Pods.

If you are using a NUMA-based CPU, you need to enable Static’s CPU management
policy on the node for better performance. In order to allow the TiDB cluster component
to monopolize the corresponding CPU resources, the CPU quota must be an integer greater
than or equal to 1, apart from setting Guaranteed-level QoS as mentioned above. For details,
refer to Control CPU Management Policies on the Node.

4.1.4.2 Configure TiDB deployment
To configure a TiDB deployment, you need to configure the TiDBCluster CR. Refer to

the TidbCluster example for an example. For the complete configurations of TiDBCluster
CR, refer to API documentation.

Note:
It is recommended to organize configurations for a TiDB cluster under a
directory of cluster_name and save it as ${cluster_name}/tidb-cluster
↪→ .yaml. The modified configuration is not automatically applied to the
TiDB cluster by default. The new configuration file is loaded only when the
Pod restarts.

48

https://docs.pingcap.com/tidb/stable/hardware-and-software-requirements
https://docs.pingcap.com/tidb/stable/hardware-and-software-requirements
https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/
https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/
https://kubernetes.io/docs/tasks/administer-cluster/cpu-management-policies
https://github.com/pingcap/tidb-operator/blob/v1.6.1/examples/advanced/tidb-cluster.yaml
https://github.com/pingcap/tidb-operator/blob/v1.6.1/docs/api-references/docs.md

4.1.4.2.1 Cluster name
The cluster name can be configured by changing metadata.name in the TiDBCuster CR.

4.1.4.2.2 Version
Usually, components in a cluster are in the same version. It is recommended to configure

spec.<pd/tidb/tikv/pump/tiflash/ticdc>.baseImage and spec.version, if you need
to configure different versions for different components, you can configure spec.<pd/tidb/
↪→ tikv/pump/tiflash/ticdc>.version.

Here are the formats of the parameters:

• spec.version: the format is imageTag, such as v8.5.0

• spec.<pd/tidb/tikv/pump/tiflash/ticdc>.baseImage: the format is imageName,
such as pingcap/tidb

• spec.<pd/tidb/tikv/pump/tiflash/ticdc>.version: the format is imageTag, such
as v8.5.0

4.1.4.2.3 Recommended configuration
configUpdateStrategy
The default value of the spec.configUpdateStrategy field is InPlace, which means

that when you modify config of a component, you need to manually trigger a rolling update
to apply the new configurations to the cluster.

It is recommended that you configure spec.configUpdateStrategy: RollingUpdate
↪→ to enable automatic update of configurations. In this way, every time the config of
a component is updated, TiDB Operator automatically triggers a rolling update for the
component and applies the modified configuration to the cluster.

enableDynamicConfiguration
It is recommended that you configure spec.enableDynamicConfiguration: true to

enable the --advertise-status-addr startup parameter for TiKV.
Versions required:

• TiDB 4.0.1 or later versions

pvReclaimPolicy
It is recommended that you configure spec.pvReclaimPolicy: Retain to ensure that

the PV is retained even if the PVC is deleted. This is to ensure your data safety.
mountClusterClientSecret

49

PD and TiKV supports configuring mountClusterClientSecret. If TLS is enabled be-
tween cluster components, it is recommended to configure spec.pd.mountClusterClientSecret
↪→ : true and spec.tikv.mountClusterClientSecret: true. Under such configuration,
TiDB Operator automatically mounts the ${cluster_name}-cluster-client-secret
↪→ certificate to the PD and TiKV container, so you can conveniently use pd-ctl and
tikv-ctl.

startScriptVersion
To choose the different versions of the startup scripts for each component, you can

configure the spec.startScriptVersion field in the cluster spec.
The supported versions of the start script are as follows:

• v1 (default): the original version of the startup script.

• v2: to optimize the start script for each component and make sure that upgrading TiDB
Operator does not result in cluster rolling restart, TiDB Operator v1.4.0 introduces
v2. Compared to v1, v2 has the following optimizations:

– Use dig instead of nslookup to resolve DNS.
– All components support debug mode.

It is recommended that you configure spec.startScriptVersion as the latest version
(v2) for the new cluster.

Warning:
Modify the startScriptVersion field of the deployed cluster will cause the
rolling restart.

4.1.4.2.4 Storage
Storage Class
You can set the storage class by modifying storageClassName of each component in ${

↪→ cluster_name}/tidb-cluster.yaml and ${cluster_name}/tidb-monitor.yaml. For
the storage classes supported by the Kubernetes cluster, check with your system administra-
tor.

Different components of a TiDB cluster have different disk requirements. Before deploy-
ing a TiDB cluster, refer to the Storage Configuration document to select an appropriate
storage class for each component according to the storage classes supported by the current
Kubernetes cluster and usage scenario.

50

https://kubernetes.io/docs/concepts/storage/storage-classes/

Note:
When you create the TiDB cluster, if you set a storage class that does not exist
in the Kubernetes cluster, then the TiDB cluster creation goes to the Pending
state. In this situation, you must destroy the TiDB cluster on Kubernetes
and retry the creation.

Multiple disks mounting
TiDB Operator supports mounting multiple PVs for PD, TiDB, TiKV, and TiCDC,

which can be used for data writing for different purposes.
You can configure the storageVolumes field for each component to describe multiple

user-customized PVs.
The meanings of the related fields are as follows:

• storageVolume.name: The name of the PV.
• storageVolume.storageClassName: The StorageClass that the PV uses. If not con-

figured, spec.pd/tidb/tikv/ticdc.storageClassName will be used.
• storageVolume.storageSize: The storage size of the requested PV.
• storageVolume.mountPath: The path of the container to mount the PV to.

For example:
To mount multiple PVs for TiKV:

tikv:
...
config: |
[rocksdb]
wal-dir = "/data_sbi/tikv/wal"

[titan]
dirname = "/data_sbj/titan/data"

storageVolumes:
- name: wal
storageSize: "2Gi"
mountPath: "/data_sbi/tikv/wal"

- name: titan
storageSize: "2Gi"
mountPath: "/data_sbj/titan/data"

To mount multiple PVs for TiDB:

51

tidb:
config: |
path = "/tidb/data"
[log.file]
filename = "/tidb/log/tidb.log"

storageVolumes:
- name: data
storageSize: "2Gi"
mountPath: "/tidb/data"

- name: log
storageSize: "2Gi"
mountPath: "/tidb/log"

To mount multiple PVs for PD:
pd:
config: |
data-dir = "/pd/data"
[log.file]
filename = "/pd/log/pd.log"

storageVolumes:
- name: data
storageSize: "10Gi"
mountPath: "/pd/data"

- name: log
storageSize: "10Gi"
mountPath: "/pd/log"

To mount multiple PVs for TiCDC:
ticdc:
...
config:
dataDir: /ticdc/data
logFile: /ticdc/log/cdc.log

storageVolumes:
- name: data
storageSize: "10Gi"
storageClassName: local-storage
mountPath: "/ticdc/data"

- name: log
storageSize: "10Gi"
storageClassName: local-storage
mountPath: "/ticdc/log"

52

To mount multiple PVs for PD microservices (taking the tsomicroservice as an example):

Note:
Starting from v8.0.0, PD supports the microservice mode (experimental).

pd:
mode: "ms"

pdms:
- name: "tso"
config: |
[log.file]
filename = "/pdms/log/tso.log"

storageVolumes:
- name: log
storageSize: "10Gi"
mountPath: "/pdms/log"

Note:
TiDB Operator uses some mount paths by default. For example, it mounts
EmptyDir to the /var/log/tidb directory for the TiDB Pod. Therefore,
avoid duplicate mountPath when you configure storageVolumes.

4.1.4.2.5 HostNetwork
For PD, TiKV, TiDB, TiFlash, TiProxy, TiCDC, and Pump, you can configure the Pods

to use the host namespace HostNetwork.
To enable HostNetwork for all supported components, configure spec.hostNetwork:

↪→ true.
To enable HostNetwork for specified components, configure hostNetwork: true for the

components.

4.1.4.2.6 Discovery
TiDB Operator starts a Discovery service for each TiDB cluster. The Discovery service

can return the corresponding startup parameters for each PD Pod to support the startup of
the PD cluster. You can configure resources of the Discovery service using spec.discovery.
For details, see Managing Resources for Containers.

53

https://docs.pingcap.com/tidb/dev/pd-microservices
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/#pod-s-dns-policy
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

A spec.discovery configuration example is as follows:
spec:
discovery:
limits:
cpu: "0.2"

requests:
cpu: "0.2"

...

4.1.4.2.7 Cluster topology
PD/TiKV/TiDB
The deployed cluster topology by default has three PD Pods, three TiKV Pods, and two

TiDB Pods. In this deployment topology, the scheduler extender of TiDB Operator requires
at least three nodes in the Kubernetes cluster to provide high availability. You can modify
the replicas configuration to change the number of pods for each component.

Note:
If the number of Kubernetes cluster nodes is less than three, one PD Pod goes
to the Pending state, and neither TiKV Pods nor TiDB Pods are created.
When the number of nodes in the Kubernetes cluster is less than three, to
start the TiDB cluster, you can reduce the number of PD Pods in the default
deployment to 1.

Enable PD microservices

Note:
Starting from v8.0.0, PD supports the microservice mode (experimental).

To enable PD microservices in your cluster, configure spec.pd.mode and spec.pdms in
the ${cluster_name}/tidb-cluster.yaml file:
spec:
pd:
mode: "ms"

pdms:

54

https://docs.pingcap.com/tidb/dev/pd-microservices

- name: "tso"
baseImage: pingcap/pd
replicas: 2

- name: "scheduling"
baseImage: pingcap/pd
replicas: 1

• spec.pd.mode is used to enable or disable PD microservices. Setting it to "ms" enables
PD microservices, while setting it to "" or removing this field disables PD microservices.

• spec.pdms.config is used to configure PDmicroservices, and the specific configuration
parameters are the same as spec.pd.config. To get all the parameters that can be
configured for PD microservices, see the PD configuration file.

Enable TiProxy
The deployment method is the same as that of PD. In addition, you need to modify

spec.tiproxy to manually specify the number of TiProxy components.
tiproxy:
baseImage: pingcap/tiproxy
replicas: 3
config:

When deploying TiProxy, you also need to configure additional parameters for TiDB. For
detailed configuration steps, refer to Deploy TiProxy Load Balancer for an Existing TiDB
Cluster.

Enable TiFlash
If you want to enable TiFlash in the cluster, configure spec.pd.config.replication.

↪→ enable-placement-rules: true and configure spec.tiflash in the ${cluster_name
↪→ }/tidb-cluster.yaml file as follows:
pd:
config: |
...
[replication]
enable-placement-rules = true

tiflash:
baseImage: pingcap/tiflash
maxFailoverCount: 0
replicas: 1
storageClaims:
- resources:

requests:
storage: 100Gi

storageClassName: local-storage

55

https://docs.pingcap.com/tidb/stable/pd-configuration-file

TiFlash supports mounting multiple Persistent Volumes (PVs). If you want to configure
multiple PVs for TiFlash, configure multiple resources in tiflash.storageClaims, each
resources with a separate storage request and storageClassName. For example:
tiflash:
baseImage: pingcap/tiflash
maxFailoverCount: 0
replicas: 1
storageClaims:
- resources:

requests:
storage: 100Gi

storageClassName: local-storage
- resources:

requests:
storage: 100Gi

storageClassName: local-storage

TiFlash mounts all PVs to directories such as /data0 and /data1 in the container in the
order of configuration. TiFlash has four log files. The proxy log is printed in the standard
output of the container. The other three logs are stored in the disk under the /data0
↪→ directory by default, which are /data0/logs/flash_cluster_manager.log, / data0/
↪→ logs/error.log, /data0/logs/server.log. To modify the log storage path, refer to
Configure TiFlash parameters.

Warning:
Since TiDB Operator will mount PVs automatically in the order of the items
in the storageClaims list, if you need to add more disks to TiFlash, make
sure to append the new item only to the end of the original items, and DO
NOT modify the order of the original items.

Enable TiCDC
If you want to enable TiCDC in the cluster, you can add TiCDC spec to the TiDBCluster

CR. For example:
spec:
ticdc:
baseImage: pingcap/ticdc
replicas: 3

56

4.1.4.2.8 Configure TiDB components
This section introduces how to configure the parameters of TiDB/TiKV/PD/TiProx-

y/TiFlash/TiCDC.
Configure TiDB parameters
TiDB parameters can be configured by spec.tidb.config in TidbCluster Custom Re-

source.
For example:

spec:
tidb:
config: |
split-table = true
oom-action = "log"

For all the configurable parameters of TiDB, refer to TiDB Configuration File.

Note:
If you deploy your TiDB cluster using CR, make sure that Config: {} is set,
no matter you want to modify config or not. Otherwise, TiDB components
might not be started successfully. This step is meant to be compatible with
Helm deployment.

Configure TiKV parameters
TiKV parameters can be configured by spec.tikv.config in TidbCluster Custom Re-

source.
For example:

spec:
tikv:
config: |
[storage]
[storage.block-cache]
capacity = "16GB"

[log.file]
max-days = 30
max-backups = 30

For all the configurable parameters of TiKV, refer to TiKV Configuration File.

57

https://docs.pingcap.com/tidb/stable/tidb-configuration-file
https://docs.pingcap.com/tidb/stable/tikv-configuration-file

Note:

• If you deploy your TiDB cluster using CR, make sure that Config: {}
is set, no matter you want to modify config or not. Otherwise, TiKV
components might not be started successfully. This step is meant to be
compatible with Helm deployment.

• TiKV RocksDB logs are stored in the /var/lib/tikv data directory
by default. It is recommended that you configure max-days and max-
↪→ backups to automatically clean log files.

• You can also use the separateRocksDBLog configuration item to config-
ure TiKV to output RocksDB logs to stdout through a sidecar container.
For more information, see the TiDB Cluster example.

Configure PD parameters
PD parameters can be configured by spec.pd.config in TidbCluster Custom Resource.
For example:

spec:
pd:
config: |
lease = 3
enable-prevote = true

For all the configurable parameters of PD, refer to PD Configuration File.

Note:

• If you deploy your TiDB cluster using CR, make sure that Config: {}
is set, no matter you want to modify config or not. Otherwise, PD
components might not be started successfully. This step is meant to be
compatible with Helm deployment.

• After the cluster is started for the first time, some PD configuration items
are persisted in etcd. The persisted configuration in etcd takes prece-
dence over that in PD. Therefore, after the first start, you cannot modify
some PD configuration using parameters. You need to dynamically mod-
ify the configuration using SQL statements, pd-ctl, or PD server API.
Currently, among all the configuration items listed in Modify PD con-
figuration online, except log.level, all the other configuration items
cannot be modified using parameters after the first start.

58

https://github.com/pingcap/tidb-operator/blob/master/examples/advanced/tidb-cluster.yaml
https://docs.pingcap.com/tidb/stable/pd-configuration-file
https://docs.pingcap.com/tidb/stable/dynamic-config#modify-pd-configuration-online
https://docs.pingcap.com/tidb/stable/dynamic-config#modify-pd-configuration-online

Configure PD microservices

Note:
Starting from v8.0.0, PD supports the microservice mode (experimental).

You can configure PD microservice using the spec.pd.mode and spec.pdms parameters
of the TidbCluster CR. Currently, PD supports two microservices: the tso microservice and
the scheduling microservice. The configuration example is as follows:
spec:
pd:
mode: "ms"

pdms:
- name: "tso"
baseImage: pingcap/pd
replicas: 2
config: |
[log.file]
filename = "/pdms/log/tso.log"

- name: "scheduling"
baseImage: pingcap/pd
replicas: 1
config: |
[log.file]
filename = "/pdms/log/scheduling.log"

In the preceding configuration, spec.pdms is used to configure PD microservices, and the
specific configuration parameters are the same as spec.pd.config. To get all the parameters
that can be configured for PD microservices, see the PD configuration file.

Note:

• If you deploy your TiDB cluster using CR, make sure that config: {}
is set, no matter you want to modify config or not. Otherwise, PD
microservice components might fail to start. This step is meant to be
compatible with Helm deployment.

• If you enable the PD microservice mode when you deploy a TiDB cluster,
some configuration items of PD microservices are persisted in etcd. The
persisted configuration in etcd takes precedence over that in PD.

59

https://docs.pingcap.com/tidb/dev/pd-microservices
https://docs.pingcap.com/tidb/stable/pd-configuration-file

• If you enable the PD microservice mode for an existing TiDB cluster,
some configuration items of PD microservices adopt the same values in
PD configuration and are persisted in etcd. The persisted configuration
in etcd takes precedence over that in PD.

• Hence, after the first startup of PD microservices, you cannot modify
these configuration items using parameters. Instead, you can modify
them dynamically using SQL statements, pd-ctl, or PD server API. Cur-
rently, among all the configuration items listed in Modify PD configu-
ration dynamically, except log.level, all the other configuration items
cannot be modified using parameters after the first startup of PD mi-
croservices.

Configure TiProxy parameters
TiProxy parameters can be configured by spec.tiproxy.config in TidbCluster Custom

Resource.
For example:

spec:
tiproxy:
config: |
[log]
level = "info"

For all the configurable parameters of TiProxy, refer to TiProxy Configuration File.
Configure TiFlash parameters
TiFlash parameters can be configured by spec.tiflash.config in TidbCluster Custom

Resource.
For example:

spec:
tiflash:
config:
config: |
[flash]
[flash.flash_cluster]
log = "/data0/logs/flash_cluster_manager.log"

[logger]
count = 10
level = "information"
errorlog = "/data0/logs/error.log"
log = "/data0/logs/server.log"

60

https://docs.pingcap.com/tidb/stable/dynamic-config#modify-pd-configuration-dynamically
https://docs.pingcap.com/tidb/stable/pd-control#config-show--set-option-value--placement-rules
https://docs.pingcap.com/tidb/stable/dynamic-config#modify-pd-configuration-dynamically
https://docs.pingcap.com/tidb/stable/dynamic-config#modify-pd-configuration-dynamically
https://docs.pingcap.com/tidb/stable/tiproxy-configuration

For all the configurable parameters of TiFlash, refer to TiFlash Configuration File.
Configure TiCDC start parameters
You can configure TiCDC start parameters through spec.ticdc.config in TidbCluster

Custom Resource.
For example:
For TiDB Operator v1.2.0-rc.2 and later versions, configure the parameters in the TOML

format as follows:
spec:
ticdc:
config: |
gc-ttl = 86400
log-level = "info"

For TiDB Operator versions earlier than v1.2.0-rc.2, configure the parameters in the
YAML format as follows:
spec:
ticdc:
config:
timezone: UTC
gcTTL: 86400
logLevel: info

For all configurable start parameters of TiCDC, see TiCDC configuration.
Configure automatic failover thresholds of PD, TiDB, TiKV, and TiFlash
The automatic failover feature is enabled by default in TiDB Operator. When the Pods

of PD, TiDB, TiKV, TiFlash fail or the corresponding nodes fail, TiDB Operator performs
failover automatically and replenish the number of Pod replicas by scaling the corresponding
components.

To avoid that the automatic failover feature creates too many Pods, you can configure the
threshold of the maximum number of Pods that TiDB Operator can create during failover for
each component. The default threshold is 3. If the threshold for a component is configured
to 0, it means that the automatic failover feature is disabled for this component. An example
configuration is as follows:
pd:
maxFailoverCount: 3

tidb:
maxFailoverCount: 3

tikv:
maxFailoverCount: 3

tiflash:
maxFailoverCount: 3

61

https://docs.pingcap.com/tidb/stable/tiflash-configuration
https://github.com/pingcap/tiflow/blob/bf29e42c75ae08ce74fbba102fe78a0018c9d2ea/pkg/cmd/util/ticdc.toml

Note:
For the following cases, configure maxFailoverCount: 0 explicitly:

• The Kubernetes cluster does not have enough resources for TiDB Oper-
ator to scale out the new Pod. In such cases, the new Pod will be in the
Pending state.

• You do not want to enable the automatic failover function.

4.1.4.2.9 Configure graceful upgrade for TiDB cluster
When you perform a rolling update to the TiDB cluster, Kubernetes sends a TERM signal

to the TiDB server before it stops the TiDB Pod. When the TiDB server receives the TERM
signal, it tries to wait for all connections to close. After 15 seconds, the TiDB server forcibly
closes all the connections and exits the process.

You can enable this feature by configuring the following items:

• spec.tidb.terminationGracePeriodSeconds: The longest tolerable duration to
delete the old TiDB Pod during the rolling upgrade. If this duration is exceeded, the
TiDB Pod will be deleted forcibly.

• spec.tidb.lifecycle: Sets the preStop hook for the TiDB Pod, which is the opera-
tion executed before the TiDB server stops.

spec:
tidb:
terminationGracePeriodSeconds: 60
lifecycle:
preStop:
exec:
command:
- /bin/sh
- -c
- "sleep 10 && kill -QUIT 1"

The YAML file above:

• Sets the longest tolerable duration to delete the TiDB Pod to 60 seconds. If the client
does not close the connections after 60 seconds, these connections will be closed forcibly.
You can adjust the value according to your needs.

• Sets the value of preStop hook to sleep 10 && kill -QUIT 1. Here PID 1 refers to
the PID of the TiDB server process in the TiDB Pod. When the TiDB server process
receives the signal, it exits only after all the connections are closed by the client.

62

https://kubernetes.io/docs/concepts/workloads/pods/pod/#termination-of-pods

When Kubernetes deletes the TiDB Pod, it also removes the TiDB node from the service
endpoints. This is to ensure that the new connection is not established to this TiDB node.
However, because this process is asynchronous, you can make the system sleep for a few
seconds before you send the kill signal, which makes sure that the TiDB node is removed
from the endpoints.

4.1.4.2.10 Configure graceful upgrade for TiKV cluster
During TiKV upgrade, TiDB Operator evicts all Region leaders from TiKV Pod before

restarting TiKV Pod. Only after the eviction is completed (which means the number of
Region leaders on TiKV Pod drops to 0) or the eviction exceeds the specified timeout (1500
minutes by default), TiKV Pod is restarted. If TiKV has fewer than 2 replicas, TiDB
Operator forces an upgrade without waiting for the timeout.

If the eviction of Region leaders exceeds the specified timeout, restarting TiKV Pod
causes issues such as failures of some requests or more latency. To avoid the issues, you
can configure the timeout spec.tikv.evictLeaderTimeout (1500 minutes by default) to a
larger value. For example:
spec:
tikv:
evictLeaderTimeout: 10000m

Warning:
If the TiKV version is earlier than 4.0.14 or 5.0.3, due to a bug of TiKV, you
need to configure the timeout spec.tikv.evictLeaderTimeout as large as
possible to ensure that all Region leaders on the TiKV Pod can be evicted
within the timeout. If you are not sure about the proper value, greater than
‘1500m’ is recommended.

4.1.4.2.11 Configure graceful upgrade for TiCDC cluster

Note:

• If the TiCDC version is earlier than v6.3.0, TiDB Operator forces an
upgrade on TiCDC, which might cause replication latency increase.

• The feature is available since TiDB Operator v1.3.8.

63

https://github.com/tikv/tikv/pull/10364

During TiCDC upgrade, TiDB Operator drains all replication workloads from TiCDC
Pod before restarting TiCDC Pod. Only after the draining is completed or the draining
exceeds the specified timeout (10 minutes by default), TiCDC Pod is restarted. If TiCDC
has fewer than 2 instances, TiDB Operator forces an upgrade without waiting for the timeout.

If the draining exceeds the specified timeout, restarting TiCDC Pod causes issues such
as more replication latency. To avoid the issues, you can configure the timeout spec.ticdc
↪→ .gracefulShutdownTimeout (10 minutes by default) to a larger value. For example:
spec:
ticdc:
gracefulShutdownTimeout: 100m

4.1.4.2.12 Configure PV for TiDB slow logs
By default, TiDB Operator creates a slowlog volume (which is an EmptyDir) to store

the slow logs, mounts the slowlog volume to /var/log/tidb, and prints slow logs in the
stdout through a sidecar container.

Warning:
By default, after a Pod is deleted (for example, rolling update), the slow
query logs stored using the EmptyDir volume are lost. Make sure that a log
collection solution has been deployed in the Kubernetes cluster to collect logs
of all containers. If you do not deploy such a log collection solution, you must
make the following configuration to use a persistent volume to store the slow
query logs.

If you want to use a separate PV to store the slow logs, you can specify the name
of the PV in spec.tidb.slowLogVolumeName, and then configure the PV in spec.tidb.
↪→ storageVolumes or spec.tidb.additionalVolumes.

This section shows how to configure PV using spec.tidb.storageVolumes or spec.
↪→ tidb.additionalVolumes.

Configure using spec.tidb.storageVolumes

Configure the TidbCluster CR as the following example. In the example, TiDB Oper-
ator uses the ${volumeName} PV to store slow logs. The log file path is ${mountPath}/${
↪→ volumeName}.

For how to configure the spec.tidb.storageVolumes field, refer to Multiple disks
mounting.

64

Warning:
You need to configure storageVolumes before creating the cluster. After
the cluster is created, adding or removing storageVolumes is no longer sup-
ported. For the storageVolumes already configured, except for increasing
storageVolume.storageSize, other modifications are not supported. To
increase storageVolume.storageSize, you need to make sure that the cor-
responding StorageClass supports dynamic expansion.

tidb:
...
separateSlowLog: true # can be ignored
slowLogVolumeName: ${volumeName}
storageVolumes:
name must be consistent with slowLogVolumeName
- name: ${volumeName}
storageClassName: ${storageClass}
storageSize: "1Gi"
mountPath: ${mountPath}

Configure using spec.tidb.additionalVolumes

In the following example, NFS is used as the storage, and TiDB Operator uses the
${volumeName} PV to store slow logs. The log file path is ${mountPath}/${volumeName}.

For the supported PV types, refer to Persistent Volumes.
tidb:
...
separateSlowLog: true # can be ignored
slowLogVolumeName: ${volumeName}
additionalVolumes:
name must be consistent with slowLogVolumeName
- name: ${volumeName}
nfs:
server: 192.168.0.2
path: /nfs

additionalVolumeMounts:
name must be consistent with slowLogVolumeName
- name: ${volumeName}
mountPath: ${mountPath}

65

https://kubernetes.io/blog/2018/07/12/resizing-persistent-volumes-using-kubernetes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes

4.1.4.2.13 Configure TiDB service
You need to configure spec.tidb.service so that TiDB Operator creates a service for

TiDB. You can configure Service with different types according to the scenarios, such as
ClusterIP, NodePort, LoadBalancer, and so on.

General configurations
Different types of services share some general configurations as follows:

• spec.tidb.service.annotations: the annotation added to the Service resource.
• spec.tidb.service.labels: the labels added to the Service resource.

ClusterIP
ClusterIP exposes services through the internal IP of the cluster. When selecting this

type of service, you can only access it within the cluster using ClusterIP or the Service
domain name (${cluster_name}-tidb.${namespace}).
spec:
...
tidb:
service:
type: ClusterIP

NodePort
If there is no LoadBalancer, you can choose to expose the service through NodePort.

NodePort exposes services through the node’s IP and static port. You can access a NodePort
service from outside of the cluster by requesting NodeIP + NodePort.
spec:
...
tidb:
service:
type: NodePort
externalTrafficPolicy: Local

NodePort has two modes:

• externalTrafficPolicy=Cluster: All machines in the cluster allocate a NodePort
port to TiDB, which is the default value.
When using the Cluster mode, you can access the TiDB service through the IP and
NodePort of any machine. If there is no TiDB Pod on the machine, the corresponding
request will be forwarded to the machine with TiDB Pod.

66

Note:
In this mode, the request source IP obtained by the TiDB service is the
host IP, not the real client source IP, so access control based on the client
source IP is not available in this mode.

• externalTrafficPolicy=Local: Only the machine that TiDB is running on allocates
a NodePort port to access the local TiDB instance.

LoadBalancer
If the TiDB cluster runs in an environment with LoadBalancer, such as on Google Cloud

or AWS, it is recommended to use the LoadBalancer feature of these cloud platforms by
setting tidb.service.type=LoadBalancer.
spec:
...
tidb:
service:
annotations:
cloud.google.com/load-balancer-type: "Internal"

externalTrafficPolicy: Local
type: LoadBalancer

See Kubernetes Service Documentation to know more about the features of Service and
what LoadBalancer in the cloud platform supports.

If TiProxy is specified, tiproxy-api and tiproxy-sql services are also automatically
created for use.

4.1.4.2.14 IPv6 Support
Starting v6.5.1, TiDB supports using IPv6 addresses for all network connections. If you

deploy TiDB using TiDB Operator v1.4.3 or later versions, you can enable the TiDB cluster
to listen on IPv6 addresses by configuring spec.preferIPv6 to true.
spec:
preferIPv6: true
...

Warning:
This configuration can only be applied when deploying the TiDB cluster and
cannot be enabled on deployed clusters, as it may cause the cluster to become
unavailable.

67

https://kubernetes.io/docs/concepts/services-networking/service/

4.1.4.3 Configure high availability

Note:
TiDB Operator provides a custom scheduler that guarantees TiDB service
can tolerate host-level failures through the specified scheduling algorithm.
Currently, the TiDB cluster uses this scheduler as the default scheduler, which
is configured through the item spec.schedulerName. This section focuses on
configuring a TiDB cluster to tolerate failures at other levels such as rack,
zone, or region. This section is optional.

TiDB is a distributed database and its high availability must ensure that when any
physical topology node fails, not only the service is unaffected, but also the data is complete
and available. The two configurations of high availability are described separately as follows.

4.1.4.3.1 High availability of TiDB service
Use nodeSelector to schedule Pods
By configuring the nodeSelector field of each component, you can specify the specific

nodes that the component Pods are scheduled onto. For details on nodeSelector, refer to
nodeSelector.
apiVersion: pingcap.com/v1alpha1
kind: TidbCluster
...
spec:
pd:
nodeSelector:
node-role.kubernetes.io/pd: true

...
tikv:
nodeSelector:
node-role.kubernetes.io/tikv: true

...
tidb:
nodeSelector:
node-role.kubernetes.io/tidb: true

...

Use tolerations to schedule Pods
By configuring the tolerations field of each component, you can allow the component

Pods to schedule onto nodes with matching taints. For details on taints and tolerations,
refer to Taints and Tolerations.

68

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/reference/glossary/?all=true#term-taint
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

apiVersion: pingcap.com/v1alpha1
kind: TidbCluster
...
spec:
pd:
tolerations:
- effect: NoSchedule
key: dedicated
operator: Equal
value: pd

...
tikv:
tolerations:
- effect: NoSchedule
key: dedicated
operator: Equal
value: tikv

...
tidb:
tolerations:
- effect: NoSchedule
key: dedicated
operator: Equal
value: tidb

...

Use affinity to schedule Pods
By configuring PodAntiAffinity, you can avoid the situation in which different instances

of the same component are deployed on the same physical topology node. In this way,
disaster recovery (high availability) is achieved. For the user guide of Affinity, see Affinity
& AntiAffinity.

The following is an example of a typical service high availability setup:
affinity:
podAntiAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
this term works when the nodes have the label named region
- weight: 10
podAffinityTerm:
labelSelector:
matchLabels:
app.kubernetes.io/instance: ${cluster_name}
app.kubernetes.io/component: "pd"

topologyKey: "region"

69

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity

namespaces:
- ${namespace}

this term works when the nodes have the label named zone
- weight: 20
podAffinityTerm:
labelSelector:
matchLabels:
app.kubernetes.io/instance: ${cluster_name}
app.kubernetes.io/component: "pd"

topologyKey: "zone"
namespaces:
- ${namespace}

this term works when the nodes have the label named rack
- weight: 40
podAffinityTerm:
labelSelector:
matchLabels:
app.kubernetes.io/instance: ${cluster_name}
app.kubernetes.io/component: "pd"

topologyKey: "rack"
namespaces:
- ${namespace}

this term works when the nodes have the label named kubernetes.io/
↪→ hostname

- weight: 80
podAffinityTerm:
labelSelector:
matchLabels:
app.kubernetes.io/instance: ${cluster_name}
app.kubernetes.io/component: "pd"

topologyKey: "kubernetes.io/hostname"
namespaces:
- ${namespace}

Use topologySpreadConstraints to make pods evenly spread
By configuring topologySpreadConstraints, you can make pods evenly spread in dif-

ferent topologies. For instructions about configuring topologySpreadConstraints, see Pod
Topology Spread Constraints.

You can either configure topologySpreadConstraints at a cluster level (spec.
↪→ topologySpreadConstraints) for all components or at a component level (such as
spec.tidb.topologySpreadConstraints) for specific components.

The following is an example configuration:
topologySpreadConstraints:

70

https://kubernetes.io/docs/concepts/workloads/pods/pod-topology-spread-constraints/
https://kubernetes.io/docs/concepts/workloads/pods/pod-topology-spread-constraints/

- topologyKey: kubernetes.io/hostname
- topologyKey: topology.kubernetes.io/zone

The example configuration can make pods of the same component evenly spread on
different zones and nodes.

Currently, topologySpreadConstraints only supports the configuration of the
topologyKey field. In the pod spec, the above example configuration will be automatically
expanded as follows:
topologySpreadConstraints:
- topologyKey: kubernetes.io/hostname
maxSkew: 1
whenUnsatisfiable: DoNotSchedule
labelSelector: <object>

- topologyKey: topology.kubernetes.io/zone
maxSkew: 1
whenUnsatisfiable: DoNotSchedule
labelSelector: <object>

4.1.4.3.2 High availability of data
Before configuring the high availability of data, read Information Configuration of the

Cluster Typology which describes how high availability of TiDB cluster is implemented.
To add the data high availability feature on Kubernetes:

• Set the label collection of topological location for PD.
Replace the location-labels information in the pd.config with the label collection
that describes the topological location on the nodes in the Kubernetes cluster.

Note:
– For PD versions < v3.0.9, the / in the label name is not supported.
– If you configure host in the location-labels, TiDB Operator will

get the value from the kubernetes.io/hostname in the node label.

• Set the topological information of the Node where the TiKV node is located.
TiDB Operator automatically obtains the topological information of the Node for TiKV
and calls the PD interface to set this information as the information of TiKV’s store
labels. Based on this topological information, the TiDB cluster schedules the replicas
of the data.
If the Node of the current Kubernetes cluster does not have a label indicating the
topological location, or if the existing label name of topology contains /, you can
manually add a label to the Node by running the following command:

71

https://docs.pingcap.com/tidb/stable/schedule-replicas-by-topology-labels
https://docs.pingcap.com/tidb/stable/schedule-replicas-by-topology-labels

kubectl label node ${node_name} region=${region_name} zone=${zone_name}
↪→ rack=${rack_name} kubernetes.io/hostname=${host_name}

In the command above, region, zone, rack, and kubernetes.io/hostname are just
examples. The name and number of the label to be added can be arbitrarily defined,
as long as it conforms to the specification and is consistent with the labels set by
location-labels in pd.config.

• Set the topological information of the Node where the TiDB node is located.
Since TiDB Operator v1.4.0, if the deployed TiDB version >= v6.3.0, TiDB Operator
automatically obtains the topological information of the Node for TiDB and calls the
corresponding interface of the TiDB server to set this information as TiDB’s labels.
Based on these labels, TiDB sends the Follower Read requests to the correct replicas.
Currently, TiDB Operator automatically sets the labels for the TiDB server correspond-
ing to the location-labels in pd.config. TiDB depends on the zone label to support
some features of Follower Read. TiDB Operator obtains the value of zone, failure
↪→ -domain.beta.kubernetes.io/zone, and topology.kubernetes.io/zone labels
as zone. TiDB Operator only sets labels of the node where the TiDB server is located
and ignores other labels.

• Set the topological information of the Node where the TiProxy node is located.
Starting from TiDB Operator v1.6.0, if the deployed TiProxy version >= v1.1.0, TiDB
Operator automatically obtains the topological information of the Node for TiProxy
and calls the corresponding interface of the TiProxy to set this information as TiProxy’s
labels. Based on these labels, TiProxy prioritizes forwarding requests to a local TiDB
server.
Currently, TiDB Operator automatically sets the labels for the TiProxy node cor-
responding to the location-labels in pd.config. TiProxy depends on the zone
label to forward requests to a local TiDB server. TiDB Operator obtains the value of
zone, failure-domain.beta.kubernetes.io/zone, and topology.kubernetes.io/
↪→ zone labels as zone. TiDB Operator only sets labels of the node where the TiProxy
is located and ignores other labels.

Starting from v1.4.0, when setting labels for TiKV and TiDB nodes, TiDB Operator
supports setting shortened aliases for some labels provided by Kubernetes by default. In some
scenarios, using aliases can help optimize the scheduling performance of PD. When you use
TiDB Operator to set aliases for the location-labels of PD, if there are no corresponding
labels for a Kubernetes node, then TiDB Operator uses the original labels automatically.

Currently, TiDB Operator supports the following label aliases:

• region: corresponds to topology.kubernetes.io/region and failure-domain.
↪→ beta.kubernetes.io/region.

72

https://docs.pingcap.com/tidb/stable/follower-read

• zone: corresponds to topology.kubernetes.io/zone and failure-domain.beta.
↪→ kubernetes.io/zone.

• host: corresponds to kubernetes.io/hostname.

For example, if labels such as region, zone, and host are not set on each node of
Kubernetes, setting the location-labels of PD as ["topology.kubernetes.io/region",
↪→ "topology.kubernetes.io/zone", "kubernetes.io/hostname"] is the same as ["
↪→ region", "zone", "host"].

4.1.5 Deploy TiDB on General Kubernetes

This document describes how to deploy a TiDB cluster on general Kubernetes.

4.1.5.1 Prerequisites

• Meet prerequisites.
• Complete deploying TiDB Operator.
• Configure the TiDB cluster

4.1.5.2 Deploy the TiDB cluster

1. Create Namespace:
kubectl create namespace ${namespace}

Note:
A namespace is a virtual cluster backed by the same physical cluster.
You can give it a name that is easy to memorize, such as the same name
as cluster_name.

2. Deploy the TiDB cluster:
kubectl apply -f ${cluster_name} -n ${namespace}

Note:
It is recommended to organize configurations for a TiDB cluster under
a directory of cluster_name and save it as ${cluster_name}/tidb-
↪→ cluster.yaml.

73

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

If the server does not have an external network, you need to download the Docker
image used by the TiDB cluster on a machine with Internet access and upload it to
the server, and then use docker load to install the Docker image on the server.
To deploy a TiDB cluster, you need the following Docker images (assuming the version
of the TiDB cluster is v8.5.0):
pingcap/pd:v8.5.0
pingcap/tikv:v8.5.0
pingcap/tidb:v8.5.0
pingcap/ticdc:v8.5.0
pingcap/tiflash:v8.5.0
pingcap/tiproxy:latest
pingcap/tidb-monitor-reloader:v1.0.1
pingcap/tidb-monitor-initializer:v8.5.0
grafana/grafana:7.5.11
prom/prometheus:v2.18.1
busybox:1.26.2

Next, download all these images with the following command:
docker pull pingcap/pd:v8.5.0
docker pull pingcap/tikv:v8.5.0
docker pull pingcap/tidb:v8.5.0
docker pull pingcap/ticdc:v8.5.0
docker pull pingcap/tiflash:v8.5.0
docker pull pingcap/tiproxy:latest
docker pull pingcap/tidb-monitor-reloader:v1.0.1
docker pull pingcap/tidb-monitor-initializer:v8.5.0
docker pull grafana/grafana:7.5.11
docker pull prom/prometheus:v2.18.1
docker pull busybox:1.26.2

docker save -o pd-v8.5.0.tar pingcap/pd:v8.5.0
docker save -o tikv-v8.5.0.tar pingcap/tikv:v8.5.0
docker save -o tidb-v8.5.0.tar pingcap/tidb:v8.5.0
docker save -o ticdc-v8.5.0.tar pingcap/ticdc:v8.5.0
docker save -o tiproxy-latest.tar pingcap/tiproxy:latest
docker save -o tiflash-v8.5.0.tar pingcap/tiflash:v8.5.0
docker save -o tidb-monitor-reloader-v1.0.1.tar pingcap/tidb-monitor-

↪→ reloader:v1.0.1
docker save -o tidb-monitor-initializer-v8.5.0.tar pingcap/tidb-monitor

↪→ -initializer:v8.5.0
docker save -o grafana-6.0.1.tar grafana/grafana:7.5.11
docker save -o prometheus-v2.18.1.tar prom/prometheus:v2.18.1
docker save -o busybox-1.26.2.tar busybox:1.26.2

74

Next, upload these Docker images to the server, and execute docker load to install
these Docker images on the server:
docker load -i pd-v8.5.0.tar
docker load -i tikv-v8.5.0.tar
docker load -i tidb-v8.5.0.tar
docker load -i ticdc-v8.5.0.tar
docker load -i tiproxy-latest.tar
docker load -i tiflash-v8.5.0.tar
docker load -i tidb-monitor-reloader-v1.0.1.tar
docker load -i tidb-monitor-initializer-v8.5.0.tar
docker load -i grafana-6.0.1.tar
docker load -i prometheus-v2.18.1.tar
docker load -i busybox-1.26.2.tar

3. View the Pod status:
kubectl get po -n ${namespace} -l app.kubernetes.io/instance=${

↪→ cluster_name}

You can use TiDB Operator to deploy and manage multiple TiDB clusters in a single
Kubernetes cluster by repeating the above procedure and replacing cluster_name with a
different name.

Different clusters can be in the same or different namespace, which is based on your
actual needs.

Note:
If you need to deploy a TiDB cluster on ARM64 machines, refer to Deploy a
TiDB Cluster on ARM64 Machines.

4.1.5.3 Initialize the TiDB cluster
If you want to initialize your cluster after deployment, refer to Initialize a TiDB Cluster

on Kubernetes.

Note:
By default, TiDB (versions starting from v4.0.2 and released before February
20, 2023) periodically shares usage details with PingCAP to help understand

75

how to improve the product. For details about what is shared and how to
disable the sharing, see Telemetry. Starting from February 20, 2023, the
telemetry feature is disabled by default in newly released TiDB versions. See
TiDB Release Timeline for details.

4.1.5.4 Configure TiDB monitoring
For more information, see Deploy monitoring and alerts for a TiDB cluster.

Note:
TiDB monitoring does not persist data by default. To ensure long-term data
availability, it is recommended to persist monitoring data. TiDB monitoring
does not include Pod CPU, memory, or disk monitoring, nor does it have
an alerting system. For more comprehensive monitoring and alerting, it is
recommended to Set kube-prometheus and AlertManager.

4.1.5.5 Collect logs
System and application logs can be useful for troubleshooting issues and automating

operations. By default, TiDB components output logs to the container’s stdout and stderr,
and log rotation is automatically performed based on the container runtime environment.
When a Pod restarts, container logs will be lost. To prevent log loss, it is recommended to
Collect logs of TiDB and its related components.

4.1.6 Initialize a TiDB Cluster on Kubernetes

This document describes how to initialize a TiDB cluster on Kubernetes (K8s), specifi-
cally, how to configure the initial account and password and how to initialize the database
by executing SQL statements automatically in batch.

Note:

• After creating the TiDB cluster, if you manually change the password
of the root account, the initialization will fail.

• The following steps apply only when you have created a cluster for the
first time. Further configuration or modification after the initial cluster
creation is not valid.

76

https://docs.pingcap.com/tidb/stable/telemetry
https://docs.pingcap.com/tidb/stable/release-timeline

4.1.6.1 Configure TidbInitializer
Refer to TidbInitializer configuration example, API documentation, and the following

steps to complete TidbInitializer Custom Resource (CR), and save it to the ${cluster_name
↪→ }/tidb-initializer.yaml file. When referring to the TidbInitializer configuration ex-
ample and API documentation, you need to switch the branch to the TiDB Operator version
currently in use.

4.1.6.1.1 Set the cluster namespace and name
In the ${cluster_name}/tidb-initializer.yaml file, modify the spec.cluster.

↪→ namespace and spec.cluster.name fields:
...
spec:
...
cluster:
namespace: ${cluster_namespace}
name: ${cluster_name}

4.1.6.1.2 Set initial account and password
When a cluster is created, a default account root is created with no password. This

might cause security issues. You can set a password for the root account in the following
methods:

• Create a secret to specify the password for root:
kubectl create secret generic tidb-secret --from-literal=root=${

↪→ root_password} --namespace=${namespace}

• If you want to create more than one user, add the desired username and the password
in the above command. For example:
kubectl create secret generic tidb-secret --from-literal=root=${

↪→ root_password} --from-literal=developer=${developer_password} --
↪→ namespace=${namespace}

This command creates root and developer users with their passwords, which are saved
in the tidb-secret object. By default, the regular developer user is only granted
with the USAGE privilege. You can set other privileges in the initSql configuration
item.

4.1.6.2 Set a host that has access to TiDB
To set a host that has access to TiDB, modify the permitHost: ${mysql_client_host_name

↪→ } configuration item in ${cluster_name}/tidb-initializer.yaml. If it is not set, all
hosts have access to TiDB. For details, refer to Mysql GRANT host name.

77

https://github.com/pingcap/tidb-operator/blob/v1.6.1/manifests/initializer/tidb-initializer.yaml
https://github.com/pingcap/tidb-operator/blob/v1.6.1/docs/api-references/docs.md
https://kubernetes.io/docs/concepts/configuration/secret/
https://dev.mysql.com/doc/refman/5.7/en/grant.html

4.1.6.3 Initialize SQL statements in batch
The cluster can also automatically execute the SQL statements in batch in initSql

during the initialization. This function can be used to create some databases or tables for
the cluster and perform user privilege management operations.

For example, the following configuration automatically creates a database named app
after the cluster creation, and grants the developer account full management privileges on
app:
spec:
...
initSql: |-

CREATE DATABASE app;
GRANT ALL PRIVILEGES ON app.* TO 'developer'@'%';

Note:
Currently no verification has been implemented for initSql. You can create
accounts and set passwords in initSql, but it is not recommended to do so
because passwords created this way are saved as plaintext in the initializer
job object.

4.1.6.4 Initialize the cluster
kubectl apply -f ${cluster_name}/tidb-initializer.yaml --namespace=${

↪→ namespace}

The above command automatically creates an initialized Job. This Job tries to set the
initial password for the root account using the secret object provided. It also tries to create
other accounts and passwords, if they are specified.

After the initialization, the Pod state becomes Completed. If you log in via MySQL
client later, you need to specify the password created by the Job.

If the server does not have an external network, you need to download the Docker image
used for cluster initialization on a machine with an external network and upload it to the
server, and then use docker load to install the Docker image on the server.

The following Docker images are used to initialize a TiDB cluster:
tnir/mysqlclient:latest

Next, download all these images with the following command:
docker pull tnir/mysqlclient:latest
docker save -o mysqlclient-latest.tar tnir/mysqlclient:latest

78

Next, upload these Docker images to the server, and execute docker load to install
these Docker images on the server:
docker load -i mysqlclient-latest.tar

4.1.7 Access the TiDB Cluster

This document describes how to access the TiDB cluster.
You can configure Service with different types according to the scenarios, such as

ClusterIP, NodePort, LoadBalancer, etc., and use different access methods for different
types.

You can obtain TiDB Service information by running the following command:
kubectl get svc ${serviceName} -n ${namespace}

For example:
kubectl get svc basic-tidb -n default
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

↪→ AGE
basic-tidb NodePort 10.233.6.240 <none> 4000:32498/TCP,10080:30171/

↪→ TCP 61d

The above example describes the information of the basic-tidb service in the default
namespace. The type is NodePort, ClusterIP is 10.233.6.240, ServicePort is 4000 and
10080, and the corresponding NodePort is 32498 and 30171.

Note:
The default authentication plugin of MySQL 8.0 is updated from
mysql_native_password to caching_sha2_password. Therefore, if you use
MySQL client from MySQL 8.0 to access the TiDB service (TiDB version
earlier than v4.0.7), and if the user account has a password, you need to
explicitly specify the --default-auth=mysql_native_password parameter.

4.1.7.1 ClusterIP
ClusterIP exposes services through the internal IP of the cluster. When selecting this

type of service, you can only access it within the cluster by the following methods:

• ClusterIP + ServicePort
• Service domain name (${serviceName}.${namespace}) + ServicePort

79

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_authentication_plugin

4.1.7.2 NodePort
If there is no LoadBalancer, you can choose to expose the service through NodePort.

NodePort exposes services through the node’s IP and static port. You can access a NodePort
service from outside of the cluster by requesting NodeIP + NodePort.

To view the Node Port assigned by Service, run the following commands to obtain the
Service object of TiDB:
kubectl -n ${namespace} get svc ${cluster_name}-tidb -ojsonpath="{.spec.

↪→ ports[?(@.name=='mysql-client')].nodePort}{'\n'}"

To check you can access TiDB services by using the IP of what nodes, see the following
two cases:

• When externalTrafficPolicy is configured as Cluster, you can use the IP of any
node to access TiDB services.

• When externalTrafficPolicy is configured as Local, use the following commands
to get the nodes where the TiDB instance of a specified cluster is located:
kubectl -n ${namespace} get pods -l "app.kubernetes.io/component=tidb,

↪→ app.kubernetes.io/instance=${cluster_name}" -ojsonpath="{range .
↪→ items[*]}{.spec.nodeName}{'\n'}{end}"

4.1.7.3 LoadBalancer
If the TiDB cluster runs in an environment with LoadBalancer, such as on Google Cloud

or AWS, it is recommended to use the LoadBalancer feature of these cloud platforms by
setting tidb.service.type=LoadBalancer.

To access TiDB Service through LoadBalancer, refer to EKS and GKE.
See Kubernetes Service Documentation to know more about the features of Service and

what LoadBalancer in the cloud platform supports.

4.2 On Public Cloud Kubernetes

4.2.1 Deploy TiDB on AWS EKS

This document describes how to deploy a TiDB cluster on AWS Elastic Kubernetes
Service (EKS).

To deploy TiDB Operator and the TiDB cluster in a self-managed Kubernetes environ-
ment, refer to Deploy TiDB Operator and Deploy TiDB on General Kubernetes.

80

https://kubernetes.io/docs/concepts/services-networking/service/

4.2.1.1 Prerequisites
Before deploying a TiDB cluster on AWS EKS, make sure the following requirements

are satisfied:

• Install Helm 3: used for deploying TiDB Operator.

• Complete all operations in Getting started with eksctl.
This guide includes the following contents:

– Install and configure awscli.
– Install and configure eksctl used for creating Kubernetes clusters.
– Install kubectl.

To verify whether AWS CLI is configured correctly, run the aws configure list com-
mand. If the output shows the values for access_key and secret_key, AWS CLI is config-
ured correctly. Otherwise, you need to re-configure AWS CLI.

Note:
The operations described in this document require at least the minimum
privileges needed by eksctl and the service privileges needed to create a
Linux bastion host.

4.2.1.2 Recommended instance types and storage

• Instance types: to gain better performance, the following is recommended:

– PD nodes: c7g.xlarge
– TiDB nodes: c7g.4xlarge
– TiKV or TiFlash nodes: m7g.4xlarge

• Storage: Because AWS supports the EBS gp3 volume type, it is recommended to use
EBS gp3. For gp3 provisioning, the following is recommended:

– TiKV: 400 MiB/s, 4000 IOPS
– TiFlash: 625 MiB/s, 6000 IOPS

• AMI type: Amazon Linux 2

81

https://helm.sh/docs/intro/install/
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html
https://eksctl.io/usage/minimum-iam-policies/
https://eksctl.io/usage/minimum-iam-policies/
https://aws-quickstart.github.io/quickstart-linux-bastion/#_aws_account
https://aws-quickstart.github.io/quickstart-linux-bastion/#_aws_account
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/general-purpose.html#gp3-ebs-volume-type

4.2.1.3 Create an EKS cluster and a node pool
According to AWS Official Blog recommendation and EKS Best Practice Document,

since most of the TiDB cluster components use EBS volumes as storage, it is recommended
to create a node pool in each availability zone (at least 3 in total) for each component when
creating an EKS.

Save the following configuration as the cluster.yaml file. Replace ${clusterName}
with your desired cluster name. The cluster and node group names should match the regular
expression [a-zA-Z][-a-zA-Z0-9]*, so avoid names that contain _.
apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
metadata:
name: ${clusterName}
region: ap-northeast-1

addons:
- name: aws-ebs-csi-driver

nodeGroups:
- name: admin
desiredCapacity: 1
privateNetworking: true
labels:
dedicated: admin

iam:
withAddonPolicies:
ebs: true

- name: tidb-1a
desiredCapacity: 1
privateNetworking: true
availabilityZones: ["ap-northeast-1a"]
instanceType: c5.2xlarge
labels:
dedicated: tidb

taints:
dedicated: tidb:NoSchedule

iam:
withAddonPolicies:
ebs: true

- name: tidb-1d
desiredCapacity: 0
privateNetworking: true
availabilityZones: ["ap-northeast-1d"]
instanceType: c5.2xlarge
labels:
dedicated: tidb

82

https://aws.amazon.com/blogs/containers/amazon-eks-cluster-multi-zone-auto-scaling-groups/
https://aws.github.io/aws-eks-best-practices/reliability/docs/dataplane/#ensure-capacity-in-each-az-when-using-ebs-volumes

taints:
dedicated: tidb:NoSchedule

iam:
withAddonPolicies:
ebs: true

- name: tidb-1c
desiredCapacity: 1
privateNetworking: true
availabilityZones: ["ap-northeast-1c"]
instanceType: c5.2xlarge
labels:
dedicated: tidb

taints:
dedicated: tidb:NoSchedule

iam:
withAddonPolicies:
ebs: true

- name: pd-1a
desiredCapacity: 1
privateNetworking: true
availabilityZones: ["ap-northeast-1a"]
instanceType: c7g.xlarge
labels:
dedicated: pd

taints:
dedicated: pd:NoSchedule

iam:
withAddonPolicies:
ebs: true

- name: pd-1d
desiredCapacity: 1
privateNetworking: true
availabilityZones: ["ap-northeast-1d"]
instanceType: c7g.xlarge
labels:
dedicated: pd

taints:
dedicated: pd:NoSchedule

iam:
withAddonPolicies:
ebs: true

- name: pd-1c
desiredCapacity: 1
privateNetworking: true
availabilityZones: ["ap-northeast-1c"]

83

instanceType: c7g.xlarge
labels:
dedicated: pd

taints:
dedicated: pd:NoSchedule

iam:
withAddonPolicies:
ebs: true

- name: tikv-1a
desiredCapacity: 1
privateNetworking: true
availabilityZones: ["ap-northeast-1a"]
instanceType: r5b.2xlarge
labels:
dedicated: tikv

taints:
dedicated: tikv:NoSchedule

iam:
withAddonPolicies:
ebs: true

- name: tikv-1d
desiredCapacity: 1
privateNetworking: true
availabilityZones: ["ap-northeast-1d"]
instanceType: r5b.2xlarge
labels:
dedicated: tikv

taints:
dedicated: tikv:NoSchedule

iam:
withAddonPolicies:
ebs: true

- name: tikv-1c
desiredCapacity: 1
privateNetworking: true
availabilityZones: ["ap-northeast-1c"]
instanceType: r5b.2xlarge
labels:
dedicated: tikv

taints:
dedicated: tikv:NoSchedule

iam:
withAddonPolicies:
ebs: true

84

By default, only two TiDB nodes are required, so you can set the desiredCapacity of
the tidb-1d node group to 0. You can scale out this node group any time if necessary.

Execute the following command to create the cluster:
eksctl create cluster -f cluster.yaml

After executing the command above, you need to wait until the EKS cluster is successfully
created and the node group is created and added in the EKS cluster. This process might
take 5 to 20 minutes. For more cluster configuration, refer to eksctl documentation.

Warning:
If the Regional Auto Scaling Group (ASG) is used:

• Enable the instance scale-in protection for all the EC2s that have been
started. The instance scale-in protection for the ASG is not required.

• Set termination policy to NewestInstance for the ASG.

4.2.1.4 Configure StorageClass
This section describes how to configure the storage class for different storage types. These

storage types are:

• The default gp2 storage type after creating the EKS cluster.
• The gp3 storage type (recommended) or other EBS storage types.
• The local storage used for testing bare-metal performance.

4.2.1.4.1 Configure gp2

note:
Starting from EKS Kubernetes 1.23, you need to deploy the EBS CSI driver
before using the default gp2 storage class. For details, refer to the notice for
Amazon EKS Kubernetes 1.23.

After you create an EKS cluster, the default StorageClass is gp2. To improve I/O write
performance, it is recommended to configure nodelalloc and noatime in the mountOptions
field of the StorageClass resource.

85

https://eksctl.io/usage/creating-and-managing-clusters/#using-config-files
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-instance-termination.html#instance-protection-instance
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-instance-termination.html#custom-termination-policy
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html#kubernetes-1.23
https://docs.aws.amazon.com/eks/latest/userguide/kubernetes-versions.html#kubernetes-1.23

kind: StorageClass
apiVersion: storage.k8s.io/v1
...
mountOptions:
- nodelalloc
- noatime

For more information on the mount options, see TiDB Environment and System Config-
uration Check.

4.2.1.4.2 Configure gp3 (recommended) or other EBS storage types
If you do not want to use the default gp2 storage type, you can create StorageClass for

other storage types. For example, you can use the gp3 (recommended) or io1 storage type.
The following example shows how to create and configure a StorageClass for the gp3

storage type:

1. Deploy the AWS EBS Container Storage Interface (CSI) driver on the EKS cluster. If
you are using a storage type other than gp3, skip this step.

2. Set ebs-csi-node toleration.
kubectl patch -n kube-system ds ebs-csi-node -p '{"spec":{"template":{"

↪→ spec":{"tolerations":[{"operator":"Exists"}]}}}}'

Expected output:
daemonset.apps/ebs-csi-node patched

3. Create a StorageClass resource. In the resource definition, specify your desired stor-
age type in the parameters.type field.
kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
name: gp3

provisioner: ebs.csi.aws.com
allowVolumeExpansion: true
volumeBindingMode: WaitForFirstConsumer
parameters:
type: gp3
fsType: ext4
iops: "4000"
throughput: "400"

mountOptions:

86

https://docs.pingcap.com/tidb/stable/check-before-deployment#mount-the-data-disk-ext4-filesystem-with-options-on-the-target-machines-that-deploy-tikv
https://docs.pingcap.com/tidb/stable/check-before-deployment#mount-the-data-disk-ext4-filesystem-with-options-on-the-target-machines-that-deploy-tikv
https://docs.aws.amazon.com/eks/latest/userguide/ebs-csi.html

- nodelalloc
- noatime

4. In the TidbCluster YAML file, configure gp3 in the storageClassName field. For
example:
spec:
tikv:
...
storageClassName: gp3

5. To improve I/O write performance, it is recommended to configure nodelalloc and
noatime in the mountOptions field of the StorageClass resource.
kind: StorageClass
apiVersion: storage.k8s.io/v1
...
mountOptions:
- nodelalloc
- noatime

For more information on the mount options, see TiDB Environment and System Con-
figuration Check.

For more information on the EBS storage types and configuration, refer to Amazon EBS
volume types and Storage Classes.

4.2.1.4.3 Configure local storage
Local storage is used for testing bare-metal performance. For higher IOPS and lower

latency, you can choose NVMe SSD volumes offered by some AWS instances for the TiKV
node pool. However, for the production environment, use AWS EBS as your storage type.

Note:

• You cannot dynamically change StorageClass for a running TiDB clus-
ter. For testing purposes, create a new TiDB cluster with the desired
StorageClass.

• EKS upgrade or other reasons might cause node reconstruction. In such
cases, data in the local storage might be lost. To avoid data loss, you
need to back up TiKV data before node reconstruction.

• To avoid data loss from node reconstruction, you can refer to AWS
documentation and disable the ReplaceUnhealthy feature of the TiKV
node group.

87

https://docs.pingcap.com/tidb/stable/check-before-deployment#mount-the-data-disk-ext4-filesystem-with-options-on-the-target-machines-that-deploy-tikv
https://docs.pingcap.com/tidb/stable/check-before-deployment#mount-the-data-disk-ext4-filesystem-with-options-on-the-target-machines-that-deploy-tikv
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ssd-instance-store.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html#instance-store-lifetime
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-suspend-resume-processes.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-suspend-resume-processes.html

For instance types that provide NVMe SSD volumes, check out Amazon EC2 Instance
Types.

The following c5d.4xlarge example shows how to configure StorageClass for the local
storage:

1. Create a node group with local storage for TiKV.

1. In the eksctl configuration file, modify the instance type of the TiKV node group
to c5d.4xlarge:
- name: tikv-1a
desiredCapacity: 1
privateNetworking: true
availabilityZones: ["ap-northeast-1a"]
instanceType: c5d.4xlarge
labels:
dedicated: tikv

taints:
dedicated: tikv:NoSchedule

iam:
withAddonPolicies:
ebs: true

...

2. Create a node group with local storage:
eksctl create nodegroups -f cluster.yaml

If the TiKV node group already exists, to avoid name conflict, you can take either of
the following actions:

• Delete the old group and create a new one.
• Change the group name.

2. Deploy local volume provisioner.

1. To conveniently discover and manage local storage volumes, install local-volume-
provisioner.

2. Mount the local storage to the /mnt/ssd directory.
3. According to the mounting configuration, modify the local-volume-provisioner.yaml

file.
4. Deploy and create a local-storage storage class using the modified local-

↪→ volume-provisioner.yaml file.
kubectl apply -f <local-volume-provisioner.yaml>

88

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://github.com/kubernetes-sigs/sig-storage-local-static-provisioner
https://github.com/kubernetes-sigs/sig-storage-local-static-provisioner
https://github.com/kubernetes-sigs/sig-storage-local-static-provisioner/blob/master/docs/operations.md#use-a-whole-disk-as-a-filesystem-pv
https://raw.githubusercontent.com/pingcap/tidb-operator/v1.6.1/manifests/eks/local-volume-provisioner.yaml

3. Use the local storage.
After you complete the previous step, local-volume-provisioner can discover all the
local NVMe SSD volumes in the cluster.

After local-volume-provisioner discovers the local volumes, when you Deploy a TiDB
cluster and the monitoring component, you need to add the tikv.storageClassName field
to tidb-cluster.yaml and set the field value to local-storage.

4.2.1.5 Deploy TiDB Operator
To deploy TiDB Operator in the EKS cluster, refer to the Deploy TiDB Operator section

in Getting Started.

4.2.1.6 Deploy a TiDB cluster and the monitoring component
This section describes how to deploy a TiDB cluster and its monitoring component in

AWS EKS.

4.2.1.6.1 Create namespace
To create a namespace to deploy the TiDB cluster, run the following command:

kubectl create namespace tidb-cluster

Note:
A namespace is a virtual cluster backed by the same physical cluster. This
document takes tidb-cluster as an example. If you want to use another
namespace, modify the corresponding arguments of -n or --namespace.

4.2.1.6.2 Deploy
First, download the sample TidbCluster and TidbMonitor configuration files:

curl -O https://raw.githubusercontent.com/pingcap/tidb-operator/v1.6.1/
↪→ examples/aws/tidb-cluster.yaml && \

curl -O https://raw.githubusercontent.com/pingcap/tidb-operator/v1.6.1/
↪→ examples/aws/tidb-monitor.yaml && \

curl -O https://raw.githubusercontent.com/pingcap/tidb-operator/v1.6.1/
↪→ examples/aws/tidb-dashboard.yaml

Refer to configure the TiDB cluster to further customize and configure the CR before
applying.

89

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

Note:
By default, the configuration in tidb-cluster.yaml sets up the LoadBal-
ancer for TiDB with the “internal” scheme. This means that the LoadBal-
ancer is only accessible within the VPC, not externally. To access TiDB over
the MySQL protocol, you need to use a bastion host or use kubectl port
↪→ -forward. If you want to expose TiDB over the internet and if you are
aware of the risks of doing this, you can change the scheme for the LoadBal-
ancer from “internal” to “internet-facing” in the tidb-cluster.yaml file.

To deploy the TidbCluster and TidbMonitor CR in the EKS cluster, run the following
command:
kubectl apply -f tidb-cluster.yaml -n tidb-cluster && \
kubectl apply -f tidb-monitor.yaml -n tidb-cluster

After the YAML file above is applied to the Kubernetes cluster, TiDB Operator creates
the desired TiDB cluster and its monitoring component according to the YAML file.

Note:
If you need to deploy a TiDB cluster on ARM64 machines, refer to Deploy a
TiDB Cluster on ARM64 Machines.

4.2.1.6.3 View the cluster status
To view the status of the starting TiDB cluster, run the following command:

kubectl get pods -n tidb-cluster

When all the Pods are in the Running or Ready state, the TiDB cluster is successfully
started. For example:
NAME READY STATUS RESTARTS AGE
tidb-discovery-5cb8474d89-n8cxk 1/1 Running 0 47h
tidb-monitor-6fbcc68669-dsjlc 3/3 Running 0 47h
tidb-pd-0 1/1 Running 0 47h
tidb-pd-1 1/1 Running 0 46h
tidb-pd-2 1/1 Running 0 46h
tidb-tidb-0 2/2 Running 0 47h
tidb-tidb-1 2/2 Running 0 46h

90

tidb-tikv-0 1/1 Running 0 47h
tidb-tikv-1 1/1 Running 0 47h
tidb-tikv-2 1/1 Running 0 47h

4.2.1.7 Access the database
After you have deployed a TiDB cluster, you can access the TiDB database to test or

develop your application.

4.2.1.7.1 Prepare a bastion host
The LoadBalancer created for your TiDB cluster is an intranet LoadBalancer. You can

create a bastion host in the cluster VPC to access the database. To create a bastion host on
AWS console, refer to AWS documentation.

Select the cluster’s VPC and Subnet, and verify whether the cluster name is correct in
the dropdown box. You can view the cluster’s VPC and Subnet by running the following
command:
eksctl get cluster -n ${clusterName}

Allow the bastion host to access the Internet. Select the correct key pair so that you can
log in to the host via SSH.

Note:
In addition to the bastion host, you can also connect an existing host to the
cluster VPC by VPC Peering. If the EKS cluster is created in an existing
VPC, you can use the host in the VPC.

4.2.1.7.2 Install the MySQL client and connect
After the bastion host is created, you can connect to the bastion host via SSH and access

the TiDB cluster via the MySQL client.

1. Log in to the bastion host via SSH:
ssh [-i /path/to/your/private-key.pem] ec2-user@<bastion-public-dns-

↪→ name>

2. Install the MySQL client on the bastion host:
sudo yum install mysql -y

91

https://aws.amazon.com/quickstart/architecture/linux-bastion/
https://aws.amazon.com/quickstart/architecture/linux-bastion/
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html

3. Connect the client to the TiDB cluster:
mysql --comments -h ${tidb-nlb-dnsname} -P 4000 -u root

${tidb-nlb-dnsname} is the LoadBalancer domain name of the TiDB service. You
can view the domain name in the EXTERNAL-IP field by executing kubectl get svc
↪→ basic-tidb -n tidb-cluster.
For example:
$ mysql --comments -h abfc623004ccb4cc3b363f3f37475af1-9774d22c27310bc1

↪→ .elb.us-west-2.amazonaws.com -P 4000 -u root
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MySQL connection id is 1189
Server version: 8.0.11-TiDB-v8.5.0 TiDB Server (Apache License 2.0)

↪→ Community Edition, MySQL 8.0 compatible

Copyright (c) 2000, 2022, Oracle and/or its affiliates.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
↪→ statement.

MySQL [(none)]> show status;
+--------------------+--------------------------------------+
| Variable_name | Value |
+--------------------+--------------------------------------+
Ssl_cipher	
Ssl_cipher_list	
Ssl_verify_mode	0
Ssl_version	
ddl_schema_version	22
server_id	ed4ba88b-436a-424d-9087-977e897cf5ec
+--------------------+--------------------------------------+
6 rows in set (0.00 sec)

Note:

• The default authentication plugin of MySQL 8.0 is updated from
mysql_native_password to caching_sha2_password. Therefore, if you
use MySQL client from MySQL 8.0 to access the TiDB service (cluster
version < v4.0.7), and if the user account has a password, you need to
explicitly specify the --default-auth=mysql_native_password param-
eter.

92

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_authentication_plugin

• By default, TiDB (versions starting from v4.0.2 and released before
February 20, 2023) periodically shares usage details with PingCAP to
help understand how to improve the product. For details about what
is shared and how to disable the sharing, see Telemetry. Starting from
February 20, 2023, the telemetry feature is disabled by default in newly
released TiDB versions. See TiDB Release Timeline for details.

4.2.1.8 Access the Grafana monitoring dashboard
Obtain the LoadBalancer domain name of Grafana:

kubectl -n tidb-cluster get svc basic-grafana

For example:
$ kubectl get svc basic-grafana
NAME TYPE CLUSTER-IP EXTERNAL-IP

↪→ PORT(S) AGE
basic-grafana LoadBalancer 10.100.199.42 a806cfe84c12a4831aa3313e792e3eed

↪→ -1964630135.us-west-2.elb.amazonaws.com 3000:30761/TCP 121m

In the output above, the EXTERNAL-IP column is the LoadBalancer domain name.
You can access the ${grafana-lb}:3000 address using your web browser to view moni-

toring metrics. Replace ${grafana-lb} with the LoadBalancer domain name.

Note:
The default Grafana username and password are both admin.

4.2.1.9 Access the TiDB Dashboard
See Access TiDB Dashboard for instructions about how to securely allow access to the

TiDB Dashboard.

4.2.1.10 Upgrade
To upgrade the TiDB cluster, execute the following command:

kubectl patch tc basic -n tidb-cluster --type merge -p '{"spec":{"version":"
↪→ ${version}"}}`.

The upgrade process does not finish immediately. You can watch the upgrade progress
by executing kubectl get pods -n tidb-cluster --watch.

93

https://docs.pingcap.com/tidb/stable/telemetry
https://docs.pingcap.com/tidb/stable/release-timeline

4.2.1.11 Scale out
Before scaling out the cluster, you need to scale out the corresponding node group so

that the new instances have enough resources for operation.
This section describes how to scale out the EKS node group and TiDB components.

4.2.1.11.1 Scale out EKS node group
When scaling out TiKV, the node groups must be scaled out evenly among the different

availability zones. The following example shows how to scale out the tikv-1a, tikv-1c, and
tikv-1d groups of the ${clusterName} cluster to 2 nodes:
eksctl scale nodegroup --cluster ${clusterName} --name tikv-1a --nodes 2 --

↪→ nodes-min 2 --nodes-max 2
eksctl scale nodegroup --cluster ${clusterName} --name tikv-1c --nodes 2 --

↪→ nodes-min 2 --nodes-max 2
eksctl scale nodegroup --cluster ${clusterName} --name tikv-1d --nodes 2 --

↪→ nodes-min 2 --nodes-max 2

For more information on managing node groups, refer to eksctl documentation.

4.2.1.11.2 Scale out TiDB components
After scaling out the EKS node group, execute kubectl edit tc basic -n tidb-

↪→ cluster, and modify each component’s replicas to the desired number of replicas.
The scaling-out process is then completed.

4.2.1.12 Deploy TiFlash/TiCDC
TiFlash is the columnar storage extension of TiKV.
TiCDC is a tool for replicating the incremental data of TiDB by pulling TiKV change

logs.
The two components are not required in the deployment. This section shows a quick

start example.

4.2.1.12.1 Add node groups
In the configuration file of eksctl (cluster.yaml), add the following two items to add a

node group for TiFlash/TiCDC respectively. desiredCapacity is the number of nodes you
desire.
- name: tiflash-1a
desiredCapacity: 1
privateNetworking: true
availabilityZones: ["ap-northeast-1a"]
labels:

94

https://eksctl.io/usage/nodegroups/
https://docs.pingcap.com/tidb/stable/tiflash-overview
https://docs.pingcap.com/tidb/stable/ticdc-overview

dedicated: tiflash
taints:
dedicated: tiflash:NoSchedule

iam:
withAddonPolicies:
ebs: true

- name: tiflash-1d
desiredCapacity: 1
privateNetworking: true
availabilityZones: ["ap-northeast-1d"]
labels:
dedicated: tiflash

taints:
dedicated: tiflash:NoSchedule

iam:
withAddonPolicies:
ebs: true

- name: tiflash-1c
desiredCapacity: 1
privateNetworking: true
availabilityZones: ["ap-northeast-1c"]
labels:
dedicated: tiflash

taints:
dedicated: tiflash:NoSchedule

iam:
withAddonPolicies:
ebs: true

- name: ticdc-1a
desiredCapacity: 1
privateNetworking: true
availabilityZones: ["ap-northeast-1a"]
labels:
dedicated: ticdc

taints:
dedicated: ticdc:NoSchedule

iam:
withAddonPolicies:
ebs: true

- name: ticdc-1d
desiredCapacity: 1
privateNetworking: true
availabilityZones: ["ap-northeast-1d"]
labels:
dedicated: ticdc

95

taints:
dedicated: ticdc:NoSchedule

iam:
withAddonPolicies:
ebs: true

- name: ticdc-1c
desiredCapacity: 1
privateNetworking: true
availabilityZones: ["ap-northeast-1c"]
labels:
dedicated: ticdc

taints:
dedicated: ticdc:NoSchedule

iam:
withAddonPolicies:
ebs: true

Depending on the EKS cluster status, use different commands:

• If the cluster is not created, execute eksctl create cluster -f cluster.yaml to
create the cluster and node groups.

• If the cluster is already created, execute eksctl create nodegroup -f cluster.
↪→ yaml to create the node groups. The existing node groups are ignored and will
not be created again.

4.2.1.12.2 Configure and deploy

• To deploy TiFlash, configure spec.tiflash in tidb-cluster.yaml:
spec:
...
tiflash:
baseImage: pingcap/tiflash
maxFailoverCount: 0
replicas: 1
storageClaims:
- resources:

requests:
storage: 100Gi

tolerations:
- effect: NoSchedule
key: dedicated
operator: Equal
value: tiflash

96

For other parameters, refer to Configure a TiDB Cluster.

Warning:
TiDB Operator automatically mount PVs in the order of the config-
uration in the storageClaims list. Therefore, if you need to add disks
for TiFlash, make sure that you add the disks only to the end of the
original configuration in the list. In addition, you must not alter the
order of the original configuration.

• To deploy TiCDC, configure spec.ticdc in tidb-cluster.yaml:
spec:
...
ticdc:
baseImage: pingcap/ticdc
replicas: 1
tolerations:
- effect: NoSchedule
key: dedicated
operator: Equal
value: ticdc

Modify replicas according to your needs.

Finally, execute kubectl -n tidb-cluster apply -f tidb-cluster.yaml to update
the TiDB cluster configuration.

For detailed CR configuration, refer to API references and Configure a TiDB Cluster.

4.2.1.13 Configure TiDB monitoring
For more information, see Deploy monitoring and alerts for a TiDB cluster.

Note:
TiDB monitoring does not persist data by default. To ensure long-term data
availability, it is recommended to persist monitoring data. TiDB monitoring
does not include Pod CPU, memory, or disk monitoring, nor does it have
an alerting system. For more comprehensive monitoring and alerting, it is
recommended to Set kube-prometheus and AlertManager.

97

https://github.com/pingcap/tidb-operator/blob/v1.6.1/docs/api-references/docs.md

4.2.1.14 Collect logs
System and application logs can be useful for troubleshooting issues and automating

operations. By default, TiDB components output logs to the container’s stdout and stderr,
and log rotation is automatically performed based on the container runtime environment.
When a Pod restarts, container logs will be lost. To prevent log loss, it is recommended to
Collect logs of TiDB and its related components.

4.2.2 Deploy TiDB on Google Cloud GKE

This document describes how to deploy a Google Kubernetes Engine (GKE) cluster and
deploy a TiDB cluster on GKE.

To deploy TiDB Operator and the TiDB cluster in a self-managed Kubernetes environ-
ment, refer to Deploy TiDB Operator and Deploy TiDB on General Kubernetes.

4.2.2.1 Prerequisites
Before deploying a TiDB cluster on GKE, make sure the following requirements are

satisfied:

• Install Helm 3: used for deploying TiDB Operator.

• Install gcloud: a command-line tool used for creating and managing Google Cloud
services.

• Complete the operations in the Before you begin section of GKE Quickstart.
This guide includes the following contents:

– Enable Kubernetes APIs
– Configure enough quota

4.2.2.2 Recommended instance types and storage

• Instance types: to gain better performance, the following is recommended:
– PD nodes: n2-standard-4
– TiDB nodes: n2-standard-16
– TiKV or TiFlash nodes: n2-standard-16

• Storage: For TiKV or TiFlash, it is recommended to use pd-ssd disk type.

4.2.2.3 Configure the Google Cloud service
Configure your Google Cloud project and default region:

gcloud config set core/project <google-cloud-project>
gcloud config set compute/region <google-cloud-region>

98

https://helm.sh/docs/intro/install/
https://cloud.google.com/sdk/gcloud
https://cloud.google.com/kubernetes-engine/docs/quickstart#before-you-begin
https://cloud.google.com/compute/docs/disks/performance#type_comparison

4.2.2.4 Create a GKE cluster and node pool

1. Create a GKE cluster and a default node pool:
gcloud container clusters create tidb --region us-east1 --machine-type

↪→ n1-standard-4 --num-nodes=1

• The command above creates a regional cluster.
• The --num-nodes=1 option indicates that one node is created in each zone. So if

there are three zones in the region, there are three nodes in total, which ensures
high availability.

• It is recommended to use regional clusters in production environments. For other
types of clusters, refer to Types of GKE clusters.

• The command above creates a cluster in the default network. If you want to
specify a network, use the --network/subnet option. For more information,
refer to Creating a regional cluster.

2. Create separate node pools for PD, TiKV, and TiDB:
gcloud container node-pools create pd --cluster tidb --machine-type n2-

↪→ standard-4 --num-nodes=1 \
--node-labels=dedicated=pd --node-taints=dedicated=pd:NoSchedule

gcloud container node-pools create tikv --cluster tidb --machine-type
↪→ n2-highmem-8 --num-nodes=1 \
--node-labels=dedicated=tikv --node-taints=dedicated=tikv:

↪→ NoSchedule
gcloud container node-pools create tidb --cluster tidb --machine-type

↪→ n2-standard-8 --num-nodes=1 \
--node-labels=dedicated=tidb --node-taints=dedicated=tidb:

↪→ NoSchedule

The process might take a few minutes.

4.2.2.5 Configure StorageClass
After the GKE cluster is created, the cluster contains three StorageClasses of different

disk types.

• standard: pd-standard disk type (default)
• standard-rwo: pd-balanced disk type
• premium-rwo: pd-ssd disk type (recommended)

To improve I/O write performance, it is recommended to configure nodelalloc and
noatime in the mountOptions field of the StorageClass resource. For details, see TiDB
Environment and System Configuration Check.

It is recommended to use the default pd-ssd storage class premium-rwo or to set up a
customized storage class:

99

https://cloud.google.com/kubernetes-engine/docs/concepts/types-of-clusters
https://cloud.google.com/kubernetes-engine/docs/how-to/creating-a-regional-cluster
https://docs.pingcap.com/tidb/stable/check-before-deployment#mount-the-data-disk-ext4-filesystem-with-options-on-the-target-machines-that-deploy-tikv
https://docs.pingcap.com/tidb/stable/check-before-deployment#mount-the-data-disk-ext4-filesystem-with-options-on-the-target-machines-that-deploy-tikv

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
name: pd-custom

provisioner: kubernetes.io/gce-pd
volumeBindingMode: WaitForFirstConsumer
allowVolumeExpansion: true
parameters:
type: pd-ssd

mountOptions:
- nodelalloc
- noatime

Note:
Configuring nodelalloc and noatime is not supported for the default disk
type pd-standard.

4.2.2.5.1 Use local storage
For the production environment, use zonal persistent disks.
If you need to simulate bare-metal performance, some Google Cloud instance types

provide additional local store volumes. You can choose such instances for the TiKV node
pool to achieve higher IOPS and lower latency.

Note:
You cannot dynamically change StorageClass for a running TiDB cluster. For
testing purposes, create a new TiDB cluster with the desired StorageClass.
GKE upgrade might cause node reconstruction. In such cases, data in the
local storage might be lost. To avoid data loss, you need to back up TiKV
data before node reconstruction. It is thus not recommended to use local
disks in the production environment.

1. Create a node pool with local storage for TiKV:
gcloud container node-pools create tikv --cluster tidb --machine-type

↪→ n2-highmem-8 --num-nodes=1 --local-ssd-count 1 \
--node-labels dedicated=tikv --node-taints dedicated=tikv:NoSchedule

100

https://cloud.google.com/compute/docs/disks#pdspecs
https://cloud.google.com/kubernetes-engine/docs/how-to/persistent-volumes/local-ssd
https://cloud.google.com/kubernetes-engine/docs/how-to/persistent-volumes/local-ssd
https://cloud.google.com/kubernetes-engine/docs/how-to/persistent-volumes/local-ssd

If the TiKV node pool already exists, you can either delete the old pool and then create
a new one, or change the pool name to avoid conflict.

2. Deploy the local volume provisioner.
You need to use the local-volume-provisioner to discover and manage the local storage.
Executing the following command deploys and creates a local-storage storage class:
kubectl apply -f https://raw.githubusercontent.com/pingcap/tidb-

↪→ operator/v1.6.1/manifests/gke/local-ssd-provision/local-ssd-
↪→ provision.yaml

3. Use the local storage.
After the steps above, the local volume provisioner can discover all the local NVMe
SSD disks in the cluster.
Modify tikv.storageClassName in the tidb-cluster.yaml file to local-storage.

4.2.2.6 Deploy TiDB Operator
To deploy TiDB Operator on GKE, refer to deploy TiDB Operator.

4.2.2.7 Deploy a TiDB cluster and the monitoring component
This section describes how to deploy a TiDB cluster and its monitoring component on

GKE.

4.2.2.7.1 Create namespace
To create a namespace to deploy the TiDB cluster, run the following command:

kubectl create namespace tidb-cluster

Note:
A namespace is a virtual cluster backed by the same physical cluster. This
document takes tidb-cluster as an example. If you want to use other
namespace, modify the corresponding arguments of -n or --namespace.

4.2.2.7.2 Deploy
First, download the sample TidbCluster and TidbMonitor configuration files:

101

https://sigs.k8s.io/sig-storage-local-static-provisioner
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

curl -O https://raw.githubusercontent.com/pingcap/tidb-operator/v1.6.1/
↪→ examples/gcp/tidb-cluster.yaml && \

curl -O https://raw.githubusercontent.com/pingcap/tidb-operator/v1.6.1/
↪→ examples/gcp/tidb-monitor.yaml && \

curl -O https://raw.githubusercontent.com/pingcap/tidb-operator/v1.6.1/
↪→ examples/gcp/tidb-dashboard.yaml

Refer to configure the TiDB cluster to further customize and configure the CR before
applying.

To deploy the TidbCluster and TidbMonitor CR in the GKE cluster, run the following
command:
kubectl create -f tidb-cluster.yaml -n tidb-cluster && \
kubectl create -f tidb-monitor.yaml -n tidb-cluster

After the yaml file above is applied to the Kubernetes cluster, TiDB Operator creates
the desired TiDB cluster and its monitoring component according to the yaml file.

Note:
If you need to deploy a TiDB cluster on ARM64 machines, refer to Deploy a
TiDB Cluster on ARM64 Machines.

4.2.2.7.3 View the cluster status
To view the status of the starting TiDB cluster, run the following command:

kubectl get pods -n tidb-cluster

When all the Pods are in the Running or Ready state, the TiDB cluster is successfully
started. For example:
NAME READY STATUS RESTARTS AGE
tidb-discovery-5cb8474d89-n8cxk 1/1 Running 0 47h
tidb-monitor-6fbcc68669-dsjlc 3/3 Running 0 47h
tidb-pd-0 1/1 Running 0 47h
tidb-pd-1 1/1 Running 0 46h
tidb-pd-2 1/1 Running 0 46h
tidb-tidb-0 2/2 Running 0 47h
tidb-tidb-1 2/2 Running 0 46h
tidb-tikv-0 1/1 Running 0 47h
tidb-tikv-1 1/1 Running 0 47h
tidb-tikv-2 1/1 Running 0 47h

102

4.2.2.8 Access the TiDB database
After you deploy a TiDB cluster, you can access the TiDB database via MySQL client.

4.2.2.8.1 Prepare a bastion host
The LoadBalancer created for your TiDB cluster is an intranet LoadBalancer. You can

create a bastion host in the cluster VPC to access the database.
gcloud compute instances create bastion \

--machine-type=n1-standard-4 \
--image-project=centos-cloud \
--image-family=centos-7 \
--zone=${your-region}-a

Note:
${your-region}-a is the a zone in the region of the cluster, such as us-
↪→ central1-a. You can also create the bastion host in other zones in the
same region.

4.2.2.8.2 Install the MySQL client and connect
After the bastion host is created, you can connect to the bastion host via SSH and access

the TiDB cluster via the MySQL client.

1. Connect to the bastion host via SSH:
gcloud compute ssh tidb@bastion

2. Install the MySQL client:
sudo yum install mysql -y

3. Connect the client to the TiDB cluster:
mysql --comments -h ${tidb-nlb-dnsname} -P 4000 -u root

${tidb-nlb-dnsname} is the LoadBalancer IP of the TiDB service. You can view the
IP in the EXTERNAL-IP field of the kubectl get svc basic-tidb -n tidb-cluster
execution result.
For example:

103

https://cloud.google.com/solutions/connecting-securely#bastion

$ mysql --comments -h 10.128.15.243 -P 4000 -u root
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MySQL connection id is 7823
Server version: 8.0.11-TiDB-v8.5.0 TiDB Server (Apache License 2.0)

↪→ Community Edition, MySQL 8.0 compatible

Copyright (c) 2000, 2022, Oracle and/or its affiliates.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
↪→ statement.

MySQL [(none)]> show status;
+--------------------+--------------------------------------+
| Variable_name | Value |
+--------------------+--------------------------------------+
Ssl_cipher	
Ssl_cipher_list	
Ssl_verify_mode	0
Ssl_version	
ddl_schema_version	22
server_id	717420dc-0eeb-4d4a-951d-0d393aff295a
+--------------------+--------------------------------------+
6 rows in set (0.01 sec)

Note:

• The default authentication plugin of MySQL 8.0 is updated from
mysql_native_password to caching_sha2_password. Therefore, if you
use MySQL client from MySQL 8.0 to access the TiDB service (TiDB
version < v4.0.7), and if the user account has a password, you need to
explicitly specify the --default-auth=mysql_native_password param-
eter.

• By default, TiDB (versions starting from v4.0.2 and released before
February 20, 2023) periodically shares usage details with PingCAP to
help understand how to improve the product. For details about what
is shared and how to disable the sharing, see Telemetry. Starting from
February 20, 2023, the telemetry feature is disabled by default in newly
released TiDB versions. See TiDB Release Timeline for details.

4.2.2.8.3 Access the Grafana monitoring dashboard

104

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_authentication_plugin
https://docs.pingcap.com/tidb/stable/telemetry
https://docs.pingcap.com/tidb/stable/release-timeline

Obtain the LoadBalancer IP of Grafana:
kubectl -n tidb-cluster get svc basic-grafana

For example:
$ kubectl -n tidb-cluster get svc basic-grafana
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

↪→ AGE
basic-grafana LoadBalancer 10.15.255.169 34.123.168.114 3000:30657/

↪→ TCP 35m

In the output above, the EXTERNAL-IP column is the LoadBalancer IP.
You can access the ${grafana-lb}:3000 address using your web browser to view moni-

toring metrics. Replace ${grafana-lb} with the LoadBalancer IP.

Note:
The default Grafana username and password are both admin.

4.2.2.8.4 Access TiDB Dashboard Web UI
Obtain the LoadBalancer domain name of TiDB Dashboard by running the following

command:
kubectl -n tidb-cluster get svc basic-tidb-dashboard-exposed

The following is an example:
$ kubectl -n tidb-cluster get svc basic-tidb-dashboard-exposed
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

↪→ AGE
basic-tidb-dashboard-exposed LoadBalancer 10.15.255.169

↪→ 34.123.168.114 12333:30657/TCP 35m

You can view monitoring metrics of TiDB Dashboard by visiting ${EXTERNAL-IP}:12333
using your web browser.

4.2.2.9 Upgrade
To upgrade the TiDB cluster, execute the following command:

kubectl patch tc basic -n tidb-cluster --type merge -p '{"spec":{"version":"
↪→ ${version}"}}`.

The upgrade process does not finish immediately. You can watch the upgrade progress
by executing kubectl get pods -n tidb-cluster --watch.

105

4.2.2.10 Scale out
Before scaling out the cluster, you need to scale out the corresponding node pool so that

the new instances have enough resources for operation.
This section describes how to scale out the EKS node group and TiDB components.

4.2.2.10.1 Scale out GKE node group
The following example shows how to scale out the tikv node pool of the tidb cluster to

6 nodes:
gcloud container clusters resize tidb --node-pool tikv --num-nodes 2

Note:
In the regional cluster, the nodes are created in 3 zones. Therefore, after
scaling out, the number of nodes is 2 * 3 = 6.

4.2.2.10.2 Scale out TiDB components
After that, execute kubectl edit tc basic -n tidb-cluster and modify each com-

ponent’s replicas to the desired number of replicas. The scaling-out process is then com-
pleted.

For more information on managing node pools, refer to GKE Node pools.

4.2.2.11 Deploy TiFlash and TiCDC
TiFlash is the columnar storage extension of TiKV.
TiCDC is a tool for replicating the incremental data of TiDB by pulling TiKV change

logs.
The two components are not required in the deployment. This section shows a quick

start example.

4.2.2.11.1 Create new node pools

• Create a node pool for TiFlash:
gcloud container node-pools create tiflash --cluster tidb --machine-

↪→ type n1-highmem-8 --num-nodes=1 \
--node-labels dedicated=tiflash --node-taints dedicated=tiflash:

↪→ NoSchedule

106

https://cloud.google.com/kubernetes-engine/docs/concepts/node-pools
https://docs.pingcap.com/tidb/stable/tiflash-overview
https://docs.pingcap.com/tidb/stable/ticdc-overview

• Create a node pool for TiCDC:
gcloud container node-pools create ticdc --cluster tidb --machine-type

↪→ n1-standard-4 --num-nodes=1 \
--node-labels dedicated=ticdc --node-taints dedicated=ticdc:

↪→ NoSchedule

4.2.2.11.2 Configure and deploy

• To deploy TiFlash, configure spec.tiflash in tidb-cluster.yaml. For example:
spec:
...
tiflash:
baseImage: pingcap/tiflash
maxFailoverCount: 0
replicas: 1
storageClaims:
- resources:

requests:
storage: 100Gi

nodeSelector:
dedicated: tiflash

tolerations:
- effect: NoSchedule
key: dedicated
operator: Equal
value: tiflash

To configure other parameters, refer to Configure a TiDB Cluster.

Warning:
TiDB Operator automatically mounts PVs in the order of the config-
uration in the storageClaims list. Therefore, if you need to add disks
for TiFlash, make sure that you add the disks only to the end of the
original configuration in the list. In addition, you must not alter the
order of the original configuration.

• To deploy TiCDC, configure spec.ticdc in tidb-cluster.yaml. For example:
spec:
...
ticdc:

107

baseImage: pingcap/ticdc
replicas: 1
nodeSelector:
dedicated: ticdc

tolerations:
- effect: NoSchedule
key: dedicated
operator: Equal
value: ticdc

Modify replicas according to your needs.

Finally, execute kubectl -n tidb-cluster apply -f tidb-cluster.yaml to update
the TiDB cluster configuration.

For detailed CR configuration, refer to API references and Configure a TiDB Cluster.

4.2.2.12 Configure TiDB monitoring
For more information, see Deploy monitoring and alerts for a TiDB cluster.

Note:
TiDB monitoring does not persist data by default. To ensure long-term data
availability, it is recommended to persist monitoring data. TiDB monitoring
does not include Pod CPU, memory, or disk monitoring, nor does it have
an alerting system. For more comprehensive monitoring and alerting, it is
recommended to Set kube-prometheus and AlertManager.

4.2.2.13 Collect logs
System and application logs can be useful for troubleshooting issues and automating

operations. By default, TiDB components output logs to the container’s stdout and stderr,
and log rotation is automatically performed based on the container runtime environment.
When a Pod restarts, container logs will be lost. To prevent log loss, it is recommended to
Collect logs of TiDB and its related components.

4.2.3 Deploy TiDB on Azure AKS

This document describes how to deploy a TiDB cluster on Azure Kubernetes Service
(AKS).

To deploy TiDB Operator and the TiDB cluster in a self-managed Kubernetes environ-
ment, refer to Deploy TiDB Operator and Deploy TiDB on General Kubernetes.

108

https://github.com/pingcap/tidb-operator/blob/v1.6.1/docs/api-references/docs.md

4.2.3.1 Prerequisites
Before deploying a TiDB cluster on Azure AKS, perform the following operations:

• Install Helm 3 for deploying TiDB Operator.

• Deploy a Kubernetes (AKS) cluster and install and configure az cli.

Note:
To verify whether AZ CLI is configured correctly, run the az login com-
mand. If login with account credentials succeeds, AZ CLI is configured
correctly. Otherwise, you need to re-configure AZ CLI.

• Refer to use Ultra disks to create a new cluster that can use Ultra disks or enable Ultra
disks in an exist cluster.

• Acquire AKS service permissions.

4.2.3.2 Create an AKS cluster and a node pool
Most of the TiDB cluster components use Azure disk as storage. According to AKS Best

Practices, when creating an AKS cluster, it is recommended to ensure that each node pool
uses one availability zone (at least 3 in total).

4.2.3.2.1 Create an AKS cluster with CSI enabled
To create an AKS cluster with CSI enabled, run the following command:

create AKS cluster
az aks create \

--resource-group ${resourceGroup} \
--name ${clusterName} \
--location ${location} \
--generate-ssh-keys \
--vm-set-type VirtualMachineScaleSets \
--load-balancer-sku standard \
--node-count 3 \
--zones 1 2 3

4.2.3.2.2 Create component node pools
After creating an AKS cluster, run the following commands to create component node

pools. Each node pool may take two to five minutes to create. It is recommended to enable
Ultra disks in the TiKV node pool. For more details about cluster configuration, refer to
az aks documentation and az aks nodepool documentation.

109

https://helm.sh/docs/intro/install/
https://docs.microsoft.com/en-us/azure/aks/tutorial-kubernetes-deploy-cluster
https://docs.microsoft.com/en-us/azure/aks/use-ultra-disks
https://docs.microsoft.com/en-us/azure/aks/concepts-identity#aks-service-permissions
https://docs.microsoft.com/en-us/azure/aks/operator-best-practices-cluster-isolation
https://docs.microsoft.com/en-us/azure/aks/operator-best-practices-cluster-isolation
https://docs.microsoft.com/en-us/azure/aks/csi-storage-drivers
https://docs.microsoft.com/en-us/azure/aks/use-ultra-disks#enable-ultra-disks-on-an-existing-cluster
https://docs.microsoft.com/en-us/cli/azure/aks?view=azure-cli-latest#az_aks_create
https://docs.microsoft.com/en-us/cli/azure/aks/nodepool?view=azure-cli-latest

1. To create a TiDB Operator and monitor pool:
az aks nodepool add --name admin \

--cluster-name ${clusterName} \
--resource-group ${resourceGroup} \
--zones 1 2 3 \
--node-count 1 \
--labels dedicated=admin

2. Create a PD node pool with nodeType being Standard_F4s_v2 or higher:
az aks nodepool add --name pd \

--cluster-name ${clusterName} \
--resource-group ${resourceGroup} \
--node-vm-size ${nodeType} \
--zones 1 2 3 \
--node-count 3 \
--labels dedicated=pd \
--node-taints dedicated=pd:NoSchedule

3. Create a TiDB node pool with nodeType being Standard_F8s_v2 or higher. You can
set --node-count to 2 because only two TiDB nodes are required by default. You can
also scale out this node pool by modifying this parameter at any time if necessary.
az aks nodepool add --name tidb \

--cluster-name ${clusterName} \
--resource-group ${resourceGroup} \
--node-vm-size ${nodeType} \
--zones 1 2 3 \
--node-count 2 \
--labels dedicated=tidb \
--node-taints dedicated=tidb:NoSchedule

4. Create a TiKV node pool with nodeType being Standard_E8s_v4 or higher:
az aks nodepool add --name tikv \

--cluster-name ${clusterName} \
--resource-group ${resourceGroup} \
--node-vm-size ${nodeType} \
--zones 1 2 3 \
--node-count 3 \
--labels dedicated=tikv \
--node-taints dedicated=tikv:NoSchedule \
--enable-ultra-ssd

110

4.2.3.2.3 Deploy component node pools in availability zones
The Azure AKS cluster deploys nodes across multiple zones using “best effort zone

balance”. If you want to apply “strict zone balance” (not supported in AKS now), you can
deploy one node pool in one zone. For example:

1. Create TiKV node pool 1 in zone 1:
az aks nodepool add --name tikv1 \

--cluster-name ${clusterName} \
--resource-group ${resourceGroup} \
--node-vm-size ${nodeType} \
--zones 1 \
--node-count 1 \
--labels dedicated=tikv \
--node-taints dedicated=tikv:NoSchedule \
--enable-ultra-ssd

2. Create TiKV node pool 2 in zone 2:
az aks nodepool add --name tikv2 \

--cluster-name ${clusterName} \
--resource-group ${resourceGroup} \
--node-vm-size ${nodeType} \
--zones 2 \
--node-count 1 \
--labels dedicated=tikv \
--node-taints dedicated=tikv:NoSchedule \
--enable-ultra-ssd

3. Create TiKV node pool 3 in zone 3:
az aks nodepool add --name tikv3 \

--cluster-name ${clusterName} \
--resource-group ${resourceGroup} \
--node-vm-size ${nodeType} \
--zones 3 \
--node-count 1 \
--labels dedicated=tikv \
--node-taints dedicated=tikv:NoSchedule \
--enable-ultra-ssd

Warning:
About node pool scale-in:

111

• You can manually scale in or out an AKS cluster to run a different
number of nodes. When you scale in, nodes are carefully cordoned and
drained to minimize disruption to running applications. Refer to Scale
the node count in an Azure Kubernetes Service (AKS) cluster.

4.2.3.3 Configure StorageClass
To improve disk IO performance, it is recommended to add mountOptions in

StorageClass to configure nodelalloc and noatime. Refer to Mount the data disk
ext4 filesystem with options on the target machines that deploy TiKV.
kind: StorageClass
apiVersion: storage.k8s.io/v1
...
mountOptions:
- nodelalloc
- noatime

4.2.3.4 Deploy TiDB Operator
Deploy TiDB Operator in the AKS cluster by referring to Deploy TiDB Operator section.

4.2.3.5 Deploy a TiDB cluster and the monitoring component
This section describes how to deploy a TiDB cluster and its monitoring component on

Azure AKS.

4.2.3.5.1 Create namespace
To create a namespace to deploy the TiDB cluster, run the following command:

kubectl create namespace tidb-cluster

Note:
A namespace is a virtual cluster backed by the same physical cluster. This
document takes tidb-cluster as an example. If you want to use other
namespaces, modify the corresponding arguments of -n or --namespace.

112

https://kubernetes.io/docs/tasks/administer-cluster/safely-drain-node/
https://kubernetes.io/docs/tasks/administer-cluster/safely-drain-node/
https://docs.microsoft.com/en-us/azure/aks/scale-cluster
https://docs.microsoft.com/en-us/azure/aks/scale-cluster
https://docs.pingcap.com/tidb/stable/check-before-deployment#mount-the-data-disk-ext4-filesystem-with-options-on-the-target-machines-that-deploy-tikv
https://docs.pingcap.com/tidb/stable/check-before-deployment#mount-the-data-disk-ext4-filesystem-with-options-on-the-target-machines-that-deploy-tikv
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/

4.2.3.5.2 Deploy
First, download the sample TidbCluster and TidbMonitor configuration files:

curl -O https://raw.githubusercontent.com/pingcap/tidb-operator/v1.6.1/
↪→ examples/aks/tidb-cluster.yaml && \

curl -O https://raw.githubusercontent.com/pingcap/tidb-operator/v1.6.1/
↪→ examples/aks/tidb-monitor.yaml && \

curl -O https://raw.githubusercontent.com/pingcap/tidb-operator/v1.6.1/
↪→ examples/aks/tidb-dashboard.yaml

Refer to configure the TiDB cluster to further customize and configure the CR before
applying.

Note:
By default, TiDB LoadBalancer in tidb-cluster.yaml is set to “internal”,
indicating that the LoadBalancer is only accessible within the cluster virtual
network, not externally. To access TiDB over the MySQL protocol, you need
to use a bastion to access the internal host of the cluster or use kubectl
↪→ port-forward. If you understand the risks of exposing the LoadBalancer
publicly, you can delete the following annotation in the tidb-cluster.yaml
file:
annotations:
service.beta.kubernetes.io/azure-load-balancer-internal: "true"

After deleting the annotation, the recreated LoadBalancer and its associated
TiDB services will be externally accessible.

To deploy the TidbCluster and TidbMonitor CR in the AKS cluster, run the following
command:
kubectl apply -f tidb-cluster.yaml -n tidb-cluster && \
kubectl apply -f tidb-monitor.yaml -n tidb-cluster

After the yaml file above is applied to the Kubernetes cluster, TiDB Operator creates
the desired TiDB cluster and its monitoring component according to the yaml file.

4.2.3.5.3 View the cluster status
To view the status of the TiDB cluster, run the following command:

kubectl get pods -n tidb-cluster

113

When all the pods are in the Running or Ready state, the TiDB cluster is successfully
started. For example:
NAME READY STATUS RESTARTS AGE
tidb-discovery-5cb8474d89-n8cxk 1/1 Running 0 47h
tidb-monitor-6fbcc68669-dsjlc 3/3 Running 0 47h
tidb-pd-0 1/1 Running 0 47h
tidb-pd-1 1/1 Running 0 46h
tidb-pd-2 1/1 Running 0 46h
tidb-tidb-0 2/2 Running 0 47h
tidb-tidb-1 2/2 Running 0 46h
tidb-tikv-0 1/1 Running 0 47h
tidb-tikv-1 1/1 Running 0 47h
tidb-tikv-2 1/1 Running 0 47h

4.2.3.6 Access the database
After deploying a TiDB cluster, you can access the TiDB database to test or develop

applications.

4.2.3.6.1 Access method

• Access via Bastion

The LoadBalancer created for your TiDB cluster resides in an intranet. You can create
a Bastion in the cluster virtual network to connect to an internal host and then access the
database.

Note:
In addition to the bastion host, you can also connect an existing host to
the cluster virtual network by Peering. If the AKS cluster is created in an
existing virtual network, you can use hosts in this virtual network to access
the database.

• Access via SSH

You can create the SSH connection to a Linux node to access the database.

• Access via node-shell

You can simply use tools like node-shell to connect to nodes in the cluster, then access
the database.

114

https://docs.microsoft.com/en-us/azure/bastion/tutorial-create-host-portal
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-peering-overview
https://docs.microsoft.com/en-us/azure/aks/ssh#create-the-ssh-connection-to-a-linux-node
https://github.com/kvaps/kubectl-node-shell

4.2.3.6.2 Access via the MySQL client
After access to the internal host via SSH, you can access the TiDB cluster through the

MySQL client.

1. Install the MySQL client on the host:
sudo yum install mysql -y

2. Connect the client to the TiDB cluster:
mysql --comments -h ${tidb-lb-ip} -P 4000 -u root

${tidb-lb-ip} is the LoadBalancer IP address of the TiDB service. To obtain it, run
the kubectl get svc basic-tidb -n tidb-cluster command. The EXTERNAL-IP
field returned is the IP address.
For example:
$ mysql --comments -h 20.240.0.7 -P 4000 -u root
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MySQL connection id is 1189
Server version: 8.0.11-TiDB-v8.5.0 TiDB Server (Apache License 2.0)

↪→ Community Edition, MySQL 8.0 compatible

Copyright (c) 2000, 2022, Oracle and/or its affiliates.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
↪→ statement.

MySQL [(none)]> show status;
+--------------------+--------------------------------------+
| Variable_name | Value |
+--------------------+--------------------------------------+
Ssl_cipher	
Ssl_cipher_list	
Ssl_verify_mode	0
Ssl_version	
ddl_schema_version	22
server_id	ed4ba88b-436a-424d-9087-977e897cf5ec
+--------------------+--------------------------------------+
6 rows in set (0.00 sec)

Note:

115

• The default authentication plugin of MySQL 8.0 is updated from
mysql_native_password to caching_sha2_password. Therefore, if you
access the TiDB service (earlier than v4.0.7) by using MySQL 8.0 client
via password authentication, you need to specify the --default-auth=
↪→ mysql_native_password parameter.

• By default, TiDB (versions starting from v4.0.2 and released before
February 20, 2023) periodically shares usage details with PingCAP to
help understand how to improve the product. For details about what
is shared and how to disable the sharing, see Telemetry. Starting from
February 20, 2023, the telemetry feature is disabled by default in newly
released TiDB versions. See TiDB Release Timeline for details.

4.2.3.7 Access the Grafana monitoring dashboard
Obtain the LoadBalancer IP address of Grafana:

kubectl -n tidb-cluster get svc basic-grafana

For example:
kubectl get svc basic-grafana
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
basic-grafana LoadBalancer 10.100.199.42 20.240.0.8 3000:30761/TCP 121m

In the output above, the EXTERNAL-IP column is the LoadBalancer IP address.
You can access the ${grafana-lb}:3000 address using your web browser to view moni-

toring metrics. Replace ${grafana-lb} with the LoadBalancer IP address.

Note:
The default Grafana username and password are both admin.

4.2.3.8 Access TiDB Dashboard
See Access TiDB Dashboard for instructions about how to securely allow access to TiDB

Dashboard.

4.2.3.9 Upgrade
To upgrade the TiDB cluster, execute the following command:

116

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_authentication_plugin
https://docs.pingcap.com/tidb/stable/telemetry
https://docs.pingcap.com/tidb/stable/release-timeline

kubectl patch tc basic -n tidb-cluster --type merge -p '{"spec":{"version":"
↪→ ${version}"}}`.

The upgrade process does not finish immediately. You can view the upgrade progress by
running the kubectl get pods -n tidb-cluster --watch command.

4.2.3.10 Scale out
Before scaling out the cluster, you need to scale out the corresponding node pool so that

the new instances have enough resources for operation.
This section describes how to scale out the AKS node pool and TiDB components.

4.2.3.10.1 Scale out AKS node pool
When scaling out TiKV, the node pools must be scaled out evenly among availabil-

ity zones. The following example shows how to scale out the TiKV node pool of the ${
↪→ clusterName} cluster to 6 nodes:
az aks nodepool scale \

--resource-group ${resourceGroup} \
--cluster-name ${clusterName} \
--name ${nodePoolName} \
--node-count 6

For more information on node pool management, refer to az aks nodepool.

4.2.3.10.2 Scale out TiDB components
After scaling out the AKS node pool, run the kubectl edit tc basic -n tidb

↪→ -cluster command with replicas of each component set to desired value. The
scaling-out process is then completed.

4.2.3.11 Deploy TiFlash/TiCDC
TiFlash is the columnar storage extension of TiKV.
TiCDC is a tool for replicating the incremental data of TiDB by pulling TiKV change

logs.
The two components are not required in the deployment. This section shows a quick

start example.

4.2.3.11.1 Add node pools
Add a node pool for TiFlash/TiCDC respectively. You can set --node-count as required.

117

https://docs.microsoft.com/zh-cn/cli/azure/aks/nodepool?view=azure-cli-latest
https://docs.pingcap.com/tidb/stable/tiflash-overview
https://docs.pingcap.com/tidb/stable/ticdc-overview

1. Create a TiFlash node pool with nodeType being Standard_E8s_v4 or higher:
az aks nodepool add --name tiflash \

--cluster-name ${clusterName} \
--resource-group ${resourceGroup} \
--node-vm-size ${nodeType} \
--zones 1 2 3 \
--node-count 3 \
--labels dedicated=tiflash \
--node-taints dedicated=tiflash:NoSchedule

2. Create a TiCDC node pool with nodeType being Standard_E16s_v4 or higher:
az aks nodepool add --name ticdc \

--cluster-name ${clusterName} \
--resource-group ${resourceGroup} \
--node-vm-size ${nodeType} \
--zones 1 2 3 \
--node-count 3 \
--labels dedicated=ticdc \
--node-taints dedicated=ticdc:NoSchedule

4.2.3.11.2 Configure and deploy

• To deploy TiFlash, configure spec.tiflash in tidb-cluster.yaml. The following is
an example:
spec:
...
tiflash:
baseImage: pingcap/tiflash
maxFailoverCount: 0
replicas: 1
storageClaims:
- resources:

requests:
storage: 100Gi

tolerations:
- effect: NoSchedule
key: dedicated
operator: Equal
value: tiflash

For other parameters, refer to Configure a TiDB Cluster.

118

Warning:
TiDB Operator automatically mounts PVs in the order of the config-
uration in the storageClaims list. Therefore, if you need to add disks
for TiFlash, make sure that you add the disks only to the end of the
original configuration in the list. In addition, you must not alter the
order of the original configuration.

• To deploy TiCDC, configure spec.ticdc in tidb-cluster.yaml. The following is an
example:
spec:
...
ticdc:
baseImage: pingcap/ticdc
replicas: 1
tolerations:
- effect: NoSchedule
key: dedicated
operator: Equal
value: ticdc

Modify replicas as required.

Finally, run the kubectl -n tidb-cluster apply -f tidb-cluster.yaml command
to update the TiDB cluster configuration.

For detailed CR configuration, refer to API references and Configure a TiDB Cluster.

4.2.3.12 Use other Disk volume types
Azure disks support multiple volume types. Among them, UltraSSD delivers low latency

and high throughput and can be enabled by performing the following steps:

1. Enable Ultra disks on an existing cluster and create a storage class for UltraSSD:
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: ultra

provisioner: disk.csi.azure.com
parameters:
skuname: UltraSSD_LRS # alias: storageaccounttype, available values:

↪→ Standard_LRS, Premium_LRS, StandardSSD_LRS, UltraSSD_LRS
cachingMode: None

119

https://github.com/pingcap/tidb-operator/blob/v1.6.1/docs/api-references/docs.md
https://docs.microsoft.com/en-us/azure/aks/use-ultra-disks#enable-ultra-disks-on-an-existing-cluster

reclaimPolicy: Delete
allowVolumeExpansion: true
volumeBindingMode: WaitForFirstConsumer
mountOptions:
- nodelalloc
- noatime

You can add more Driver Parameters as required.

2. In tidb-cluster.yaml, specify the ultra storage class to apply for the UltraSSD
volume type through the storageClassName field.
The following is a TiKV configuration example you can refer to:
spec:
tikv:
...
storageClassName: ultra

You can use any supported Azure disk type. It is recommended to use Premium_LRS or
UltraSSD_LRS.

For more information about the storage class configuration and Azure disk types, refer
to Storage Class documentation and Azure Disk Types.

4.2.3.13 Use local storage
Use Azure LRS disks for storage in production environment. To simulate bare-metal per-

formance, use additional NVMe SSD local store volumes provided by some Azure instances.
You can choose such instances for the TiKV node pool to achieve higher IOPS and lower
latency.

Note:

• You cannot dynamically change the storage class of a running TiDB
cluster. In this case, create a new cluster for testing.

• Local NVMe Disks are ephemeral. Data will be lost on these disks if
you stop/deallocate your node. When the node is reconstructed, you
need to migrate data in TiKV. If you do not want to migrate data, it is
recommended not to use the local disk in a production environment.

For instance types that provide local disks, refer to Lsv2-series. The following takes
Standard_L8s_v2 as an example:

120

https://github.com/kubernetes-sigs/azuredisk-csi-driver/blob/master/docs/driver-parameters.md
https://github.com/kubernetes-sigs/azuredisk-csi-driver
https://docs.microsoft.com/en-us/azure/virtual-machines/disks-types
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-storage
https://docs.microsoft.com/en-us/azure/virtual-machines/lsv2-series

1. Create a node pool with local storage for TiKV.
Modify the instance type of the TiKV node pool in the az aks nodepool add com-
mand to Standard_L8s_v2:
az aks nodepool add --name tikv \

--cluster-name ${clusterName} \
--resource-group ${resourceGroup} \
--node-vm-size Standard_L8s_v2 \
--zones 1 2 3 \
--node-count 3 \
--enable-ultra-ssd \
--labels dedicated=tikv \
--node-taints dedicated=tikv:NoSchedule

If the TiKV node pool already exists, you can either delete the old group and then
create a new one, or change the group name to avoid conflict.

2. Deploy the local volume provisioner.
You need to use the local-volume-provisioner to discover and manage the local storage.
Run the following command to deploy and create a local-storage storage class:
kubectl apply -f https://raw.githubusercontent.com/pingcap/tidb-

↪→ operator/v1.6.1/manifests/eks/local-volume-provisioner.yaml

3. Use local storage.
After the steps above, the local volume provisioner can discover all the local NVMe
SSD disks in the cluster.
Add the tikv.storageClassName field to the tidb-cluster.yaml file and set the
value of the field to local-storage.
For more information, refer to Deploy TiDB cluster and its monitoring components

4.2.3.14 Configure TiDB monitoring
For more information, see Deploy monitoring and alerts for a TiDB cluster.

Note:
TiDB monitoring does not persist data by default. To ensure long-term data
availability, it is recommended to persist monitoring data. TiDB monitoring
does not include Pod CPU, memory, or disk monitoring, nor does it have
an alerting system. For more comprehensive monitoring and alerting, it is
recommended to Set kube-prometheus and AlertManager.

121

https://sigs.k8s.io/sig-storage-local-static-provisioner

4.2.3.15 Collect logs
System and application logs can be useful for troubleshooting issues and automating

operations. By default, TiDB components output logs to the container’s stdout and stderr,
and log rotation is automatically performed based on the container runtime environment.
When a Pod restarts, container logs will be lost. To prevent log loss, it is recommended to
Collect logs of TiDB and its related components.

4.3 Deploy a TiDB Cluster on ARM64 Machines

This document describes how to deploy a TiDB cluster on ARM64 machines (including
AWS Graviton instances).

4.3.1 Prerequisites

Before starting the process, make sure that Kubernetes clusters are deployed on your
ARM64 machines. If Kubernetes clusters are not deployed, refer to Deploy the Kubernetes
cluster.

4.3.2 Deploy TiDB operator

• If your TiDB operator is v1.3.1 or later, deploy TiDB Operator normally. You don’t
need to do the following to change images.

• If your TiDB operator is earlier than v1.3.1, the process of deploying TiDB operator
on ARM64 machines is the same as the process of Deploy TiDB Operator on Ku-
bernetes. The only difference is that, you should change the following configuration
in the step Customize TiDB operator deployment: after getting the values.yaml
↪→ file of the tidb-operator chart, you need to modify the operatorImage and
tidbBackupManagerImage fields in that file to the ARM64 image versions.

yaml # ... operatorImage: pingcap/tidb-operator-arm64:v1.3.1 # ...
↪→ tidbBackupManagerImage: pingcap/tidb-backup-manager-arm64:v1.3.1 # ...

4.3.3 Deploy a TiDB cluster

• If your TiDB cluster is v5.4.2 or later, deploy the TiDB cluster normally. You don’t
need to do the following to change images.

• If your TiDB cluster is earlier than v5.4.2, the process of deploying a TiDB cluster on
ARM64 machines is the same as the process of Deploy TiDB in General Kubernetes.
The only difference is that, in the TidbCluster definition file, you need to set the images
of the related components to the ARM64 versions.

122

yaml apiVersion: pingcap.com/v1alpha1 kind: TidbCluster metadata: name:
↪→ ${cluster_name} namespace: ${cluster_namespace} spec: version: "v8.5.0"
↪→ # ... helper: image: busybox:1.33.0 # ... pd: baseImage
↪→ : pingcap/pd-arm64 # ... tidb: baseImage: pingcap/tidb-arm64
↪→ # ... tikv: baseImage: pingcap/tikv-arm64 # ... pump:
↪→ baseImage: pingcap/tidb-binlog-arm64 # ... ticdc: baseImage
↪→ : pingcap/ticdc-arm64 # ... tiflash: baseImage: pingcap/tiflash-
↪→ arm64 # ...

4.3.4 Initialize a TiDB cluster

The process of initializing a TiDB cluster on ARM64 machines is the same as the process
of Initialize a TiDB Cluster on Kubernetes. The only difference is that you need to modify
the spec.image field in the TidbInitializer definition file to the ARM64 image version. For
example:
apiVersion: pingcap.com/v1alpha1
kind: TidbInitializer
metadata:
name: ${initializer_name}
namespace: ${cluster_namespace}

spec:
image: kanshiori/mysqlclient-arm64
...

4.3.5 Deploy monitoring for a TiDB cluster

• If your TiDB cluster is v5.4.2 or later, deploy monitoring and alerts normally. You
don’t need to do the following to change images.

• If your TiDB cluster is earlier than v5.4.2, the process of deploying monitoring for a
TiDB cluster on ARM64 machines is the same as the process of Deploy Monitoring
and Alerts for a TiDB Cluster. The only difference is that, you need to modify the
spec.initializer.baseImage field in the TidbMonitor definition file to the ARM64
image.

yaml apiVersion: pingcap.com/v1alpha1 kind: TidbMonitor metadata: name:
↪→ ${monitor_name} spec: # ... initializer: baseImage: pingcap/tidb
↪→ -monitor-initializer-arm64 version: v5.4.1 # ...

4.4 Deploy the HTAP Storage Engine Tiflash for an Existing
TiDB Cluster

This document describes how to add or remove the TiDB HTAP storage engine TiFlash
for an existing TiDB cluster on Kubernetes. As a columnar storage extension of TiKV,

123

TiFlash provides both good isolation level and strong consistency guarantee.

Note:
If a TiDB cluster has not been deployed yet, instead of referring to this
document, you can configure a TiDB cluster on Kubernetes with the TiFlash-
related parameters, and then deploy the TiDB cluster.

4.4.1 Usage scenarios

This document is applicable to scenarios in which you already have a TiDB cluster and
need to use TiDB HTAP capabilities by deploying TiFlash, such as the following:

• Hybrid workload scenarios with online real-time analytic processing
• Real-time stream processing scenarios
• Data hub scenarios

4.4.2 Deploy TiFlash

If you need to deploy TiFlash for an existing TiDB cluster, do the following:

Note:
If your server does not have an external network, you can download the
required Docker image on the machine with an external network, upload the
Docker image to your server, and then use docker load to install the Docker
image on the server. For details, see deploy the TiDB cluster.

1. Edit the TidbCluster Custom Resource (CR):
kubectl edit tc ${cluster_name} -n ${namespace}

2. Add the TiFlash configuration as the following example:
spec:
tiflash:

baseImage: pingcap/tiflash
maxFailoverCount: 0
replicas: 1

124

storageClaims:
- resources:

requests:
storage: 100Gi

storageClassName: local-storage

3. TiFlash supports mounting multiple Persistent Volumes (PVs). If you want to configure
multiple PVs for TiFlash, configure multiple resources in tiflash.storageClaims
↪→ , each resources with a separate requests.storage and storageClassName. For
example:
tiflash:

baseImage: pingcap/tiflash
maxFailoverCount: 0
replicas: 1
storageClaims:
- resources:

requests:
storage: 100Gi

storageClassName: local-storage
- resources:

requests:
storage: 100Gi

storageClassName: local-storage

Note:
• When deploying TiFlash for the first time, it is recommended that

you plan how many PVs are required and configure the number of
resources items in storageClaims accordingly.

• Once the deployment of TiFlash is completed, if you need to mount
additional PVs for TiFlash, updating storageClaims directly to add
disks does not take effect. This is because TiDB Operator manages
TiFlash by creating a StatefulSet, and the StatefulSet does not
support modifying volumeClaimTemplates after being created.

4. Configure the relevant parameters of spec.tiflash.config in TidbCluster CR. For
example:
spec:
tiflash:
config:
config: |
[flash]

125

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

[flash.flash_cluster]
log = "/data0/logs/flash_cluster_manager.log"

[logger]
count = 10
level = "information"
errorlog = "/data0/logs/error.log"
log = "/data0/logs/server.log"

For more TiFlash parameters that can be configured, refer to TiFlash Configuration
Documentation.

Note:
For different TiFlash versions, note the following configuration differ-
ences:
• If TiFlash version <= v4.0.4, you need to set spec.tiflash.config

↪→ .config.flash.service_addr to ${clusterName}-tiflash
↪→ -POD_NUM.${clusterName}-tiflash-peer.${namespace}.
↪→ svc:3930 in TidbCluster CR, where ${clusterName} and
${namespace} need to be replaced according to the real case.

• If TiFlash version >= v4.0.5, there is no need to manually configure
spec.tiflash.config.config.flash.service_addr.

• If you upgrade from TiFlash v4.0.4 or an earlier version to Ti-
Flash v4.0.5 or a later version, you need to delete the configura-
tion of spec.tiflash.config.config.flash.service_addr from
the TidbCluster CR.

4.4.3 Adding PVs to TiFlash

Once the deployment of TiFlash is completed, to add PVs for TiFlash, you need to
update the storageClaims to add disks, and then manually delete the TiFlash StatefulSet.
The following are the detailed steps.

Warning:
Deleting the TiFlash StatefulSet makes the TiFlash cluster unavailable during
the deletion and affects related business. You must be cautious about whether
to do the following.

1. Edit the TidbCluster Custom Resource (CR).

126

https://docs.pingcap.com/tidb/stable/tiflash-configuration
https://docs.pingcap.com/tidb/stable/tiflash-configuration

kubectl edit tc ${cluster_name} -n ${namespace}

2. TiDB Operator automatically mounts PVs in the order of the items in the
storageClaims list. If you need to add more resources items to TiFlash, make sure
to append new items only to the end of the original items, and DO NOT modify the
order of the original items. For example:
tiflash:

baseImage: pingcap/tiflash
maxFailoverCount: 0
replicas: 1
storageClaims:
- resources:

requests:
storage: 100Gi

storageClassName: local-storage
- resources:

requests:
storage: 100Gi

storageClassName: local-storage
- resources: #newly added

requests: #newly added
storage: 100Gi #newly added

storageClassName: local-storage #newly added

3. Manually delete the TiFlash StatefulSet by running the following command. Then,
wait for the TiDB Operator to recreate the TiFlash StatefulSet.
kubectl delete sts -n ${namespace} ${cluster_name}-tiflash

4.4.4 Remove TiFlash

If your TiDB cluster no longer needs the TiDB HTAP storage engine TiFlash, take the
following steps to remove TiFlash:

1. Adjust the number of replicas of the tables replicated to the TiFlash cluster.
To completely remove TiFlash, you need to set the number of replicas of all tables
replicated to the TiFlash to 0.

1. To connect to the TiDB service, refer to the steps in Access the TiDB Cluster on
Kubernetes.

2. To adjust the number of replicas of the tables replicated to the TiFlash cluster,
run the following command:

127

alter table <db_name>.<table_name> set tiflash replica 0;

2. Wait for the TiFlash replicas of the related tables to be deleted.
Connect to the TiDB service and run the following command. If you can not find the
replication information of the related tables, it means that the replicas are deleted:
SELECT * FROM information_schema.tiflash_replica WHERE TABLE_SCHEMA =

↪→ '<db_name>' and TABLE_NAME = '<table_name>';

3. To remove TiFlash Pods, run the following command to modify spec.tiflash.
↪→ replicas to 0:
kubectl patch tidbcluster ${cluster_name} -n ${namespace} --type merge

↪→ -p '{"spec":{"tiflash":{"replicas": 0}}}

4. Check the state of TiFlash Pods and TiFlash stores.

1. Run the following command to check whether you delete the TiFlash Pod success-
fully:
kubectl get pod -n ${namespace} -l app.kubernetes.io/component=

↪→ tiflash,app.kubernetes.io/instance=${cluster_name}

If the output is empty, it means that you delete the Pod of the TiFlash cluster
successfully.

5. To check whether the stores of the TiFlash are in the Tombstone state, run the following
command:
```shell
kubectl get tidbcluster ${cluster_name} -n ${namespace} -o yaml
```

The value of the `status.tiflash` field in the output result is similar
↪→ to the example below.

```
tiflash:

...
tombstoneStores:
"88":

id: "88"
ip: basic-tiflash-0.basic-tiflash-peer.default.svc
lastHeartbeatTime: "2020-12-31T04:42:12Z"
lastTransitionTime: null

128



leaderCount: 0
podName: basic-tiflash-0
state: Tombstone

"89":
id: "89"
ip: basic-tiflash-1.basic-tiflash-peer.default.svc
lastHeartbeatTime: "2020-12-31T04:41:50Z"
lastTransitionTime: null
leaderCount: 0
podName: basic-tiflash-1
state: Tombstone

```

Only after you delete all Pods of the TiFlash cluster successfully and
↪→ all the TiFlash stores have changed to the `Tombstone` state, can
↪→ you perform the next operation.

6. Delete the TiFlash StatefulSet.

7. To modify the TidbCluster CR and delete the spec.tiflash field, run the following
command:
```shell
kubectl patch tidbcluster ${cluster_name} -n ${namespace} --type json -

↪→ p '[{"op":"remove", "path":"/spec/tiflash"}]'
```

8. To delete the TiFlash StatefulSet, run the following command:
```shell
kubectl delete statefulsets -n ${namespace} -l app.kubernetes.io/

↪→ component=tiflash,app.kubernetes.io/instance=${cluster_name}
```

9. To check whether you delete the StatefulSet of the TiFlash cluster successfully, run
the following command:
```shell
kubectl get sts -n ${namespace} -l app.kubernetes.io/component=tiflash,

↪→ app.kubernetes.io/instance=${cluster_name}
```

If the output is empty, it means that you delete the StatefulSet of the
↪→ TiFlash cluster successfully.

10. (Optional) Delete PVC and PV.

129

If you confirm that you do not use the data in TiFlash, and you want to delete the data,
you need to strictly follow the steps below to delete the data in TiFlash:

1. Delete the PVC object corresponding to the PV
```shell
kubectl delete pvc -n ${namespace} -l app.kubernetes.io/component=

↪→ tiflash,app.kubernetes.io/instance=${cluster_name}
```

2. If the PV reclaim policy is Retain, the corresponding PV is still retained after
you delete the PVC object. If you want to delete the PV, you can set the reclaim
policy of the PV to Delete, and the PV can be deleted and recycled automatically.
kubectl patch pv ${pv_name} -p '{"spec":{"

↪→ persistentVolumeReclaimPolicy":"Delete"}}'

In the above command, ${pv_name} represents the PV name of the TiFlash clus-
ter. You can check the PV name by running the following command:
kubectl get pv -l app.kubernetes.io/component=tiflash,app.

↪→ kubernetes.io/instance=${cluster_name}

4.5 Deploy TiProxy Load Balancer for an Existing TiDB Cluster

This topic describes how to deploy or remove the TiDB load balancer TiProxy for an
existing TiDB cluster on Kubernetes. TiProxy is placed between the client and TiDB server
to provide load balancing, connection persistence, and service discovery for TiDB.

Note:
If you have not deployed a TiDB cluster, you can add TiProxy configurations
when configuring a TiDB cluster and then deploy a TiDB cluster. In that
case, you do not need to refer to this topic.

4.5.1 Deploy TiProxy

If you need to deploy TiProxy for an existing TiDB cluster, follow these steps:

130

https://docs.pingcap.com/tidb/v7.6/tiproxy-overview

Note:
If your server does not have access to the internet, refer to Deploy a TiDB
Cluster to download the pingcap/tiproxy Docker image to a machine with
access to the internet and then upload the Docker image to your server. Then,
use docker load to install the Docker image on your server.

1. Edit the TidbCluster Custom Resource (CR):
kubectl edit tc ${cluster_name} -n ${namespace}

2. Add the TiProxy configuration as shown in the following example:
spec:
tiproxy:
baseImage: pingcap/tiproxy
replicas: 3

3. Configure the related parameters in spec.tiproxy.config of the TidbCluster CR.
For example:
spec:
tiproxy:
config: |
[log]
level = "info"

For more information about TiProxy configuration, see TiProxy Configuration.

4. Configure the related parameters in spec.tidb of the TidbCluster CR. For example:

• It is recommended to configure graceful-wait-before-shutdown to a value
greater than the maximum duration of the transactions in your application. This
is used together with TiProxy’s connection migration feature. For more informa-
tion, see TiProxy Limitations.
yaml spec: tidb: config: | graceful-wait-before-
↪→ shutdown = 30

• If TLS is enabled for the cluster, skip this step. If TLS is not enabled for the clus-
ter, you need to generate a self-signed certificate and manually configure session
↪→ -token-signing-cert and session-token-signing-key for TiDB:
spec:
tidb:
additionalVolumes:

131

https://docs.pingcap.com/tidb/v7.6/tiproxy-configuration
https://docs.pingcap.com/tidb/v7.6/tiproxy-overview#limitations
https://docs.pingcap.com/tidb/stable/tidb-configuration-file#session-token-signing-cert-new-in-v640
https://docs.pingcap.com/tidb/stable/tidb-configuration-file#session-token-signing-cert-new-in-v640
https://docs.pingcap.com/tidb/stable/tidb-configuration-file#session-token-signing-key-new-in-v640

- name: sessioncert
secret:
secretName: sessioncert-secret

additionalVolumeMounts:
- name: sessioncert
mountPath: /var/session

config: |
session-token-signing-cert = "/var/session/tls.crt"
session-token-signing-key = "/var/session/tls.key"

For more information, see session-token-signing-cert.

After TiProxy is started, you can find the corresponding tiproxy-sql load balancer
service by running the following command.
kubectl get svc -n ${namespace}

4.5.2 Remove TiProxy

If your TiDB cluster no longer needs TiProxy, follow these steps to remove it.

1. Modify spec.tiproxy.replicas to 0 to remove the TiProxy Pod by running the
following command.
kubectl patch tidbcluster ${cluster_name} -n ${namespace} --type merge

↪→ -p '{"spec":{"tiproxy":{"replicas": 0}}}'

2. Check the status of the TiProxy Pod.
kubectl get pod -n ${namespace} -l app.kubernetes.io/component=tiproxy,

↪→ app.kubernetes.io/instance=${cluster_name}

If the output is empty, the TiProxy Pod has been successfully removed.

3. Delete the TiProxy StatefulSet.

1. Modify the TidbCluster CR and delete the spec.tiproxy field by running the
following command:
kubectl patch tidbcluster ${cluster_name} -n ${namespace} --type

↪→ json -p '[{"op":"remove", "path":"/spec/tiproxy"}]'

2. Delete the TiProxy StatefulSet by running the following command:
kubectl delete statefulsets -n ${namespace} -l app.kubernetes.io/

↪→ component=tiproxy,app.kubernetes.io/instance=${cluster_name}

132

https://docs.pingcap.com/tidb/stable/tidb-configuration-file#session-token-signing-cert-new-in-v640

3. Check whether the TiProxy StatefulSet has been successfully deleted by running
the following command:
kubectl get sts -n ${namespace} -l app.kubernetes.io/component=

↪→ tiproxy,app.kubernetes.io/instance=${cluster_name}

If the output is empty, the TiProxy StatefulSet has been successfully deleted.

4.6 Deploy TiDB Across Multiple Kubernetes Clusters

4.6.1 Build Multiple Interconnected AWS EKS Clusters

This document describes how to create multiple AWS EKS clusters and configure network
peering between these clusters. These interconnected clusters can be used for deploying TiDB
clusters across multiple Kubernetes clusters. The example in this document shows how to
configure three-cluster network peering.

If you need to deploy TiDB on a single AWS EKS cluster, refer to Deploy TiDB on AWS
EKS.

4.6.1.1 Prerequisites
Before you deploy EKS clusters, make sure you have completed the following prepara-

tions:

• Install Helm 3. You need to use Helm to install TiDB Operator.

• Complete all steps in Getting started with Amazon EKS—eksctl.
This tutorial includes the following tasks:

– Install and configure the AWS CLI (awscli).
– Install and configure the CLI for creating Kubernetes clusters (eksctl).
– Install the Kubernetes CLI (kubectl)

• Grant AWS Access Key the minimum permissions required for eksctl and the permis-
sions required for creating a Linux bastion.

To verify whether you have correctly configured the AWS CLI, run the aws configure
↪→ list command. If the output shows the values of access_key and secret_key, you
have successfully configured the AWS CLI. Otherwise, you need to reconfigure the AWS CLI.

133

https://helm.sh/docs/intro/install/
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-eksctl.html
https://eksctl.io/usage/minimum-iam-policies/
https://aws-quickstart.github.io/quickstart-linux-bastion/#_aws_account
https://aws-quickstart.github.io/quickstart-linux-bastion/#_aws_account

4.6.1.2 Step 1. Start the Kubernetes cluster
Define the configuration files of three EKS clusters as cluster_1.yaml, cluster_2.

↪→ yaml, and cluster_3.yaml, and create three clusters using eksctl.

1. Define the configuration file of cluster 1, and create cluster 1.

1. Save the following content as cluster_1.yaml. ${cluster_1} is the name of
the EKS cluster. ${region_1} is the Region that the EKS cluster is deployed
in. ${cidr_block_1} is the CIDR block for the VPC that the EKS cluster is
deployed in.
apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig

metadata:
name: ${cluster_1}
region: ${region_1}

nodeGroups ...

vpc:
cidr: ${cidr_block_1}

For the configuration of the nodeGroups field, refer to Create an EKS cluster and
a node pool.

2. Create cluster 1 by running the following command:
eksctl create cluster -f cluster_1.yaml

After running the command above, wait until the EKS cluster is successfully created
and the node group is created and added to the EKS cluster. This process might take
5 to 20 minutes. For more cluster configuration, refer to Using Config Files.

2. Follow the instructions in the previous step and create cluster 2 and cluster 3.
The CIDR block for each EKS cluster must not overlap with that of each other.
In the following sections:

• ${cluster_1}, ${cluster_2}, and ${cluster_3} refer to the cluster names.
• ${region_1}, ${region_2}, and ${region_3} refer to the Regions that the clus-

ters are deployed in.
• ${cidr_block_1}, ${cidr_block_2}, and ${cidr_block_3} refer to the CIDR

blocks for the VPCs that the clusters are deployed in.

3. After the clusters are created, obtain the Kubernetes context of each cluster. The
contexts are used in the subsequent kubectl commands.

134

https://eksctl.io/usage/creating-and-managing-clusters/#using-config-files

kubectl config get-contexts

Expected output
The context is in the NAME column.
In the following sections, ${context_1}, ${context_2}, and ${context_3} refer to
the context of each cluster.

4.6.1.3 Step 2. Configure the network

4.6.1.3.1 Set up VPC peering
To allow the three clusters to access each other, you need to create a VPC peering

connection between the VPCs of every two clusters. For details on VPC peering, see AWS
documentation.

1. Get the VPC ID of each cluster.
The following example gets the VPC ID of cluster 1:
eksctl get cluster ${cluster_1} --region ${region_1}

Expected output
The VPC ID is in the VPC column.
In the following sections, ${vpc_id_1}, ${vpc_id_2}, and ${vpc_id_3} refer to the
VPC ID of each cluster.

2. Create a VPC peering connection between cluster 1 and cluster 2.

1. Refer to AWS documentation and create a VPC peering. Use ${vpc_id_1} as
the requester VPC and ${vpc_id_2} as the accepter VPC.

2. Refer to AWS documentation and complete creating a VPC peering.

3. Follow the instructions in the previous step. Create a VPC peering connection between
cluster 1 and cluster 3 and a VPC peering connection between cluster 2 and cluster 3.

4. Update the route tables for the VPC peering connection of the three clusters.
You need to update the route tables of all subnets used by the clusters. Add two routes
in each route table.
The following example shows the route table of cluster 1:

Destination Target Status Propagated
${cidr_block_2} ${vpc_peering_id_12} Active No
${cidr_block_3} ${vpc_peering_id_13} Active No

135

https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/vpc/latest/peering/create-vpc-peering-connection.html#create-vpc-peering-connection-local
https://docs.aws.amazon.com/vpc/latest/peering/create-vpc-peering-connection.html#accept-vpc-peering-connection
https://docs.aws.amazon.com/vpc/latest/peering/vpc-peering-routing.html

The Destination of each route is the CIDR block of another cluster. The Target is
the VPC peering ID of the two clusters.

4.6.1.3.2 Update the security groups for the instances

1. Update the security group for cluster 1.

1. Enter the AWS Security Groups Console and select the security group of cluster
1. The name of the security group is similar to eksctl-${cluster_1}-cluster
↪→ /ClusterSharedNodeSecurityGroup.

2. Add inbound rules to the security group to allow traffic from cluster 2 and cluster
3.

Type Protocol
Port
range Source Description

All
traffic

All All Custom
${cidr_block_2}

Allow cluster 2 to communicate
with cluster 1

All
traffic

All All Custom
${cidr_block_3}

Allow cluster 3 to communicate
with cluster 1

2. Follow the instructions in the previous step to update the security groups for cluster 2
and cluster 3.

4.6.1.3.3 Configure load balancers
Each cluster needs to expose its CoreDNS service to other clusters via a network load

balancer. This section describes how to configure load balancers.

1. Create a load balancer service definition file dns-lb.yaml as follows:
apiVersion: v1
kind: Service
metadata:
labels:
k8s-app: kube-dns

name: across-cluster-dns-tcp
namespace: kube-system
annotations:
service.beta.kubernetes.io/aws-load-balancer-cross-zone-load-

↪→ balancing-enabled: "true"
service.beta.kubernetes.io/aws-load-balancer-type: "nlb"
service.beta.kubernetes.io/aws-load-balancer-internal: "true"

spec:
ports:

136

https://us-west-2.console.aws.amazon.com/ec2/v2/home#SecurityGroups
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/introduction.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/introduction.html

- name: dns
port: 53
protocol: TCP
targetPort: 53

selector:
k8s-app: kube-dns

type: LoadBalancer

2. Deploy the load balancer service in each cluster:
kubectl --context ${context_1} apply -f dns-lb.yaml

kubectl --context ${context_2} apply -f dns-lb.yaml

kubectl --context ${context_3} apply -f dns-lb.yaml

3. Get the load balancer name of each cluster, and wait for all load balancers to become
Active.
Get the load balancer names by running the following commands:
lb_name_1=$(kubectl --context ${context_1} -n kube-system get svc

↪→ across-cluster-dns-tcp -o jsonpath="{.status.loadBalancer.ingress
↪→ [0].hostname}" | cut -d - -f 1)

lb_name_2=$(kubectl --context ${context_2} -n kube-system get svc
↪→ across-cluster-dns-tcp -o jsonpath="{.status.loadBalancer.ingress
↪→ [0].hostname}" | cut -d - -f 1)

lb_name_3=$(kubectl --context ${context_3} -n kube-system get svc
↪→ across-cluster-dns-tcp -o jsonpath="{.status.loadBalancer.ingress
↪→ [0].hostname}" | cut -d - -f 1)

Check the load balancer status of each cluster by running the following commands. If
the output of all commands is active, all load balancers are in the Active state.
aws elbv2 describe-load-balancers --names ${lb_name_1} --region ${

↪→ region_1} --query 'LoadBalancers[*].State' --output text

aws elbv2 describe-load-balancers --names ${lb_name_2} --region ${
↪→ region_2} --query 'LoadBalancers[*].State' --output text

aws elbv2 describe-load-balancers --names ${lb_name_3} --region ${
↪→ region_3} --query 'LoadBalancers[*].State' --output text

Expected output

137

4. Check the IP address associated with the load balancer of each cluster.
Check the IP address associated with the load balancer of cluster 1:
aws ec2 describe-network-interfaces --region ${region_1} --filters Name

↪→ =description,Values="ELB net/${lb_name_1}*" --query '
↪→ NetworkInterfaces[*].PrivateIpAddress' --output text

Expected output
Repeat the same step for cluster 2 and cluster 3.
In the following sections, ${lb_ip_list_1}, ${lb_ip_list_2}, and ${lb_ip_list_3}
refer to the IP addresses associated with the load balancer of each cluster.
The load balancers in different Regions might have different numbers of IP addresses.
For example, in the example above, ${lb_ip_list_1} is 10.1.175.233 10.1.144.196
↪→ .

4.6.1.3.4 Configure CoreDNS
To allow Pods in a cluster to access services in other clusters, you need to configure

CoreDNS for each cluster to forward DNS requests to the CoreDNS services of other clusters.
You can configure CoreDNS by modifying the ConfigMap corresponding to the CoreDNS.

For information on more configuration items, refer to Customizing DNS Service.

1. Modify the CoreDNS configuration of cluster 1.

1. Back up the current CoreDNS configuration:
kubectl --context ${context_1} -n kube-system get configmap coredns

↪→ -o yaml > ${cluster_1}-coredns.yaml.bk

2. Modify the ConfigMap:
kubectl --context ${context_1} -n kube-system edit configmap

↪→ coredns

Modify the data.Corefile field as follows. In the example below, ${namespace_2
↪→ } and ${namespace_3} are the namespaces that cluster 2 and cluster 3 deploy
TidbCluster in.

Warning:
Because you cannot modify the cluster domain of an EKS cluster,
you need to use the namespace as an identifier for DNS forwarding.
Therefore, ${namespace_1}, ${namespace_2}, and ${namespace_3}
must be different from each other.

138

https://kubernetes.io/docs/tasks/administer-cluster/dns-custom-nameservers/#coredns

apiVersion: v1
kind: ConfigMap
...
data:
Corefile: |

.:53 {
Do not modify the default configuration.

}
${namespace_2}.svc.cluster.local:53 {

errors
cache 30
forward . ${lb_ip_list_2} {

force_tcp
}

}
${namespace_3}.svc.cluster.local:53 {

errors
cache 30
forward . ${lb_ip_list_3} {

force_tcp
}

}

3. Wait for the CoreDNS to reload the configuration. It might take around 30
seconds.

2. Follow the instructions in the previous step, and modify the CoreDNS configuration of
cluster 2 and cluster 3.
For the CoreDNS configuration of each cluster, you need to perform the following
operations:

• Configure ${namespace_2} and ${namespace_3} to the namespace that the other
two clusters deploy TidbCluster in.

• Configure the IP address to the IP addresses of the load balancers of the other
two clusters.

In the following sections, ${namespace_1}, ${namespace_2}, and ${namespace_3} refer
to the namespaces that each cluster deploy TidbCluster in.

4.6.1.4 Step 3. Verify the network interconnectivity
Before you deploy the TiDB cluster, you need to verify that the network between the

EKS clusters is interconnected.

139

1. Save the following content in the sample-nginx.yaml file.
apiVersion: v1
kind: Pod
metadata:
name: sample-nginx
labels:
app: sample-nginx

spec:
hostname: sample-nginx
subdomain: sample-nginx-peer
containers:
- image: nginx:1.21.5
imagePullPolicy: IfNotPresent
name: nginx
ports:
- name: http
containerPort: 80

restartPolicy: Always

apiVersion: v1
kind: Service
metadata:
name: sample-nginx-peer

spec:
ports:
- port: 80

selector:
app: sample-nginx

clusterIP: None

2. Deploy the nginx service to the namespaces of the three clusters:
kubectl --context ${context_1} -n ${namespace_1} apply -f sample-nginx.

↪→ yaml

kubectl --context ${context_2} -n ${namespace_2} apply -f sample-nginx.
↪→ yaml

kubectl --context ${context_3} -n ${namespace_3} apply -f sample-nginx.
↪→ yaml

3. Access the nginx services of each cluster to verify the network interconnectivity.
The following command verifies the network from cluster 1 to cluster 2:

140

kubectl --context ${context_1} -n ${namespace_1} exec sample-nginx --
↪→ curl http://sample-nginx.sample-nginx-peer.${namespace_2}.svc.
↪→ cluster.local:80

If the output is the welcome page of nginx, the network is connected.

4. After the verification, delete the nginx services:
kubectl --context ${context_1} -n ${namespace_1} delete -f sample-nginx

↪→ .yaml

kubectl --context ${context_2} -n ${namespace_2} delete -f sample-nginx
↪→ .yaml

kubectl --context ${context_3} -n ${namespace_3} delete -f sample-nginx
↪→ .yaml

4.6.1.5 Step 4. Deploy TiDB Operator
The TidbCluster CR of each cluster is managed by TiDB Operator of the cluster.

Therefore, you must deploy TiDB Operator for each cluster.
Refer to Deploy TiDB Operator and deploy TiDB Operator in each EKS cluster. Note

that you need to use kubectl --context ${context} and helm --kube-context ${
↪→ context} in the commands to deploy TiDB Operator for each EKS cluster.

4.6.1.6 Step 5. Deploy TiDB clusters
Refer to Deploy a TiDB Cluster across Multiple Kubernetes Clusters and deploy a

TidbCluster CR for each EKS cluster. Note the following operations:

• You must deploy the TidbCluster CR in the corresponding namespace configured in
the Configure CoreDNS section. Otherwise, the TiDB cluster will fail to start.

• The cluster domain of each cluster must be set to “cluster.local”.

Take cluster 1 as an example. When you deploy the TidbCluster CR to cluster 1,
specify metadata.namespace as ${namespace_1}:
apiVersion: pingcap.com/v1alpha1
kind: TidbCluster
metadata:

name: ${tc_name_1}
namespace: ${namespace_1}

spec:
...

141

clusterDomain: "cluster.local"
acrossK8s: true

4.6.1.7 What’s next

• Read Deploy a TiDB Cluster across Multiple Kubernetes Clusters to learn how to
manage a TiDB cluster across multiple Kubernetes clusters.

4.6.2 Build Multiple Interconnected Google Cloud GKE Clusters

This document describes how to create multiple Google Kubernetes Engine (GKE) clus-
ters and configure network peering between these clusters. These interconnected clusters
can be used for deploying TiDB clusters across multiple Kubernetes clusters. The example
in this document shows how to configure three-cluster network peering.

If you need to deploy TiDB on a single GKE cluster, refer to Deploy TiDB on Google
Cloud GKE.

4.6.2.1 Prerequisites
Before you deploy GKE clusters, make sure you have completed the following prepara-

tions:

• Install Helm 3. You need to use Helm to install TiDB Operator.
• Install gcloud: gcloud is the CLI for creating and managing Google Cloud services
• Complete the Before you begin section in GKE Quickstart.

4.6.2.2 Configure Google Cloud service
Configure your Google Cloud project by running the following command:

gcloud config set core/project <google-cloud-project>

4.6.2.3 Step 1. Create a VPC network

1. Create a VPC network with custom subnets:
gcloud compute networks create ${network_name} --subnet-mode=custom

2. In the VPC network created above, create three subnets that belong to different regions.
The CIDR block of each subnet does not overlap with that of each other.

142

https://helm.sh/docs/intro/install/
https://cloud.google.com/sdk/gcloud
https://cloud.google.com/kubernetes-engine/docs/quickstart#before-you-begin

gcloud compute networks subnets create ${subnet_1} \
--region=${region_1} \
--network=${network_name} \
--range=10.0.0.0/16 \
--secondary-range pods=10.10.0.0/16,services=10.100.0.0/16

gcloud compute networks subnets create ${subnet_2} \
--region=${region_2} \
--network=${network_name} \
--range=10.1.0.0/16 \
--secondary-range pods=10.11.0.0/16,services=10.101.0.0/16

gcloud compute networks subnets create ${subnet_3} \
--region=${region_3} \
--network=${network_name} \
--range=10.2.0.0/16 \
--secondary-range pods=10.12.0.0/16,services=10.102.0.0/16

${subnet_1}, ${subnet_2}, and ${subnet_3} refer to the names of the three subnets.
--range=10.0.0.0/16 specifies the CIDR block of the ${subnet_1} in the cluster.
The CIDR blocks of all cluster subnets must not overlap with each other.
--secondary-range pods=10.11.0.0/16,services=10.101.0.0/16 specifies the
CIRD block used by Kubernetes Pods and Services. This CIRD block will be used
later.

4.6.2.4 Step 2. Start the Kubernetes cluster
Create three GKE clusters, and each cluster uses one of the subnets created in Step 1.

1. Create three GKE clusters. Each cluster has a default node pool.
gcloud beta container clusters create ${cluster_1} \

--region ${region_1} --num-nodes 1 \
--network ${network_name} --subnetwork ${subnet_1} \
--cluster-dns clouddns --cluster-dns-scope vpc \
--cluster-dns-domain ${cluster_domain_1} \
--enable-ip-alias \
--cluster-secondary-range-name=pods --services-secondary-range-name

↪→ =services

gcloud beta container clusters create ${cluster_2} \
--region ${region_2} --num-nodes 1 \
--network ${network_name} --subnetwork ${subnet_2} \
--cluster-dns clouddns --cluster-dns-scope vpc \

143

--cluster-dns-domain ${cluster_domain_2} \
--enable-ip-alias \
--cluster-secondary-range-name=pods --services-secondary-range-name

↪→ =services

gcloud beta container clusters create ${cluster_3} \
--region ${region_3} --num-nodes 1 \
--network ${network_name} --subnetwork ${subnet_3} \
--cluster-dns clouddns --cluster-dns-scope vpc \
--cluster-dns-domain ${cluster_domain_3} \
--enable-ip-alias \
--cluster-secondary-range-name=pods --services-secondary-range-name

↪→ =services

In the commands above, ${cluster_domain_n} refers to the domain name of the nth
cluster. In the following deployment steps, you need to configure spec.clusterDomain
in TidbCluster CR to ${cluster_domain_n}.
In the commands above, the Cloud DNS in VPC scope is used so that the cluster can
parse the Pod and Service addresses in other clusters.

2. Create the dedicated node pools used by PD, TiKV, and TiDB for each cluster.
Take cluster 1 as an example:
gcloud container node-pools create pd --cluster ${cluster_1} --machine-

↪→ type n1-standard-4 --num-nodes=1 \
--node-labels=dedicated=pd --node-taints=dedicated=pd:NoSchedule

gcloud container node-pools create tikv --cluster ${cluster_1} --
↪→ machine-type n1-highmem-8 --num-nodes=1 \
--node-labels=dedicated=tikv --node-taints=dedicated=tikv:

↪→ NoSchedule
gcloud container node-pools create tidb --cluster ${cluster_1} --

↪→ machine-type n1-standard-8 --num-nodes=1 \
--node-labels=dedicated=tidb --node-taints=dedicated=tidb:

↪→ NoSchedule

3. Obtain the Kubernetes context of each cluster. The context will be used in the subse-
quent kubectl commands.
kubectl config get-contexts

The expected output is as follows. The context is in the NAME column.
CURRENT NAME CLUSTER AUTHINFO

↪→ NAMESPACE
* gke_pingcap_us-west1_tidb-1 gke_pingcap_us-west1_tidb-1

↪→ gke_pingcap_us-west1_tidb-1

144

https://cloud.google.com/kubernetes-engine/docs/how-to/cloud-dns

gke_pingcap_us-west2_tidb-2 gke_pingcap_us-west2_tidb-2
↪→ gke_pingcap_us-west2_tidb-2

gke_pingcap_us-west3_tidb-3 gke_pingcap_us-west3_tidb-3
↪→ gke_pingcap_us-west3_tidb-3

In the following sections, ${context_1}, ${context_2}, and ${context_3} refer to
the context of each cluster.

4.6.2.4.1 Configure the firewall rules

1. Update the firewall rules for cluster 1.

1. Obtain the name of the firewall rule used for communication between GKE Pods.
The name of the firewall rule is similar to gke-${cluster_1}-${hash}-all.
gcloud compute firewall-rules list --filter='name~gke-${cluster_1

↪→ }-.*-all'

The expected output is as follows. The rule name is in the NAME column.
NAME NETWORK DIRECTION PRIORITY ALLOW

↪→ DENY DISABLED
gke-${cluster_1}-b8b48366-all ${network} INGRESS 1000 tcp,udp,

↪→ icmp,esp,ah,sctp False

2. Update the source range of the firewall rule. Add the CIDR blocks of the Pod
network of the other two clusters to the source range:
gcloud compute firewall-rules update ${firewall_rule_name} --

↪→ source-ranges 10.10.0.0/16,10.11.0.0/16,10.12.0.0/16

Run the following command to check whether the firewall rule is successfully
updated:
gcloud compute firewall-rules describe ${firewall_rule_name}

2. Follow the same steps to update the firewall rules for cluster 2 and cluster 3.

4.6.2.5 Step 3. Verify the network interconnectivity
Before you deploy the TiDB cluster, you need to verify that the network between the

GKE clusters is interconnected.

1. Save the following content in the sample-nginx.yaml file.

145

apiVersion: v1
kind: Pod
metadata:
name: sample-nginx
labels:
app: sample-nginx

spec:
hostname: sample-nginx
subdomain: sample-nginx-peer
containers:
- image: nginx:1.21.5
imagePullPolicy: IfNotPresent
name: nginx
ports:
- name: http
containerPort: 80

restartPolicy: Always

apiVersion: v1
kind: Service
metadata:
name: sample-nginx-peer

spec:
ports:
- port: 80

selector:
app: sample-nginx

clusterIP: None

2. Deploy the nginx service in the namespaces of three clusters.
kubectl --context ${context_1} -n default apply -f sample-nginx.yaml

kubectl --context ${context_2} -n default apply -f sample-nginx.yaml

kubectl --context ${context_3} -n default apply -f sample-nginx.yaml

3. Access the nginx services of each cluster to verify the network interconnectivity.
The following command verifies the network from cluster 1 to cluster 2:
kubectl --context ${context_1} exec sample-nginx -- curl http://sample-

↪→ nginx.sample-nginx-peer.default.svc.${cluster_domain_2}:80

If the output is the welcome page of nginx, the network is connected.

146

4. After the verification, delete the nginx services:
kubectl --context ${context_1} -n default delete -f sample-nginx.yaml
kubectl --context ${context_2} -n default delete -f sample-nginx.yaml
kubectl --context ${context_3} -n default delete -f sample-nginx.yaml

4.6.2.6 Step 4. Deploy TiDB Operator
The TidbCluster CR of each cluster is managed by TiDB Operator of the cluster.

Therefore, you must deploy TiDB Operator for each cluster.
Refer to Deploy TiDB Operator and deploy TiDB Operator in each GKE cluster. Note

that you need to use kubectl --context ${context} and helm --kube-context ${
↪→ context} in the commands to deploy TiDB Operator for each GKE cluster.

4.6.2.7 Step 5. Deploy TiDB clusters
Refer to Deploy a TiDB Cluster across Multiple Kubernetes Clusters, and deploy a

TidbCluster CR for each GKE cluster.
In the TidbCluster CR, the spec.clusterDomain field must be the same as ${

↪→ cluster_domain_n} defined in Step 2.
For example, when you deploy the TidbCluster CR to cluster 1, specify spec.

↪→ clusterDomain as ${cluster_domain_1}:
apiVersion: pingcap.com/v1alpha1
kind: TidbCluster
...
spec:
#..
clusterDomain: "${cluster_domain_1}"
acrossK8s: true

4.6.2.8 What’s next

• Read Deploy a TiDB Cluster across Multiple Kubernetes Clusters to learn how to
manage a TiDB cluster across multiple Kubernetes clusters.

4.6.3 Deploy a TiDB Cluster across Multiple Kubernetes Clusters

To deploy a TiDB cluster across multiple Kubernetes clusters refers to deploying one
TiDB cluster on multiple interconnected Kubernetes clusters. Each component of the cluster
is distributed on multiple Kubernetes clusters to achieve disaster recovery among Kubernetes
clusters. The interconnected network of Kubernetes clusters means that Pod IP can be
accessed in any cluster and between clusters, and Pod FQDN records can be looked up by
querying the DNS service in any cluster and between clusters.

147

4.6.3.1 Prerequisites
You need to configure the Kubernetes network and DNS so that the Kubernetes cluster

meets the following conditions:

• The TiDB components on each Kubernetes cluster can access the Pod IP of all TiDB
components in and between clusters.

• The TiDB components on each Kubernetes cluster can look up the Pod FQDN of all
TiDB components in and between clusters.

To build multiple connected EKS or GKE clusters, refer to Build Multiple Interconnected
AWS EKS Clusters or Build Multiple Interconnected Google Cloud GKE Clusters.

4.6.3.2 Supported scenarios
Currently supported scenarios:

• Deploy a new TiDB cluster across multiple Kubernetes clusters.
• Deploy new TiDB clusters that enable this feature on other Kubernetes clusters and

join the initial TiDB cluster.

Experimentally supported scenarios:

• Enable this feature for a cluster that already has data. If you need to perform this
action in a production environment, it is recommended to complete this requirement
through data migration.

Unsupported scenarios:

• You cannot interconnect two clusters that already have data. You might perform this
action through data migration.

4.6.3.3 Deploy a cluster across multiple Kubernetes clusters
Before you deploy a TiDB cluster across multiple Kubernetes clusters, you need to

first deploy the Kubernetes clusters required for this operation. The following deployment
assumes that you have completed Kubernetes deployment.

The following takes the deployment of one TiDB cluster across two Kubernetes clusters
as an example. One TidbCluster is deployed in each Kubernetes cluster.

In the following sections, ${tc_name_1} and ${tc_name_2} refer to the name of
TidbCluster that will be deployed in each Kubernetes cluster. ${namespace_1} and $
↪→ {namespace_2} refer to the namespace of TidbCluster. ${cluster_domain_1} and
${cluster_domain_2} refer to the Cluster Domain of each Kubernetes cluster.

148

https://kubernetes.io/docs/tasks/administer-cluster/dns-custom-nameservers/#introduction

4.6.3.3.1 Step 1. Deploy the initial TidbCluster
Create and deploy the initial TidbCluster.

cat << EOF | kubectl apply -n ${namespace_1} -f -
apiVersion: pingcap.com/v1alpha1
kind: TidbCluster
metadata:
name: "${tc_name_1}"

spec:
version: v8.5.0
timezone: UTC
pvReclaimPolicy: Delete
enableDynamicConfiguration: true
configUpdateStrategy: RollingUpdate
clusterDomain: "${cluster_domain_1}"
acrossK8s: true
discovery: {}
pd:
baseImage: pingcap/pd
maxFailoverCount: 0
replicas: 1
requests:
storage: "10Gi"

config: {}
tikv:
baseImage: pingcap/tikv
maxFailoverCount: 0
replicas: 1
requests:
storage: "10Gi"

config: {}
tidb:
baseImage: pingcap/tidb
maxFailoverCount: 0
replicas: 1
service:

type: ClusterIP
config: {}

EOF

The descriptions of the related fields are as follows:

• spec.acrossK8s: Specifies whether the TiDB cluster is deployed across Kubernetes
clusters. In this example, this field must be set to true.

149

• spec.clusterDomain: If this field is set, the Pod FQDN which contains the cluster
domain is used as the address for inter-component access.
Take Pod ${tc_name}-pd-0 as an example: Pods in other Kubernetes clusters
access this Pod using the ${tc_name}-pd-0.${tc_name}-pd-peer.${ns}.svc.${
↪→ cluster_domain} address.
If the cluster domain is required when Pods access the Pod FQDB of another Kuber-
netes cluster, you must set this field.

4.6.3.3.2 Step 2. Deploy the new TidbCluster to join the TiDB cluster
After the initial cluster completes the deployment, you can deploy the new TidbCluster

to join the TiDB cluster. You can create a new TidbCluster to join any existing TidbCluster.
cat << EOF | kubectl apply -n ${namespace_2} -f -
apiVersion: pingcap.com/v1alpha1
kind: TidbCluster
metadata:
name: "${tc_name_2}"

spec:
version: v8.5.0
timezone: UTC
pvReclaimPolicy: Delete
enableDynamicConfiguration: true
configUpdateStrategy: RollingUpdate
clusterDomain: "${cluster_domain_2}"
acrossK8s: true
cluster:
name: "${tc_name_1}"
namespace: "${namespace_1}"
clusterDomain: "${cluster_domain_1}"

discovery: {}
pd:
baseImage: pingcap/pd
maxFailoverCount: 0
replicas: 1
requests:
storage: "10Gi"

config: {}
tikv:
baseImage: pingcap/tikv
maxFailoverCount: 0
replicas: 1
requests:
storage: "10Gi"

config: {}

150

tidb:
baseImage: pingcap/tidb
maxFailoverCount: 0
replicas: 1
service:

type: ClusterIP
config: {}

EOF

4.6.3.4 Deploy the TLS-enabled TiDB cluster across multiple Kubernetes clus-
ters

You can follow the steps below to enable TLS between TiDB components for TiDB
clusters deployed across multiple Kubernetes clusters.

The following takes the deployment of a TiDB cluster across two Kubernetes clusters as
an example. One TidbCluster is deployed in each Kubernetes cluster.

In the following sections, ${tc_name_1} and ${tc_name_2} refer to the name of
TidbCluster that will be deployed in each Kubernetes cluster. ${namespace_1} and $
↪→ {namespace_2} refer to the namespace of TidbCluster. ${cluster_domain_1} and
${cluster_domain_2} refer to the Cluster Domain of each Kubernetes cluster.

4.6.3.4.1 Step 1. Issue the root certificate
Use cfssl
If you use cfssl, the CA certificate issue process is the same as the general issue process.

You need to save the CA certificate created for the first time, and use this CA certificate
when you issue certificates for TiDB components later.

In other words, when you create a component certificate in a cluster, you do not need
to create a CA certificate again. Complete step 1 ~ 4 in Enabling TLS between TiDB
components once to issue the CA certificate. After that, start from step 5 to issue certificates
between other cluster components.

Use cert-manager
If you use cert-manager, you only need to create a CA Issuer and a CA Certificate

in the initial cluster, and export the CA Secret to other new clusters that want to join.
For other clusters, you only need to create a component certificate Issuer (refers to

${cluster_name}-tidb-issuer in the TLS document) and configure the Issuer to use the
CA. The detailed process is as follows:

1. Create a CA Issuer and a CA Certificate in the initial Kubernetes cluster.
Run the following command:

151

https://kubernetes.io/docs/tasks/administer-cluster/dns-custom-nameservers/#introduction

cat <<EOF | kubectl apply -f -
apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
name: ${tc_name_1}-selfsigned-ca-issuer
namespace: ${namespace}

spec:
selfSigned: {}

apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${tc_name_1}-ca
namespace: ${namespace_1}

spec:
secretName: ${tc_name_1}-ca-secret
commonName: "TiDB"
isCA: true
duration: 87600h # 10yrs
renewBefore: 720h # 30d
issuerRef:
name: ${tc_name_1}-selfsigned-ca-issuer
kind: Issuer

EOF

2. Export the CA and delete irrelevant information.
First, you need to export the Secret that stores the CA. The name of the Secret can
be obtained from .spec.secretName of the Certificate YAML file in the first step.
kubectl get secret ${tc_name_1}-ca-secret -n ${namespace_1} -o yaml >

↪→ ca.yaml

Delete irrelevant information in the Secret YAML file. After the deletion, the YAML
file is as follows (the information in data is omitted):
apiVersion: v1
data:
ca.crt: LS0...LQo=
tls.crt: LS0t....LQo=
tls.key: LS0t...tCg==

kind: Secret
metadata:
name: ${tc_name_2}-ca-secret

type: kubernetes.io/tls

152

3. Import the exported CA to other clusters.
You need to configure the namespace so that related components can access the CA
certificate:
kubectl apply -f ca.yaml -n ${namespace_2}

4. Create a component certificate Issuer in all Kubernetes clusters and configure it to
use this CA.

1. In the initial Kubernetes cluster, create an Issuer that issues certificates between
TiDB components.
Run the following command:
cat << EOF | kubectl apply -f -
apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
name: ${tc_name_1}-tidb-issuer
namespace: ${namespace_1}

spec:
ca:
secretName: ${tc_name_1}-ca-secret

EOF

2. In other Kubernetes clusters, create an Issuer that issues certificates between
TiDB components.

Run the following command:
bash cat << EOF | kubectl apply -f - apiVersion: cert-manager.io/v1
↪→ kind: Issuer metadata: name: ${tc_name_2}-tidb-issuer namespace: $
↪→ {namespace_2} spec: ca: secretName: ${tc_name_2}-ca-secret
↪→ EOF

4.6.3.4.2 Step 2. Issue certificates for the TiDB components of each Kuber-
netes cluster

You need to issue a component certificate for each TiDB component on the Kubernetes
cluster. When issuing a component certificate, you need to add an authorization record end-
ing with .${cluster_domain} to the hosts, for example, the record of the initial TidbCluster
is ${tc_name_1}-pd.${namespace_1}.svc.${cluster_domain_1}.

Use the cfssl system to issue certificates for TiDB components
The following example shows how to use cfssl to create a certificate used by PD. Run

the following command to create the pd-server.json file for the initial TidbCluster.

153

cat << EOF > pd-server.json
{

"CN": "TiDB",
"hosts": [
"127.0.0.1",
"::1",
"${tc_name_1}-pd",
"${tc_name_1}-pd.${namespace_1}",
"${tc_name_1}-pd.${namespace_1}.svc",
"${tc_name_1}-pd.${namespace_1}.svc.${cluster_domain_1}",
"${tc_name_1}-pd-peer",
"${tc_name_1}-pd-peer.${namespace_1}",
"${tc_name_1}-pd-peer.${namespace_1}.svc",
"${tc_name_1}-pd-peer.${namespace_1}.svc.${cluster_domain_1}",
"*.${tc_name_1}-pd-peer",
"*.${tc_name_1}-pd-peer.${namespace_1}",
"*.${tc_name_1}-pd-peer.${namespace_1}.svc",
"*.${tc_name_1}-pd-peer.${namespace_1}.svc.${cluster_domain_1}"

],
"key": {

"algo": "ecdsa",
"size": 256

},
"names": [

{
"C": "US",
"L": "CA",
"ST": "San Francisco"

}
]

}
EOF

Use the cert-manager system to issue certificates for TiDB components
The following example shows how to use cert-manager to create a certificate used by

PD for the initial TidbCluster. Certificates is shown below.
cat << EOF | kubectl apply -f -
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${tc_name_1}-pd-cluster-secret
namespace: ${namespace_1}

spec:

154

secretName: ${tc_name_1}-pd-cluster-secret
duration: 8760h # 365d
renewBefore: 360h # 15d
subject:
organizations:
- PingCAP

commonName: "TiDB"
usages:
- server auth
- client auth

dnsNames:
- "${tc_name_1}-pd"
- "${tc_name_1}-pd.${namespace_1}"
- "${tc_name_1}-pd.${namespace_1}.svc"
- "${tc_name_1}-pd.${namespace_1}.svc.${cluster_domain_1}"
- "${tc_name_1}-pd-peer"
- "${tc_name_1}-pd-peer.${namespace_1}"
- "${tc_name_1}-pd-peer.${namespace_1}.svc"
- "${tc_name_1}-pd-peer.${namespace_1}.svc.${cluster_domain_1}"
- "*.${tc_name_1}-pd-peer"
- "*.${tc_name_1}-pd-peer.${namespace_1}"
- "*.${tc_name_1}-pd-peer.${namespace_1}.svc"
- "*.${tc_name_1}-pd-peer.${namespace_1}.svc.${cluster_domain_1}"

ipAddresses:
- 127.0.0.1
- ::1
issuerRef:
name: ${tc_name_1}-tidb-issuer
kind: Issuer
group: cert-manager.io

EOF

You need to refer to the TLS-related documents, issue the corresponding certificates for
the components, and create the Secret in the corresponding Kubernetes clusters.

For other TLS-related information, refer to the following documents:

• Enable TLS between TiDB Components
• Enable TLS for the MySQL Client

4.6.3.4.3 Step 3. Deploy the initial TidbCluster
Run the following commands to deploy the initial TidbCluster. The following YAML file

enables the TLS feature and configures cert-allowed-cn, which makes each component
start to verify the certificates issued by the CN for the CA of TiDB.

155

cat << EOF | kubectl apply -n ${namespace_1} -f -
apiVersion: pingcap.com/v1alpha1
kind: TidbCluster
metadata:
name: "${tc_name_1}"

spec:
version: v8.5.0
timezone: UTC
tlsCluster:
enabled: true
pvReclaimPolicy: Delete
enableDynamicConfiguration: true
configUpdateStrategy: RollingUpdate
clusterDomain: "${cluster_domain_1}"
acrossK8s: true
discovery: {}
pd:
baseImage: pingcap/pd
maxFailoverCount: 0
replicas: 1
requests:
storage: "10Gi"

config:
security:
cert-allowed-cn:
- TiDB

tikv:
baseImage: pingcap/tikv
maxFailoverCount: 0
replicas: 1
requests:
storage: "10Gi"

config:
security:
cert-allowed-cn:
- TiDB

tidb:
baseImage: pingcap/tidb
maxFailoverCount: 0
replicas: 1
service:

type: ClusterIP
tlsClient:
enabled: true

156

config:
security:
cert-allowed-cn:
- TiDB

EOF

4.6.3.4.4 Step 4. Deploy a new TidbCluster to join the TiDB cluster
After the initial cluster completes the deployment, you can deploy the new TidbCluster

to join the TiDB cluster. You can create a new TidbCluster to join any existing TidbCluster.
cat << EOF | kubectl apply -n ${namespace_2} -f -
apiVersion: pingcap.com/v1alpha1
kind: TidbCluster
metadata:
name: "${tc_name_2}"

spec:
version: v8.5.0
timezone: UTC
tlsCluster:
enabled: true
pvReclaimPolicy: Delete
enableDynamicConfiguration: true
configUpdateStrategy: RollingUpdate
clusterDomain: "${cluster_domain_2}"
acrossK8s: true
cluster:
name: "${tc_name_1}"
namespace: "${namespace_1}"
clusterDomain: "${cluster_domain_1}"

discovery: {}
pd:
baseImage: pingcap/pd
maxFailoverCount: 0
replicas: 1
requests:
storage: "10Gi"

config:
security:
cert-allowed-cn:
- TiDB

tikv:
baseImage: pingcap/tikv
maxFailoverCount: 0
replicas: 1

157

requests:
storage: "10Gi"

config:
security:
cert-allowed-cn:
- TiDB

tidb:
baseImage: pingcap/tidb
maxFailoverCount: 0
replicas: 1
service:

type: ClusterIP
tlsClient:
enabled: true

config:
security:
cert-allowed-cn:
- TiDB

EOF

4.6.3.5 Upgrade TiDB Cluster
For a TiDB cluster deployed across Kubernetes clusters, to perform a rolling upgrade

for each component Pod of the TiDB cluster, take the following steps in sequence to modify
the version configuration of each component in the TidbCluster spec for each Kubernetes
cluster.

1. Upgrade PD versions for all Kubernetes clusters.

2. Modify the spec.pd.version field in the spec for the initial TidbCluster.
yaml apiVersion: pingcap.com/v1alpha1 kind: TidbCluster # ... spec:
↪→ pd: version: ${version}

2. Watch the status of PD Pods and wait for PD Pods in the initial TidbCluster to
finish recreation and become Running.

3. Repeat the first two substeps to upgrade all PD Pods in other TidbCluster.

3. Take step 1 as an example, perform the following upgrade operations in sequence:

1. If PD microservices (introduced in TiDB v8.0.0) are deployed in clusters, up-
grade the version of PD microservices for all Kubernetes clusters that have PD
microservices deployed.

2. If TiProxy is deployed in clusters, upgrade the TiProxy versions for all the Ku-
bernetes clusters that have TiProxy deployed.

158

https://docs.pingcap.com/tidb/dev/pd-microservices

3. If TiFlash is deployed in clusters, upgrade the TiFlash versions for all the Kuber-
netes clusters that have TiFlash deployed.

4. Upgrade TiKV versions for all Kubernetes clusters.
5. If Pump is deployed in clusters, upgrade the Pump versions for all the Kubernetes

clusters that have Pump deployed.
6. Upgrade TiDB versions for all Kubernetes clusters.
7. If TiCDC is deployed in clusters, upgrade the TiCDC versions for all the Kuber-

netes clusters that have TiCDC deployed.

4.6.3.6 Exit and reclaim TidbCluster that already join a cross-Kubernetes clus-
ter

When you need to make a cluster exit from the joined TiDB cluster deployed across
Kubernetes and reclaim resources, you can perform the operation by scaling in the cluster.
In this scenario, the following requirements of scaling-in need to be met.

• After scaling in the cluster, the number of TiKV replicas in the cluster should be
greater than the number of max-replicas set in PD. By default, the number of TiKV
replicas needs to be greater than three.

Take the second TidbCluster created in the last section as an example. First, set the
number of replicas of PD, TiKV, and TiDB to 0. If you have enabled other components
such as TiFlash, TiCDC, TiProxy, and Pump, set the number of these replicas to 0:

Note:
Starting from v8.0.0, PD supports the microservice mode. If PD microservices
are configured, you also need to set the replicas of the corresponding PD
microservice component to 0 in the pdms configuration.

kubectl patch tc ${tc_name_2} -n ${namespace_2} --type merge -p '{"spec":{"
↪→ pd":{"replicas":0},"tikv":{"replicas":0},"tidb":{"replicas":0}}}'

Wait for the status of the second TidbCluster to become Ready, and scale in related
components to 0 replica:
kubectl get pods -l app.kubernetes.io/instance=${tc_name_2} -n ${namespace_2

↪→ }

The Pod list shows No resources found. At this time, all Pods have been scaled in, and
the second TidbCluster exits the cluster. Check the cluster status of the second TidbCluster:
kubectl get tc ${tc_name_2} -n ${namespace_2}

159

The result shows that the second TidbCluster is in the Ready status. At this time, you
can delete the object and reclaim related resources.
kubectl delete tc ${tc_name_2} -n ${namespace_2}

Through the above steps, you can complete exit and resources reclaim of the joined
clusters.

4.6.3.7 Enable the feature for a cluster with existing data and make it the initial
TiDB cluster

Warning:
Currently, this is an experimental feature and might cause data loss. Please
use it carefully.

A cluster with existing data refer to a deployed TiDB cluster with the configuration
spec.acrossK8s: false.

Depending on the network between multiple Kubernetes clusters, there are different
methods.

If all Kubernetes have the same Cluster Domain, you only need to update the spec.
↪→ crossK8s configuration of TidbCluster. Run the following command:
kubectl patch tidbcluster cluster1 --type merge -p '{"spec":{"acrossK8s":

↪→ true}}'

After the modification, wait for the TiDB cluster to complete rolling update.
If each Kubernetes have different Cluster Domain, you need to update the spec.

↪→ clusterDomain and spec.acrossK8s fields. Take the following steps:

1. Update the spec.clusterDomain and spec.acrossK8s fields:
Configure the following parameters according to the clusterDomain in your Kuber-
netes cluster information:

Warning:
Currently, you need to configure clusterDomain with correct informa-
tion. After modifying the configuration, you can not modify it again.

160

kubectl patch tidbcluster cluster1 --type merge -p '{"spec":{"
↪→ clusterDomain":"cluster1.com", "acrossK8s": true}}'

After completing the modification, the TiDB cluster performs the rolling update.

2. Update the PeerURL information of PD:
After completing the rolling update, you need to use port-forward to expose PD’s
API, and use API of PD to update PeerURL of PD.

1. Use port-forward to expose API of PD:
kubectl port-forward pods/cluster1-pd-0 2380:2380 2379:2379 -n

↪→ pingcap

2. Access PD API to obtain members information. Note that after using port-
↪→ forward, the terminal session is occupied. You need to perform the following
operations in another terminal session:
curl http://127.0.0.1:2379/v2/members

Note:
If the cluster enables TLS, you need to configure the certificate when
using the curl command. For example:
curl --cacert /var/lib/pd-tls/ca.crt --cert /var/lib/
↪→ pd-tls/tls.crt --key /var/lib/pd-tls/tls.key https
↪→ ://127.0.0.1:2379/v2/members

After running the command, the output is as follows:
{"members":[{"id":"6ed0312dc663b885","name":"cluster1-pd-0.cluster1

↪→ -pd-peer.pingcap.svc.cluster1.com","peerURLs":["http://
↪→ cluster1-pd-0.cluster1-pd-peer.pingcap.svc:2380"],"
↪→ clientURLs":["http://cluster1-pd-0.cluster1-pd-peer.pingcap.
↪→ svc.cluster1.com:2379"]},{"id":"bd9acd3d57e24a32","name":"
↪→ cluster1-pd-1.cluster1-pd-peer.pingcap.svc.cluster1.com","
↪→ peerURLs":["http://cluster1-pd-1.cluster1-pd-peer.pingcap.
↪→ svc:2380"],"clientURLs":["http://cluster1-pd-1.cluster1-pd-
↪→ peer.pingcap.svc.cluster1.com:2379"]},{"id":"
↪→ e04e42cccef60246","name":"cluster1-pd-2.cluster1-pd-peer.
↪→ pingcap.svc.cluster1.com","peerURLs":["http://cluster1-pd-2.
↪→ cluster1-pd-peer.pingcap.svc:2380"],"clientURLs":["http://
↪→ cluster1-pd-2.cluster1-pd-peer.pingcap.svc.cluster1.com
↪→ :2379"]}]}

161

3. Record the id of each PD instance, and use the id to update the peerURL of each
member in turn:
member_ID="6ed0312dc663b885"
member_peer_url="http://cluster1-pd-0.cluster1-pd-peer.pingcap.svc.

↪→ cluster1.com:2380"
curl http://127.0.0.1:2379/v2/members/${member_ID} -XPUT \
-H "Content-Type: application/json" -d '{"peerURLs":["${

↪→ member_peer_url}"]}'

After completing the above steps, this TidbCluster can be used as the initial TidbCluster
for TiDB cluster deployment across Kubernetes clusters. You can refer the section to deploy
other TidbCluster.

For more examples and development information, refer to multi-cluster.

4.6.3.8 Deploy TiDB monitoring components
Refer to Deploy TiDB Monitor across Multiple Kubernetes Clusters.

4.7 Deploy a Heterogeneous Cluster for an Existing TiDB Cluster

This document describes how to deploy a heterogeneous cluster for an existing TiDB
cluster. A heterogeneous cluster consists of nodes with different configurations from the
existing TiDB cluster.

4.7.1 Usage scenarios

This document is applicable to scenarios in which you need to create differentiated in-
stances for an existing TiDB cluster, such as the following:

• Create TiKV clusters with different configurations and different labels for hotspot
scheduling.

• Create TiDB clusters with different configurations for OLTP and OLAP queries.

4.7.2 Prerequisites

You already have a TiDB cluster. If not, deploy a TiDB cluster on Kubernetes first.

4.7.3 Deploy a heterogeneous cluster

Depending on whether you need to enable Transport Layer Security (TLS) for a hetero-
geneous cluster, choose one of the following methods:

162

https://github.com/pingcap/tidb-operator/tree/v1.6.1/examples/multi-cluster

• Deploy a heterogeneous cluster
• Deploy a TLS-enabled heterogeneous cluster

To deploy a heterogeneous cluster, do the following:

1. Create a cluster configuration file for the heterogeneous cluster.
Run the following command to create a cluster configuration file for the heterogeneous
cluster. Replace ${origin_cluster_name} with the name of the existing cluster, and
replace ${heterogeneous_cluster_name} with the name of the heterogeneous cluster.
To view the monitoring data of both the existing cluster and the heterogeneous cluster
in the same Grafana of TidbMonitor, you need to name the heterogeneous cluster with
the prefix of the existing cluster name.

Note:
Comparing with the configuration file of a normal TiDB cluster, the only
difference in the configuration file of a heterogeneous TiDB cluster is
that you need to additionally specify the spec.cluster.name field as
the name of an existing TiDB cluster. According to this field, TiDB
Operator adds the heterogeneous cluster to the existing TiDB cluster.

origin_cluster_name=basic
heterogeneous_cluster_name=basic-heterog
cat > cluster.yaml << EOF
apiVersion: pingcap.com/v1alpha1
kind: TidbCluster
metadata:
name: ${heterogeneous_cluster_name}

spec:
configUpdateStrategy: RollingUpdate
version: v8.5.0
timezone: UTC
pvReclaimPolicy: Delete
discovery: {}
cluster:
name: ${origin_cluster_name}

tikv:
baseImage: pingcap/tikv
maxFailoverCount: 0
replicas: 1
If storageClassName is not set, the default Storage Class of the

↪→ Kubernetes cluster is used.
storageClassName: local-storage

163

requests:
storage: "100Gi"

config: {}
tidb:
baseImage: pingcap/tidb
maxFailoverCount: 0
replicas: 1
service:

type: ClusterIP
config: {}

tiflash:
baseImage: pingcap/tiflash
maxFailoverCount: 0
replicas: 1
storageClaims:
- resources:

requests:
storage: 100Gi

EOF

For more configurations and field meanings of TiDB cluster, see the TiDB cluster
configuration document.

2. In the configuration file of your heterogeneous cluster, modify the configurations of
each node according to your need.
For example, you can modify the number of replicas for each component in the
cluster.yaml file, or remove components that are not needed.

3. Create the heterogeneous cluster by running the following command. You need to
replace cluster.yaml with the configuration filename of your heterogeneous cluster.
kubectl create -f cluster.yaml -n ${namespace}

If the output shows tidbcluster.pingcap.com/${heterogeneous_cluster_name}
↪→ created, the execution is successful. Then, TiDB Operator will create the TiDB
cluster with the configurations according to the cluster configuration file.

To enable TLS for a heterogeneous cluster, you need to explicitly declare the TLS con-
figuration, issue the certificates using the same certification authority (CA) as the target
cluster and create new secrets with the certificates.

If you want to issue the certificate using cert-manager, choose the same Issuer as that
of the target cluster to create your Certificate.

For detailed procedures to create certificates for the heterogeneous cluster, refer to the
following two documents:

164

• Enable TLS between TiDB Components
• Enable TLS for the MySQL Client

After creating certificates, take the following steps to deploy a TLS-enabled heteroge-
neous cluster.

1. Create a cluster configuration file for the heterogeneous cluster.
For example, save the following configuration as the cluster.yaml file. Replace ${
↪→ heterogeneous_cluster_name} with the desired name of your heterogeneous clus-
ter, and replace ${origin_cluster_name} with the name of the existing cluster.

Note:
Comparing with the configuration file of a normal TiDB cluster, the only
difference in the configuration file of a heterogeneous TiDB cluster is
that you need to additionally specify the spec.cluster.name field as
the name of an existing TiDB cluster. According to this field, TiDB
Operator adds the heterogeneous cluster to the existing TiDB cluster.

apiVersion: pingcap.com/v1alpha1
kind: TidbCluster
metadata:
name: ${heterogeneous_cluster_name}

spec:
tlsCluster:
enabled: true

configUpdateStrategy: RollingUpdate
version: v8.5.0
timezone: UTC
pvReclaimPolicy: Delete
discovery: {}
cluster:
name: ${origin_cluster_name}

tikv:
baseImage: pingcap/tikv
maxFailoverCount: 0
replicas: 1
If storageClassName is not set, the default Storage Class of the

↪→ Kubernetes cluster is used.
storageClassName: local-storage
requests:
storage: "100Gi"

config: {}

165

tidb:
baseImage: pingcap/tidb
maxFailoverCount: 0
replicas: 1
service:
type: ClusterIP

config: {}
tlsClient:
enabled: true

tiflash:
baseImage: pingcap/tiflash
maxFailoverCount: 0
replicas: 1
storageClaims:
- resources:

requests:
storage: 100Gi

In the configuration file, spec.tlsCluster.enabledcontrols whether to enable TLS
between the components and spec.tidb.tlsClient.enabledcontrols whether to en-
able TLS for the MySQL client.

• For more configurations of a TLS-enabled heterogeneous cluster, see the
‘heterogeneous-tls’ example.

• For more configurations and field meanings of a TiDB cluster, see the TiDB cluster
configuration document.

2. In the configuration file of your heterogeneous cluster, modify the configurations of
each node according to your need.
For example, you can modify the number of replicas for each component in the
cluster.yaml file, or remove components that are not needed.

3. Create the TLS-enabled heterogeneous cluster by running the following command. You
need to replace cluster.yaml with the configuration filename of the heterogeneous
cluster.
kubectl create -f cluster.yaml -n ${namespace}

If the output shows tidbcluster.pingcap.com/${heterogeneous_cluster_name}
↪→ created, the execution is successful. Then, TiDB Operator will create the TiDB
cluster with the configurations according to your cluster configuration file.

4.7.3.1 Deploy a cluster monitoring component
If you need to deploy a monitoring component for a heterogeneous cluster, take the

following steps to add the heterogeneous cluster name to the TidbMonitor CR file of an
existing TiDB cluster.

166

https://github.com/pingcap/tidb-operator/tree/v1.6.1/examples/heterogeneous-tls

1. Edit the TidbMonitor Custom Resource (CR) of the existing TiDB cluster:
kubectl edit tm ${cluster_name} -n ${namespace}

2. Replace ${heterogeneous_cluster_name} with the desired name of your heteroge-
neous cluster, and replace ${origin_cluster_name} with the name of the existing
cluster. For example:
apiVersion: pingcap.com/v1alpha1
kind: TidbMonitor
metadata:
name: heterogeneous
spec:
clusters:

- name: ${origin_cluster_name}
- name: ${heterogeneous_cluster_name}

prometheus:
baseImage: prom/prometheus
version: v2.27.1

grafana:
baseImage: grafana/grafana
version: 7.5.11

initializer:
baseImage: pingcap/tidb-monitor-initializer
version: v8.5.0

reloader:
baseImage: pingcap/tidb-monitor-reloader
version: v1.0.1

prometheusReloader:
baseImage: quay.io/prometheus-operator/prometheus-config-reloader
version: v0.49.0

imagePullPolicy: IfNotPresent

4.8 Deploy TiCDC on Kubernetes

TiCDC is a tool for replicating the incremental data of TiDB. This document describes
how to deploy TiCDC on Kubernetes using TiDB Operator.

You can deploy TiCDC when deploying a new TiDB cluster, or add the TiCDC compo-
nent to an existing TiDB cluster.

4.8.1 Prerequisites

TiDB Operator is deployed.

167

https://docs.pingcap.com/tidb/stable/ticdc-overview

4.8.2 Fresh TiCDC deployment

To deploy TiCDC when deploying the TiDB cluster, refer to Deploy TiDB on General
Kubernetes.

4.8.3 Add TiCDC to an existing TiDB cluster

1. Edit TidbCluster Custom Resource:
kubectl edit tc ${cluster_name} -n ${namespace}

2. Add the TiCDC configuration as follows:
spec:
ticdc:
baseImage: pingcap/ticdc
replicas: 3

3. Mount persistent volumes (PVs) for TiCDC。
TiCDC supports mounting multiple PV. It is recommended that you plan the number
of PVs required when deploying TiCDC for the first time. For more information, refer
to Multiple disks mounting。

4. After the deployment, enter a TiCDC Pod by running kubectl exec:
kubectl exec -it ${pod_name} -n ${namespace} -- sh

5. Manage the cluster and data replication tasks by using cdc cli.
The default port for TiCDC server deployed through TiDB operator is

↪→ 8301
/cdc cli capture list --server=http://127.0.0.1:8301

[
{
"id": "3ed24f6c-22cf-446f-9fe0-bf4a66d00f5b",
"is-owner": false,
"address": "${cluster_name}-ticdc-2.${cluster_name}-ticdc-peer.${

↪→ namespace}.svc:8301"
},
{
"id": "60e98ed7-cd49-45f4-b5ae-d3b85ba3cd96",
"is-owner": false,
"address": "${cluster_name}-ticdc-0.${cluster_name}-ticdc-peer.${

↪→ namespace}.svc:8301"
},

168

https://docs.pingcap.com/tidb/stable/manage-ticdc#use-cdc-cli-to-manage-cluster-status-and-data-replication-task

{
"id": "dc3592c0-dace-42a0-8afc-fb8506e8271c",
"is-owner": true,
"address": "${cluster_name}-ticdc-1.${cluster_name}-ticdc-peer.${

↪→ namespace}.svc:8301"
}

]

Starting from v4.0.3, TiCDC supports TLS. TiDB Operator supports enabling TLS
for TiCDC since v1.1.3.
If TLS is enabled when you create the TiDB cluster, add TLS certificate-related pa-
rameters when you use cdc cli.
/cdc cli capture list --server=http://127.0.0.1:8301 --ca=/var/lib/

↪→ cluster-client-tls/ca.crt --cert=/var/lib/cluster-client-tls/tls.
↪→ crt --key=/var/lib/cluster-client-tls/tls.key

If the server does not have an external network, refer to deploy TiDB cluster to down-
load the required Docker image on the machine with an external network and upload
it to the server.

4.9 Deploy TiDB Binlog

This document describes how to maintain TiDB Binlog of a TiDB cluster on Kubernetes.

Warning:
Starting from TiDB v7.5.0, TiDB Binlog replication is deprecated. Starting
from v8.3.0, TiDB Binlog is fully deprecated, with removal planned for a
future release. For incremental data replication, use TiCDC instead. For
point-in-time recovery (PITR), use PITR.

4.9.1 Prerequisites

• Deploy TiDB Operator;
• Install Helm and configure it with the official PingCAP chart.

4.9.2 Deploy TiDB Binlog in a TiDB cluster

TiDB Binlog is disabled in the TiDB cluster by default. To create a TiDB cluster with
TiDB Binlog enabled, or enable TiDB Binlog in an existing TiDB cluster, take the following
steps.

169

https://docs.pingcap.com/tidb/stable/tidb-binlog-overview

4.9.2.1 Deploy Pump

1. Modify the TidbCluster CR file to add the Pump configuration.
For example:
spec:
...
pump:
baseImage: pingcap/tidb-binlog
version: v8.1.0
replicas: 1
storageClassName: local-storage
requests:
storage: 30Gi

schedulerName: default-scheduler
config:
addr: 0.0.0.0:8250
gc: 7
heartbeat-interval: 2

Since v1.1.6, TiDB Operator supports passing raw TOML configuration to the compo-
nent:
spec:
...
pump:
baseImage: pingcap/tidb-binlog
version: v8.1.0
replicas: 1
storageClassName: local-storage
requests:
storage: 30Gi

schedulerName: default-scheduler
config: |
addr = "0.0.0.0:8250"
gc = 7
heartbeat-interval = 2

Edit version, replicas, storageClassName, and requests.storage according to
your cluster.

2. Set affinity and anti-affinity for TiDB and Pump.
If you enable TiDB Binlog in the production environment, it is recommended to set
affinity and anti-affinity for TiDB and the Pump component; if you enable TiDB Binlog
in a test environment on the internal network, you can skip this step.

170

By default, the affinity of TiDB and Pump is set to {}. Currently, each TiDB instance
does not have a corresponding Pump instance by default. When TiDB Binlog is en-
abled, if Pump and TiDB are separately deployed and network isolation occurs, and
ignore-error is enabled in TiDB components, TiDB loses binlogs.
In this situation, it is recommended to deploy a TiDB instance and a Pump instance on
the same node using the affinity feature, and to split Pump instances on different nodes
using the anti-affinity feature. For each node, only one Pump instance is required. The
steps are as follows:

• Configure spec.tidb.affinity as follows:
spec:
tidb:
affinity:
podAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 100
podAffinityTerm:
labelSelector:
matchExpressions:
- key: "app.kubernetes.io/component"
operator: In
values:
- "pump"

- key: "app.kubernetes.io/managed-by"
operator: In
values:
- "tidb-operator"

- key: "app.kubernetes.io/name"
operator: In
values:
- "tidb-cluster"

- key: "app.kubernetes.io/instance"
operator: In
values:
- ${cluster_name}

topologyKey: kubernetes.io/hostname

• Configure spec.pump.affinity as follows:
spec:
pump:
affinity:
podAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 100

171

podAffinityTerm:
labelSelector:
matchExpressions:
- key: "app.kubernetes.io/component"
operator: In
values:
- "tidb"

- key: "app.kubernetes.io/managed-by"
operator: In
values:
- "tidb-operator"

- key: "app.kubernetes.io/name"
operator: In
values:
- "tidb-cluster"

- key: "app.kubernetes.io/instance"
operator: In
values:
- ${cluster_name}

topologyKey: kubernetes.io/hostname
podAntiAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 100
podAffinityTerm:
labelSelector:
matchExpressions:
- key: "app.kubernetes.io/component"
operator: In
values:
- "pump"

- key: "app.kubernetes.io/managed-by"
operator: In
values:
- "tidb-operator"

- key: "app.kubernetes.io/name"
operator: In
values:
- "tidb-cluster"

- key: "app.kubernetes.io/instance"
operator: In
values:
- ${cluster_name}

topologyKey: kubernetes.io/hostname

172

Note:
If you update the affinity configuration of the TiDB components, it will
cause rolling updates of the TiDB components in the cluster.

4.9.3 Deploy Drainer

To deploy multiple drainers using the tidb-drainer Helm chart for a TiDB cluster, take
the following steps:

1. Make sure that the PingCAP Helm repository is up to date:
helm repo update

helm search repo tidb-drainer -l

2. Get the default values.yaml file to facilitate customization:
helm inspect values pingcap/tidb-drainer --version=${chart_version} >

↪→ values.yaml

3. Modify the values.yaml file to specify the source TiDB cluster and the downstream
database of the drainer. Here is an example:
clusterName: example-tidb
clusterVersion: v8.1.0
baseImage:pingcap/tidb-binlog
storageClassName: local-storage
storage: 10Gi
initialCommitTs: "-1"
config: |
detect-interval = 10
[syncer]
worker-count = 16
txn-batch = 20
disable-dispatch = false
ignore-schemas = "INFORMATION_SCHEMA,PERFORMANCE_SCHEMA,mysql"
safe-mode = false
db-type = "tidb"
[syncer.to]
host = "downstream-tidb"
user = "root"
password = ""
port = 4000

173

The clusterName and clusterVersion must match the desired source TiDB cluster.
The initialCommitTs is the starting commit timestamp of data replication when
Drainer has no checkpoint. The value must be set as a string type, such as
"424364429251444742".
For complete configuration details, refer to TiDB Binlog Drainer Configurations on
Kubernetes.

4. Deploy Drainer:
helm install ${release_name} pingcap/tidb-drainer --namespace=${

↪→ namespace} --version=${chart_version} -f values.yaml

If the server does not have an external network, refer to deploy the TiDB cluster to
download the required Docker image on the machine with an external network and
upload it to the server.

Note:
This chart must be installed to the same namespace as the source TiDB
cluster.

4.9.4 Enable TLS

4.9.4.1 Enable TLS between TiDB components
If you want to enable TLS for the TiDB cluster and TiDB Binlog, refer to Enable TLS

between Components.
After you have created a secret and started a TiDB cluster with Pump, edit the values.

↪→ yaml file to set the tlsCluster.enabled value to true, and configure the corresponding
certAllowedCN:
...
tlsCluster:
enabled: true
certAllowedCN:
- TiDB

...

4.9.4.2 Enable TLS between Drainer and the downstream database
If you set the downstream database of tidb-drainer to mysql/tidb, and if you want

to enable TLS between Drainer and the downstream database, take the following steps.

1. Create a secret that contains the TLS information of the downstream database.

174

kubectl create secret generic ${downstream_database_secret_name} --
↪→ namespace=${namespace} --from-file=tls.crt=client.pem --from-file
↪→ =tls.key=client-key.pem --from-file=ca.crt=ca.pem

tidb-drainer saves the checkpoint in the downstream database by default, so you
only need to configure tlsSyncer.tlsClientSecretName and the corresponding
cerAllowedCN:
tlsSyncer:
tlsClientSecretName: ${downstream_database_secret_name}
certAllowedCN:
- TiDB

2. To save the checkpoint of tidb-drainer to other databases that have enabled
TLS, create a secret that contains the TLS information of the checkpoint database:
kubectl create secret generic ${checkpoint_tidb_client_secret} --

↪→ namespace=${namespace} --from-file=tls.crt=client.pem --from-file
↪→ =tls.key=client-key.pem --from-file=ca.crt=ca.pem

Edit the values.yaml file to set the tlsSyncer.checkpoint.tlsClientSecretName
↪→ value to ${checkpoint_tidb_client_secret}, and configure the corresponding
certAllowedCN:
...
tlsSyncer: {}
tlsClientSecretName: ${downstream_database_secret_name}
certAllowedCN:
- TiDB
checkpoint:
tlsClientSecretName: ${checkpoint_tidb_client_secret}
certAllowedCN:
- TiDB

...

4.9.5 Remove Pump/Drainer nodes

For details on how to maintain the node state of the TiDB Binlog cluster, refer to Starting
and exiting a Pump or Drainer process.

If you want to remove the TiDB Binlog component completely, it is recommended that
you first remove Pump nodes and then remove Drainer nodes.

If TLS is enabled for the TiDB Binlog component to be removed, write the following
content into binlog.yaml and execute kubectl apply -f binlog.yaml to start a Pod that
is mounted with the TLS file and the binlogctl tool.

175

https://docs.pingcap.com/tidb/stable/maintain-tidb-binlog-cluster#starting-and-exiting-a-pump-or-drainer-process
https://docs.pingcap.com/tidb/stable/maintain-tidb-binlog-cluster#starting-and-exiting-a-pump-or-drainer-process

apiVersion: v1
kind: Pod
metadata:
name: binlogctl

spec:
containers:
- name: binlogctl
image: pingcap/tidb-binlog:${tidb_version}
command: ['/bin/sh']
stdin: true
stdinOnce: true
tty: true
volumeMounts:
- name: binlog-tls
mountPath: /etc/binlog-tls

volumes:
- name: binlog-tls
secret:
secretName: ${cluster_name}-cluster-client-secret

4.9.5.1 Scale in Pump nodes

1. Scale in Pump Pods:
kubectl patch tc ${cluster_name} -n ${namespace} --type merge -p '{"

↪→ spec":{"pump":{"replicas": ${pump_replicas}}}}'

In the command above, ${pump_replicas} is the desired number of Pump Pods after
the scaling.

Note:
Do not scale in Pump nodes to 0. Otherwise, Pump nodes are removed
completely.

2. Wait for the Pump Pods to automatically be taken offline and deleted. Run the
following command to observe the Pod status:
watch kubectl get po ${cluster_name} -n ${namespace}

3. (Optional) Force Pump to go offline:
If the offline operation fails, that is, the Pump Pods are not deleted for a long time,
you can forcibly mark Pump as offline.

176

• If TLS is not enabled for Pump, mark Pump as offline:
kubectl run update-pump-${ordinal_id} --image=pingcap/tidb-binlog:$

↪→ {tidb_version} --namespace=${namespace} --restart=OnFailure
↪→ -- /binlogctl -pd-urls=http://${cluster_name}-pd:2379 -cmd
↪→ update-pump -node-id ${cluster_name}-pump-${ordinal_id}:8250
↪→ --state offline

• If TLS is enabled for Pump, mark Pump as offline using the previously started
Pod:
kubectl exec binlogctl -n ${namespace} -- /binlogctl -pd-urls=https

↪→ ://${cluster_name}-pd:2379 -cmd update-pump -node-id ${
↪→ cluster_name}-pump-${ordinal_id}:8250 --state offline -ssl-
↪→ ca "/etc/binlog-tls/ca.crt" -ssl-cert "/etc/binlog-tls/tls.
↪→ crt" -ssl-key "/etc/binlog-tls/tls.key"

4.9.5.2 Remove Pump nodes completely

Note:

• Before performing the following steps, you need to have at least one
Pump node in the cluster. If you have scaled in Pump nodes to 0,
you need to scale out Pump at least to 1 node before you perform the
removing operation in this section.

• To scale out the Pump to 1, execute kubectl patch tc ${tidb-
↪→ cluster} -n ${namespace} --type merge -p '{"spec":{"pump
↪→ ":{"replicas": 1}}}'.

1. Before removing Pump nodes, execute kubectl patch tc ${cluster_name} -n ${
↪→ namespace} --type merge -p '{"spec":{"tidb":{"binlogEnabled": false
↪→ }}}'. After the TiDB Pods are rolling updated, you can remove the Pump
nodes.
If you directly remove Pump nodes, it might cause TiDB failure because TiDB has no
Pump nodes to write into.

2. Refer to Scale in Pump to scale in Pump to 0.

3. Execute kubectl patch tc ${cluster_name} -n ${namespace} --type json -p
↪→ '[{"op":"remove", "path":"/spec/pump"}]' to delete all configuration items
of spec.pump.

177

4. Execute kubectl delete sts ${cluster_name}-pump -n ${namespace} to delete
the StatefulSet resources of Pump.

5. View PVCs used by the Pump cluster by executing kubectl get pvc -n ${
↪→ namespace} -l app.kubernetes.io/component=pump. Then delete all the PVC
resources of Pump by executing kubectl delete pvc -l app.kubernetes.io/
↪→ component=pump -n ${namespace}.

4.9.5.3 Remove Drainer nodes

1. Take Drainer nodes offline:
In the following commands, ${drainer_node_id} is the node ID of the Drainer node
to be taken offline. If you have configured drainerName in values.yaml of Helm,
the value of ${drainer_node_id} is ${drainer_name}-0; otherwise, the value of ${
↪→ drainer_node_id} is ${cluster_name}-${release_name}-drainer-0.

• If TLS is not enabled for Drainer, create a Pod to take Drainer offline:
kubectl run offline-drainer-0 --image=pingcap/tidb-binlog:${

↪→ tidb_version} --namespace=${namespace} --restart=OnFailure
↪→ -- /binlogctl -pd-urls=http://${cluster_name}-pd:2379 -cmd
↪→ offline-drainer -node-id ${drainer_node_id}:8249

• If TLS is enabled for Drainer, use the previously started Pod to take Drainer
offline:
kubectl exec binlogctl -n ${namespace} -- /binlogctl -pd-urls "

↪→ https://${cluster_name}-pd:2379" -cmd offline-drainer -node-
↪→ id ${drainer_node_id}:8249 -ssl-ca "/etc/binlog-tls/ca.crt"
↪→ -ssl-cert "/etc/binlog-tls/tls.crt" -ssl-key "/etc/binlog-
↪→ tls/tls.key"

View the log of Drainer by executing the following command:
kubectl logs -f -n ${namespace} ${drainer_node_id}

If drainer offline, please delete my pod is output, this node is successfully
taken offline.

2. Delete the corresponding Drainer Pod:
Execute helm uninstall ${release_name} -n ${namespace} to delete the Drainer
Pod.
If you no longer need Drainer, execute kubectl delete pvc data-${drainer_node_id
↪→ } -n ${namespace} to delete the PVC resources of Drainer.

178

3. (Optional) Force Drainer to go offline:
If the offline operation fails, the Drainer Pod will not output drainer offline,
↪→ please delete my pod. At this time, you can force Drainer to go offline, that is,
taking Step 2 to delete the Drainer Pod and mark Drainer as offline.

• If TLS is not enabled for Drainer, mark Drainer as offline:
kubectl run update-drainer-${ordinal_id} --image=pingcap/tidb-

↪→ binlog:${tidb_version} --namespace=${namespace} --restart=
↪→ OnFailure -- /binlogctl -pd-urls=http://${cluster_name}-pd
↪→ :2379 -cmd update-drainer -node-id ${drainer_node_id}:8249
↪→ --state offline

• If TLS is enabled for Drainer, use the previously started Pod to take Drainer
offline:
kubectl exec binlogctl -n ${namespace} -- /binlogctl -pd-urls=https

↪→ ://${cluster_name}-pd:2379 -cmd update-drainer -node-id ${
↪→ drainer_node_id}:8249 --state offline -ssl-ca "/etc/binlog-
↪→ tls/ca.crt" -ssl-cert "/etc/binlog-tls/tls.crt" -ssl-key "/
↪→ etc/binlog-tls/tls.key"

5 Monitor and Alert

5.1 Deploy Monitoring and Alerts for a TiDB Cluster

This document describes how to monitor a TiDB cluster deployed using TiDB Operator
and configure alerts for the cluster.

5.1.1 Monitor the TiDB cluster

You can monitor the TiDB cluster with Prometheus and Grafana. When you create a
new TiDB cluster using TiDB Operator, you can deploy a separate monitoring system for
the TiDB cluster. The monitoring system must run in the same namespace as the TiDB
cluster, and includes two components: Prometheus and Grafana.

For configuration details on the monitoring system, refer to TiDB Cluster Monitoring.
In TiDB Operator v1.1 or later versions, you can monitor a TiDB cluster on a Kubernetes

cluster by using a simple Custom Resource (CR) file called TidbMonitor.

Note:

179

https://docs.pingcap.com/tidb/stable/deploy-monitoring-services

• spec.clusters[].name should be set to the TidbCluster name of the
corresponding TiDB cluster.

5.1.1.1 Persist monitoring data
The monitoring data is not persisted by default. To persist the monitoring data, you

can set spec.persistent to true in TidbMonitor. When you enable this option, you need
to set spec.storageClassName to an existing storage in the current cluster. This storage
must support persisting data; otherwise, there is a risk of data loss.

A configuration example is as follows:
apiVersion: pingcap.com/v1alpha1
kind: TidbMonitor
metadata:
name: basic

spec:
clusters:
- name: basic

persistent: true
storageClassName: ${storageClassName}
storage: 5G
prometheus:
baseImage: prom/prometheus
version: v2.27.1
service:
type: NodePort

grafana:
baseImage: grafana/grafana
version: 7.5.11
service:
type: NodePort

initializer:
baseImage: pingcap/tidb-monitor-initializer
version: v8.5.0

reloader:
baseImage: pingcap/tidb-monitor-reloader
version: v1.0.1

prometheusReloader:
baseImage: quay.io/prometheus-operator/prometheus-config-reloader
version: v0.49.0

imagePullPolicy: IfNotPresent

To verify the PVC status, run the following command:

180

kubectl get pvc -l app.kubernetes.io/instance=basic,app.kubernetes.io/
↪→ component=monitor -n ${namespace}

NAME STATUS VOLUME CAPACITY ACCESS
↪→ MODES STORAGECLASS AGE

basic-monitor Bound pvc-6db79253-cc9e-4730-bbba-ba987c29db6f 5G RWO
↪→ standard 51s

5.1.1.2 Customize the Prometheus configuration
You can customize the Prometheus configuration by using a customized configuration

file or by adding extra options to the command.

5.1.1.2.1 Use a customized configuration file

1. Create a ConfigMap for your customized configuration, and set the key name of data
to prometheus-config.

2. Set spec.prometheus.config.configMapRef.name and spec.prometheus.config.
↪→ configMapRef.namespace to the name and namespace of the customized Con-
figMap respectively.

3. Check if TidbMonitor has enabled dynamic configuration. If not, you need to restart
TidbMonitor’s pod to reload the configuration.

For the complete configuration, refer to the tidb-operator example.

5.1.1.2.2 Add extra options to the command
To add extra options to the command that starts Prometheus, configure spec.

↪→ prometheus.config.commandOptions.
For the complete configuration, refer to the tidb-operator example.

Note:
The following options are automatically configured by the TidbMonitor con-
troller and cannot be specified again via commandOptions.

• config.file
• log.level
• web.enable-admin-api
• web.enable-lifecycle
• storage.tsdb.path

181

https://github.com/pingcap/tidb-operator/blob/v1.6.1/examples/monitor-with-externalConfigMap/prometheus/README.md
https://github.com/pingcap/tidb-operator/blob/v1.6.1/examples/monitor-with-externalConfigMap/prometheus/README.md

• storage.tsdb.retention
• storage.tsdb.max-block-duration
• storage.tsdb.min-block-duration

5.1.1.3 Access the Grafana monitoring dashboard
You can run the kubectl port-forward command to access the Grafana monitoring

dashboard:
kubectl port-forward -n ${namespace} svc/${cluster_name}-grafana 3000:3000

↪→ &>/tmp/portforward-grafana.log &

Then open http://localhost:3000 in your browser and log on with the default username
and password admin.

You can also set spec.grafana.service.type to NodePort or LoadBalancer, and then
view the monitoring dashboard through NodePort or LoadBalancer.

If there is no need to use Grafana, you can delete the part of spec.grafana in
TidbMonitor during deployment. In this case, you need to use other existing or newly
deployed data visualization tools to directly access the monitoring data.

5.1.1.4 Access the Prometheus monitoring data
To access the monitoring data directly, run the kubectl port-forward command to

access Prometheus:
kubectl port-forward -n ${namespace} svc/${cluster_name}-prometheus

↪→ 9090:9090 &>/tmp/portforward-prometheus.log &

Then open http://localhost:9090 in your browser or access this address via a client tool.
You can also set spec.prometheus.service.type to NodePort or LoadBalancer, and

then view the monitoring data through NodePort or LoadBalancer.

5.1.1.5 Set kube-prometheus and AlertManager
Nodes-Info and Pods-Info monitoring dashboards are built into TidbMonitor Grafana by

default to view the corresponding monitoring metrics of Kubernetes.
To view these monitoring metrics in TidbMonitor Grafana, take the following steps:

1. Deploy Kubernetes cluster monitoring manually.

There are multiple ways to deploy Kubernetes cluster monitoring. To use kube-
prometheus for deployment, see the kube-prometheus documentation.

182

http://localhost:3000
http://localhost:9090
https://github.com/coreos/kube-prometheus

2. Set the TidbMonitor.spec.kubePrometheusURL to obtain Kubernetes monitoring
data.

Similarly, you can configure TidbMonitor to push the monitoring alert to AlertManager.
apiVersion: pingcap.com/v1alpha1
kind: TidbMonitor
metadata:
name: basic

spec:
clusters:
- name: basic

kubePrometheusURL: http://prometheus-k8s.monitoring:9090
alertmanagerURL: alertmanager-main.monitoring:9093
prometheus:
baseImage: prom/prometheus
version: v2.27.1
service:
type: NodePort

grafana:
baseImage: grafana/grafana
version: 7.5.11
service:
type: NodePort

initializer:
baseImage: pingcap/tidb-monitor-initializer
version: v8.5.0

reloader:
baseImage: pingcap/tidb-monitor-reloader
version: v1.0.1

prometheusReloader:
baseImage: quay.io/prometheus-operator/prometheus-config-reloader
version: v0.49.0

imagePullPolicy: IfNotPresent

5.1.2 Enable Ingress

This section introduces how to enable Ingress for TidbMonitor. Ingress is an API object
that exposes HTTP and HTTPS routes from outside the cluster to services within the cluster.

5.1.2.1 Prerequisites
Before using Ingress, you need to install the Ingress controller. Simply creating the

Ingress resource does not take effect.

183

https://prometheus.io/docs/alerting/alertmanager/
https://kubernetes.io/docs/concepts/services-networking/ingress/

You need to deploy the NGINX Ingress controller, or choose from various Ingress con-
trollers.

For more information, see Ingress Prerequisites.

5.1.2.2 Access TidbMonitor using Ingress
Currently, TidbMonitor provides a method to expose the Prometheus/Grafana service

through Ingress. For details about Ingress, see Ingress official documentation.
The following example shows how to enable Prometheus and Grafana in TidbMonitor:

apiVersion: pingcap.com/v1alpha1
kind: TidbMonitor
metadata:
name: ingress-demo

spec:
clusters:
- name: demo

persistent: false
prometheus:
baseImage: prom/prometheus
version: v2.27.1
ingress:
hosts:
- example.com
annotations:
foo: "bar"

grafana:
baseImage: grafana/grafana
version: 7.5.11
service:
type: ClusterIP

ingress:
hosts:
- example.com

annotations:
foo: "bar"

initializer:
baseImage: pingcap/tidb-monitor-initializer
version: v8.5.0

reloader:
baseImage: pingcap/tidb-monitor-reloader
version: v1.0.1

prometheusReloader:
baseImage: quay.io/prometheus-operator/prometheus-config-reloader
version: v0.49.0

184

https://kubernetes.github.io/ingress-nginx/deploy/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress/#prerequisites
https://kubernetes.io/docs/concepts/services-networking/ingress/

imagePullPolicy: IfNotPresent

To modify the setting of Ingress Annotations, configure spec.prometheus.ingress.
↪→ annotations and spec.grafana.ingress.annotations. If you use the default NGINX
Ingress, see NGINX Ingress Controller Annotation for details.

The TidbMonitor Ingress setting also supports TLS. The following example shows how
to configure TLS for Ingress. See Ingress TLS for details.
apiVersion: pingcap.com/v1alpha1
kind: TidbMonitor
metadata:
name: ingress-demo

spec:
clusters:
- name: demo

persistent: false
prometheus:
baseImage: prom/prometheus
version: v2.27.1
ingress:
hosts:
- example.com
tls:
- hosts:
- example.com
secretName: testsecret-tls

grafana:
baseImage: grafana/grafana
version: 7.5.11
service:
type: ClusterIP

initializer:
baseImage: pingcap/tidb-monitor-initializer
version: v8.5.0

reloader:
baseImage: pingcap/tidb-monitor-reloader
version: v1.0.1

prometheusReloader:
baseImage: quay.io/prometheus-operator/prometheus-config-reloader
version: v0.49.0

imagePullPolicy: IfNotPresent

TLS Secret must include the tls.crt and tls.key keys, which include the certificate
and private key used for TLS. For example:

185

https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/
https://kubernetes.io/docs/concepts/services-networking/ingress/#tls

apiVersion: v1
kind: Secret
metadata:
name: testsecret-tls
namespace: ${namespace}

data:
tls.crt: base64 encoded cert
tls.key: base64 encoded key

type: kubernetes.io/tls

In a public cloud-deployed Kubernetes cluster, you can usually configure Loadbalancer
to access Ingress through a domain name. If you cannot configure the Loadbalancer service
(for example, when you use NodePort as the service type of Ingress), you can access the
service in a way equivalent to the following command:
curl -H "Host: example.com" ${node_ip}:${NodePort}

5.1.3 Configure alert

When Prometheus is deployed with a TiDB cluster, some default alert rules are automat-
ically imported. You can view all alert rules and statuses in the current system by accessing
the Alerts page of Prometheus through a browser.

The custom configuration of alert rules is supported. You can modify the alert rules by
taking the following steps:

1. When deploying the monitoring system for the TiDB cluster, set spec.reloader.
↪→ service.type to NodePort or LoadBalancer.

2. Access the reloader service through NodePort or LoadBalancer. Click the Files
↪→ button above to select the alert rule file to be modified, and make the custom
configuration. Click Save after the modification.

The default Prometheus and alert configuration do not support sending alert mes-
sages. To send an alert message, you can integrate Prometheus with any tool that supports
Prometheus alerts. It is recommended to manage and send alert messages via AlertManager.

• If you already have an available AlertManager service in your existing infrastructure,
you can set the value of spec.alertmanagerURL to the address of AlertManager,
which will be used by Prometheus. For details, refer to Set kube-prometheus and
AlertManager.

• If no AlertManager service is available, or if you want to deploy a separate AlertMan-
ager service, refer to the Prometheus official document.

186

https://kubernetes.io/docs/tasks/access-application-cluster/create-external-load-balancer/
https://prometheus.io/docs/alerting/alertmanager/
https://github.com/prometheus/alertmanager

5.1.4 Monitor multiple clusters

Starting from TiDB Operator 1.2, TidbMonitor supports monitoring multiple clusters
across namespaces.

5.1.4.1 Configure the monitoring of multiple clusters using YAML files
For the clusters to be monitored, regardless of whether TLS is enabled or not, you can

monitor them by configuring TidbMonitor’s YAML file.
A configuration example is as follows:

apiVersion: pingcap.com/v1alpha1
kind: TidbMonitor
metadata:
name: basic

spec:
clusterScoped: true
clusters:
- name: ns1
namespace: ns1

- name: ns2
namespace: ns2

persistent: true
storage: 5G
prometheus:
baseImage: prom/prometheus
version: v2.27.1
service:
type: NodePort

grafana:
baseImage: grafana/grafana
version: 7.5.11
service:
type: NodePort

initializer:
baseImage: pingcap/tidb-monitor-initializer
version: v8.5.0

reloader:
baseImage: pingcap/tidb-monitor-reloader
version: v1.0.1

prometheusReloader:
baseImage: quay.io/prometheus-operator/prometheus-config-reloader
version: v0.49.0

imagePullPolicy: IfNotPresent

For a complete configuration example, refer to Example in the TiDB Operator repository.

187

https://github.com/pingcap/tidb-operator/tree/v1.6.1/examples/monitor-multiple-cluster-non-tls

5.1.4.2 Monitor multiple clusters using Grafana
If the tidb-monitor-initializer image is earlier than v4.0.14 or v5.0.3, to monitor

multiple clusters, you can take the following steps in each Grafana Dashboard:

1. On Grafana Dashboard, click Dashboard settings to open the Settings panel.
2. On the Settings panel, select the tidb_cluster variable from Variables, and then set

the Hide property of the tidb_cluster variable to the null option in the drop-down
list.

3. Get back to the current Grafana Dashboard (changes to the Hide property cannot be
saved currently), and you can see the drop-down list for cluster selection. The cluster
name in the drop-down list is in the ${namespace}-${name} format.

If you need to save changes to the Grafana Dashboard, Grafana must be 6.5 or later,
and TiDB Operator must be v1.2.0-rc.2 or later.

5.2 Access TiDB Dashboard

TiDB Dashboard is a visualized tool introduced since TiDB v4.0 and is used to monitor
and diagnose TiDB clusters. For details, see TiDB Dashboard.

This document describes how to access TiDB Dashboard on Kubernetes.

• In a test environment, you can access TiDB Dashboard by port forward.
• In a production environment, it is recommended to access TiDB Dashboard by Ingress.

You can also enable the TLS transfer. See Use Ingress with TLS for details.
• To access TiDB Dashboard without a domain name, you can use NodePort Service.

Note:
Due to the special environment of Kubernetes, some features of TiDB Dash-
board are not supported in TiDB Operator. See Unsupported TiDB Dash-
board features for details.

In this document, you can use the Discovery service to access TiDB Dashboard. TiDB
Operator starts a Discovery service for each TiDB cluster. The Discovery service can return
the corresponding startup parameters for each PD Pod to support the startup of the PD
cluster. The Discovery service can also send proxy requests to the TiDB Dashboard.

188

https://docs.pingcap.com/tidb/stable/dashboard-intro

5.2.1 Prerequisites: Determine the TiDB Dashboard service

This section describes how to determine the TiDB Dashboard service and HTTP path
in different deployment methods of TiDB Dashboard. You can fill in the service and HTTP
path obtained in this section in the target configuration file to access TiDB Dashboard.

TiDB supports two methods to deploy TiDB Dashboard. You can choose one of the two
methods to access TiDB Dashboard:

• Deployed as an independent service. In this deployment method, TiDB Dashboard is
an independent StatefulSet and has a dedicated service. The Web server path can be
configured through TidbDashboard.spec.pathPrefix.

• Built in PD. The TiDB Dashboard deployed in this method is available in the /
↪→ dashboard path of the PD. Other paths outside of this might not have access
control. Note that this deployment method will be removed in future TiDB releases.
Therefore, it is recommended to deploy TiDB Dashboard as an independent service.

5.2.1.1 Access TiDB Dashboard built in PD
To access TiDB Dashboard built in PD, you need to use TiDB Operator v1.1.1 (or later

versions) and the TiDB cluster v4.0.1 (or later versions).
You need to configure the TidbCluster object file as follows to enable quick access to

TiDB Dashboard:
apiVersion: pingcap.com/v1alpha1
kind: TidbCluster
metadata:
name: basic

spec:
pd:
enableDashboardInternalProxy: true

In this deployment method, the service, port, and HTTP paths of TiDB Dashboard are
as follows:
export SERVICE_NAME=${cluster_name}-discovery && \
export PORT=10261 && \
export HTTP_PATH=/dashboard

5.2.1.2 Access independently deployed TiDB Dashboard
To access an independently deployed TiDB Dashboard, you need to use TiDB Operator

v1.4.0 (or later versions) and the TiDB cluster v4.0.1 (or later versions).
Before accessing TiDB Dashboard, ensure that you have deployed an independent TiDB

Dashboard.

189

In this deployment method, the service, port, and HTTP paths of TiDB Dashboard are
as follows (default values):
export SERVICE_NAME=${cluster_name}-tidb-dashboard-exposed && \
export PORT=12333 && \
export HTTP_PATH=""

5.2.2 Method 1. Access TiDB Dashboard by port forward

Warning:
This guide shows how to quickly access TiDB Dashboard. Do NOT use this
method in the production environment. For production environments, refer
to Access TiDB Dashboard by Ingress.

TiDB Dashboard is built in the PD component in TiDB 4.0 and later versions. You can
refer to the following example to quickly deploy a TiDB cluster on Kubernetes.
kubectl port-forward svc/${SERVICE_NAME} -n ${namespace} ${PORT}:${PORT}

In the preceding command:

• ${namespace} is TidbCluster.namespace.
• port-forward binds to the IP address 127.0.0.1 by default. If you need to use another

IP address to access the machine running the port-forward command, you can add
the --address option and specify the IP address to be bound.

Visit http://localhost:${PORT}${HTTP_PATH} in your browser to access TiDB Dash-
board.

5.2.3 Method 2. Access TiDB Dashboard by Ingress

In important production environments, it is recommended to expose the TiDB Dash-
board service using Ingress.

5.2.3.1 Prerequisites
Before using Ingress, install the Ingress controller in your Kubernetes cluster. Otherwise,

simply creating Ingress resources does not take effect.
To deploy the Ingress controller, refer to ingress-nginx. You can also choose from various

Ingress controllers.

190

https://kubernetes.github.io/ingress-nginx/deploy/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers/

5.2.3.2 Use Ingress
You can expose the TiDB Dashboard service outside the Kubernetes cluster by using

Ingress. In this way, the service can be accessed outside Kubernetes via http/https. For
more details, see Ingress.

The following is an .yaml example of accessing TiDB Dashboard using Ingress:

1. Deploy the following .yaml file to the Kubernetes cluster by running the kubectl
↪→ apply -f command:
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: access-dashboard
namespace: ${namespace}

spec:
rules:
- host: ${host}
http:
paths:
- backend:

serviceName: ${SERVICE_NAME}
servicePort: ${PORT}

path: ${HTTP_PATH}

2. After Ingress is deployed, you can access TiDB Dashboard via http://${host}${path
↪→ } outside the Kubernetes cluster.

5.2.3.3 Use Ingress with TLS
Ingress supports TLS. See Ingress TLS. The following example shows how to use Ingress

TLS:
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: access-dashboard
namespace: ${namespace}

spec:
tls:
- hosts:
- ${host}
secretName: testsecret-tls

rules:
- host: ${host}
http:

191

https://kubernetes.io/zh/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/#tls

paths:
- backend:

serviceName: ${SERVICE_NAME}
servicePort: ${PORT}

path: ${HTTP_PATH}

In the above file, testsecret-tls contains tls.crt and tls.key needed for example.
↪→ com.

This is an example of testsecret-tls:
apiVersion: v1
kind: Secret
metadata:
name: testsecret-tls
namespace: default

data:
tls.crt: base64 encoded cert
tls.key: base64 encoded key

type: kubernetes.io/tls

After Ingress is deployed, visit https://${host}${path} to access TiDB Dashboard.

5.2.4 Method 3. Use NodePort Service

Because ingress can only be accessed with a domain name, it might be difficult to use
ingress in some scenarios. In this case, to access and use TiDB Dashboard, you can add a
Service of NodePort type.

5.2.4.1 Access TiDB Dashboard built in PD
To access TiDB Dashboard built in PD, you need to create a NodePort service for PD.
The following is an .yaml example using the Service of NodePort type to access the

TiDB Dashboard. To deploy the following .yaml file into the Kubernetes cluster, you can
run the kubectl apply -f command:
apiVersion: v1
kind: Service
metadata:
name: access-dashboard
namespace: ${namespace}

spec:
ports:
- name: dashboard
port: 10262
protocol: TCP

192

targetPort: 10262
type: NodePort
selector:
app.kubernetes.io/component: discovery
app.kubernetes.io/instance: ${cluster_name}
app.kubernetes.io/name: tidb-cluster

After deploying the Service, you can access TiDB Dashboard via https://%7BnodeIP%
7D:%7BnodePort%7D/dashboard. By default, nodePort is randomly assigned by Kuber-
netes. You can also specify an available port in the .yaml file.

Note that if there is more than one PD Pod in the cluster, you need to set spec.
↪→ pd.enableDashboardInternalProxy: true in the TidbCluster CR to ensure normal
access to TiDB Dashboard.

5.2.4.2 Access independently deployed TiDB Dashboard

Note:
When deploying TiDB Dashboard independently, you need to set
TidbDashboard.spec.service.type to NodePort.

After deploying TiDB Dashboard independently, you can get the nodePort of
${cluster_name}-tidb-dashboard-exposed by running the kubectl get svc command,
and then access TiDB Dashboard via https://{nodeIP}:{nodePort}>.

5.2.5 Enable Continuous Profiling

With Continuous Profiling, you can collect continuous performance data of TiDB, PD,
TiKV, and TiFlash instances, and have the nodes monitored day and night without restarting
any of them. The data collected can be displayed in various forms, for example, on a flame
graph or a directed acyclic graph. The data displayed visually shows what internal operations
are performed on the instances during the performance profiling period and the corresponding
proportions. With such data, you can quickly learn the CPU resource consumption of these
instances.

To enable this feature, you need to deploy TidbNGMonitoring CR using TiDB Operator
v1.3.0 or later versions.

1. Deploy TidbMonitor CR.

• If your TiDB cluster is earlier than v5.4.0, see Deploy Monitoring and Alerts for
a TiDB Cluster to deploy TidbMonitor CR.

193

https://%7BnodeIP%7D:%7BnodePort%7D/dashboard
https://%7BnodeIP%7D:%7BnodePort%7D/dashboard

• If your TiDB cluster is v5.4.0 or later, skip this step.

2. Deploy TidbNGMonitoring CR.
Run the following command to deploy TidbNGMonitoring CR. In this command, $
↪→ {cluster_name} is the name of the TidbCluster CR and ${cluster_ns} is the
namespace of this CR.
cat << EOF | kubectl apply -n ${ns} -f -
apiVersion: pingcap.com/v1alpha1
kind: TidbNGMonitoring
metadata:
name: ${name}

spec:
clusters:
- name: ${cluster_name}
namespace: ${cluster_ns}

ngMonitoring:
requests:
storage: 10Gi

version: v8.5.0
storageClassName: default
baseImage: pingcap/ng-monitoring

EOF

For more configuration items of the TidbNGMonitoring CR, see example in tidb-
operator.

3. Enable Continuous Profiling.

1. On TiDB Dashboard, click Advanced Debugging > Profiling Instances >
Continuous Profiling.

2. In the displayed window, click Open Settings. Switch on the button under
Enable Feature on the right. Modify the value of Retention Duration as
required or retain the default value.

3. Click Save to enable this feature.

194

https://github.com/pingcap/tidb-operator/blob/v1.6.1/examples/advanced/tidb-ng-monitoring.yaml
https://github.com/pingcap/tidb-operator/blob/v1.6.1/examples/advanced/tidb-ng-monitoring.yaml

Figure 1: Enable the feature

For more operations of the Continuous Profiling function, see TiDB Dashboard Instance
Profiling - Continuous Profiling.

5.2.6 Unsupported TiDB Dashboard features

Due to the special environment of Kubernetes, some features of TiDB Dashboard are
not supported in TiDB Operator, including:

• In Overview -> Monitor & Alert -> View Metrics, the link does not direct to
the Grafana monitoring dashboard. If you need to access Grafana, refer to Access the
Grafana monitoring dashboard.

• The log search feature is unavailable. If you need to view the log of a component,
execute kubectl logs ${pod_name} -n {namespace}. You can also view logs using
the log service of the Kubernetes cluster.

• In Cluster Info -> Hosts, the Disk Usage cannot display correctly. You can view
the disk usage of each component by viewing the component dashboards in the Tidb-
Monitor dashboard. You can also view the disk usage of Kubernetes nodes by deploying
a Kubernetes host monitoring system.

195

https://docs.pingcap.com/zh/tidb/stable/continuous-profiling
https://docs.pingcap.com/zh/tidb/stable/continuous-profiling

5.3 Aggregate Monitoring Data of Multiple TiDB Clusters

This document describes how to aggregate the monitoring data of multiple TiDB clusters
by Thanos to provide centralized monitoring service.

5.3.1 Thanos

Thanos is a high availability solution for Prometheus that simplifies the availability
guarantee of Prometheus.

Thanos provides Thanos Query component as a unified query solution across multiple
Prometheus clusters. You can use this feature to aggregate monitoring data of multiple
TiDB clusters.

5.3.2 Aggregate monitoring data via Thanos Query

5.3.2.1 Configure Thanos Query

1. Configure a Thanos Sidecar container for each TidbMonitor.
A configuration example is as follows.
kubectl -n ${namespace} apply -f https://raw.githubusercontent.com/

↪→ pingcap/tidb-operator/v1.6.1/examples/monitor-with-thanos/tidb-
↪→ monitor.yaml

2. Deploy the Thanos Query component.

1. Download the thanos-query.yaml file for Thanos Query deployment:
curl -sl -O https://raw.githubusercontent.com/pingcap/tidb-operator

↪→ /v1.6.1/examples/monitor-with-thanos/thanos-query.yaml

2. Manually modify the --store parameter in the thanos-query.yaml file by up-
dating basic-prometheus:10901 to basic-prometheus.${namespace}:10901.
${namespace} is the namespace where TidbMonitor is deployed.

3. Execute the kubectl apply command for deployment.
kubectl -n ${thanos_namespace} apply -f thanos-query.yaml

In the command above, ${thanos_namespace} is the namespace where the Thanos
Query component is deployed.

In Thanos Query, a Prometheus instance corresponds to a store and also corresponds to
a TidbMonitor. After deploying Thanos Query, you can provide a uniform query interface
for monitoring data through Thanos Query’s API.

196

https://thanos.io/tip/thanos/design.md/
https://thanos.io/tip/components/query.md/

5.3.2.2 Access the Thanos Query panel
To access the Thanos Query panel, execute the following command, and then access

http://127.0.0.1:9090 in your browser:
kubectl port-forward -n ${thanos_namespace} svc/thanos-query 9090

If you want to access the Thanos Query panel using NodePort or LoadBalancer, refer to
the following documents:

• NodePort method
• LoadBalancer way

5.3.2.3 Configure Grafana
After deploying Thanos Query, to query the monitoring data of multiple TidbMonitors,

take the following steps:

1. Log in to Grafana.
2. In the left navigation bar, select Configuration > Data Sources.
3. Add or modify a DataSource in the Prometheus type.
4. Set the URL under HTTP to http://thanos-query.${thanos_namespace}:9090.

5.3.2.4 Add or remove TidbMonitor
In Thanos Query, a Prometheus instance corresponds to a monitor store and also cor-

responds to a TidbMonitor. If you need to add, update, or remove a monitor store from
the Thanos Query, update the --store configuration of the Thanos Query component, and
perform a rolling update to the Thanos Query component.
spec:
containers:
- args:

- query
- --grpc-address=0.0.0.0:10901
- --http-address=0.0.0.0:9090
- --log.level=debug
- --log.format=logfmt
- --query.replica-label=prometheus_replica
- --query.replica-label=rule_replica
- --store=<TidbMonitorName1>-prometheus.<TidbMonitorNs1>:10901
- --store=<TidbMonitorName2>-prometheus.<TidbMonitorNs2>:10901

197

http://127.0.0.1:9090

5.3.2.5 Configure archives and storage of Thanos Sidecar

Note:
To ensure successful configuration, you must first create the S3 bucket. If you
choose AWS S3, refer to AWS documentation - Create AWS S3 Bucket and
AWS documentation - AWS S3 Endpoint List for instructions.

Thanos Sidecar supports replicating monitoring data to S3 remote storage.
The configuration of the TidbMonitor CR is as follows:

spec:
thanos:
baseImage: thanosio/thanos
version: v0.17.2
objectStorageConfig:
key: objectstorage.yaml
name: thanos-objectstorage

Meanwhile, you need to create a Secret. The example is as follows:
apiVersion: v1
kind: Secret
metadata:
name: thanos-objectstorage

type: Opaque
stringData:
objectstorage.yaml: |
type: S3
config:
bucket: "xxxxxx"
endpoint: "xxxx"
region: ""
access_key: "xxxx"
insecure: true
signature_version2: true
secret_key: "xxxx"
put_user_metadata: {}
http_config:
idle_conn_timeout: 90s
response_header_timeout: 2m

trace:
enable: true

198

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://docs.aws.amazon.com/general/latest/gr/s3.html

part_size: 41943040

5.3.3 RemoteWrite mode

Besides aggregating data via Thanos Query, you can also push monitoring data to Thanos
using Prometheus’ RemoteWrite feature.

To enable the RemoteWrite mode, specify the Prometheus RemoteWrite configuration
when you create the TidbMonitor CR. For example:
apiVersion: pingcap.com/v1alpha1
kind: TidbMonitor
metadata:
name: basic

spec:
clusters:
- name: basic
prometheus:
baseImage: prom/prometheus
version: v2.27.1
remoteWrite:
- url: "http://thanos-receiver:19291/api/v1/receive"

grafana:
baseImage: grafana/grafana
version: 7.5.11

initializer:
baseImage: registry.cn-beijing.aliyuncs.com/tidb/tidb-monitor-

↪→ initializer
version: v8.5.0

reloader:
baseImage: registry.cn-beijing.aliyuncs.com/tidb/tidb-monitor-reloader
version: v1.0.1

prometheusReloader:
baseImage: quay.io/prometheus-operator/prometheus-config-reloader
version: v0.49.0

imagePullPolicy: IfNotPresent

After RemoteWrite is enabled, Prometheus pushes the monitoring data to Thanos Re-
ceiver. For more information, refer to the design of Thanos Receiver.

For details on the deployment, refer to this example of integrating TidbMonitor with
Thanos Receiver.

199

https://thanos.io/tip/components/receive.md/
https://thanos.io/tip/components/receive.md/
https://thanos.io/v0.8/proposals/201812_thanos-remote-receive/
https://github.com/pingcap/tidb-operator/tree/v1.6.1/examples/monitor-prom-remotewrite
https://github.com/pingcap/tidb-operator/tree/v1.6.1/examples/monitor-prom-remotewrite

5.4 Monitor a TiDB Cluster across Multiple Kubernetes Clusters

You can monitor a TiDB cluster that is deployed across multiple Kubernetes clusters and
access the monitoring data from a global view. This document describes how to integrate
with several popular multi-cluster monitoring solutions based on Prometheus, and how to
use Grafana to visualize the data across multiple Kubernetes clusters:

• Push data from Prometheus
• The pull method - Using Thanos Query
• The pull method - Using Prometheus Federation
• Visualize monitoring data using Grafana

5.4.1 Push data from Prometheus

The push method uses the remote write feature of Prometheus, which requests the
Prometheus instances in different Kubernetes clusters to push monitoring data to a cen-
tralized storage.

The push method described in this section is based on Thanos. If you use other central-
ized storage solutions compatible with the Prometheus remote API, you only need to replace
the related Thanos components.

5.4.1.1 Prerequisites
The multiple Kubernetes clusters must meet the following condition:

• The Prometheus (TidbMonitor) component in each Kubernetes cluster has access to
the Thanos Receiver component.

For the deployment instructions of Thanos Receiver, refer to kube-thanos and the exam-
ple.

5.4.1.2 Architecture

200

https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage
https://prometheus.io/docs/operating/integrations/#remote-endpoints-and-storage
https://github.com/thanos-io/kube-thanos
https://github.com/pingcap/tidb-operator/tree/v1.6.1/examples/monitor-prom-remotewrite
https://github.com/pingcap/tidb-operator/tree/v1.6.1/examples/monitor-prom-remotewrite

Figure 2: push-thanos-receive.png

5.4.1.3 Deploy TidbMonitor

1. According to the Kubernetes cluster that the TiDB cluster is deployed in, set the
following environment variables:

• cluster_name: the TiDB cluster name.
• cluster_namespace: the TiDB cluster namespace.
• kubernetes_cluster_name: the custom Kubernetes cluster name, which is used

in the externallabels of Prometheus.
• storageclass_name: the storage of the current Kubernetes cluster.
• remote_write_url: the host of the thanos-receiver component, or the host of

other components compatible with the Prometheus remote write API.

cluster_name="cluster1"
cluster_namespace="pingcap"
kubernetes_cluster_name="kind-cluster-1"
storageclass_name="local-storage"
remote_write_url="http://thanos-receiver:19291/api/v1/receive"

201

2. Create a TidbMonitor component by running the following command:
cat << EOF | kubectl apply -n ${cluster_namespace} -f -
apiVersion: pingcap.com/v1alpha1
kind: TidbMonitor
metadata:
name: ${cluster_name}

spec:
clusters:
- name: ${cluster_name}
namespace: ${cluster_namespace}

externalLabels:
k8s_cluster indicates the k8s cluster name, you can change
the label's name on your own, but you should notice that the
"cluster" label has been used by the TiDB metrics already.
For more information, please refer to the issue
https://github.com/pingcap/tidb-operator/issues/4219.
k8s_cluster: ${kubernetes_cluster_name}
add other meta labels here
#region: us-east-1

initializer:
baseImage: pingcap/tidb-monitor-initializer
version: v5.4.0

persistent: true
storage: 100Gi
storageClassName: ${storageclass_name}
prometheus:
baseImage: prom/prometheus
logLevel: info
remoteWrite:
- url: ${remote_write_url}
retentionTime: 2h
version: v2.27.1

reloader:
baseImage: pingcap/tidb-monitor-reloader
version: v1.0.1

imagePullPolicy: IfNotPresent
EOF

5.4.2 Pull data from Prometheus

The pull method pulls monitoring data from Prometheus instances in different Kuber-
netes clusters and aggregates the data into a global view. This section describes how to pull
data using Thanos Query and using Prometheus Federation.

202

5.4.2.1 Using Thanos Query
In the example of this section, one Thanos Sidecar is deployed for each Prometheus

(TidbMonitor) component. The Thanos query component is used for aggregation queries. If
you do not need long-term storage, you can skip the deployment of some components such
as thanos-store and S3.

5.4.2.1.1 Prerequisites
You need to configure the network and DNS of the Kubernetes clusters so that the

Kubernetes clusters meet the following conditions:

• The Thanos Query component has access to the Pod IP of the Prometheus
(TidbMonitor) component in each Kubernetes cluster.

• The Thanos Query component has access to the Pod FQDN of the Prometheus
(TidbMonitor) component in each Kubernetes cluster.

For the deployment instructions of Thanos Query, refer to kube-thanos and the example.

5.4.2.1.2 Architecture

203

https://github.com/thanos-io/kube-thanos
https://github.com/pingcap/tidb-operator/tree/v1.6.1/examples/monitor-with-thanos

Figure 3: pull-thanos-query.png

5.4.2.1.3 Deploy TidbMonitor

1. According to the Kubernetes cluster that the TiDB cluster is deployed in, set the
following environment variables:

• cluster_name: the TiDB cluster name.
• cluster_namespace: the TiDB cluster namespace.
• kubernetes_cluster_name: the custom Kubernetes cluster name, which is used

in the externallabels of Prometheus.
• cluster_domain: the current cluster’s cluster domain.
• storageclass_name: the storage of the current Kubernetes cluster.

cluster_name="cluster1"
cluster_namespace="pingcap"
kubernetes_cluster_name="kind-cluster-1"
storageclass_name="local-storage"

204

https://kubernetes.io/docs/tasks/administer-cluster/dns-custom-nameservers/#introduction

cluster_domain="svc.local"

2. Create a TidbMonitor component by running the following command:
cat <<EOF | kubectl apply -n ${cluster_namespace} -f -
apiVersion: pingcap.com/v1alpha1
kind: TidbMonitor
metadata:
name: ${cluster_name}

spec:
clusters:
- name: ${cluster_name}
namespace: ${cluster_namespace}

externalLabels:
k8s_cluster indicates the k8s cluster name, you can change
the label's name on your own, but you should notice that the
"cluster" label has been used by the TiDB metrics already.
For more information, please refer to the issue
https://github.com/pingcap/tidb-operator/issues/4219.
k8s_cluster: ${kubernetes_cluster_name}
add other meta labels here
#region: us-east-1

initializer:
baseImage: pingcap/tidb-monitor-initializer
version: v5.4.0

persistent: true
storage: 20Gi
storageClassName: ${storageclass_name}
prometheus:
baseImage: prom/prometheus
logLevel: info
version: v2.27.1

reloader:
baseImage: pingcap/tidb-monitor-reloader
version: v1.0.1

thanos:
baseImage: quay.io/thanos/thanos
version: v0.22.0
#enable config below if long-term storage is needed.
#objectStorageConfig:
key: objectstorage.yaml
name: thanos-objectstorage

imagePullPolicy: IfNotPresent
EOF

205

3. Configure Thanos Query Stores:
You can specify the store nodes by the static service discovery method. In the
Thanos Query command line’s starting parameters, add --store=${cluster_name}-
↪→ prometheus.${cluster_namespace}.svc.${cluster_domain}:10901 to specify
the store node. Replace the variables with the actual values.
If you use other service discovery methods, refer to thanos-service-discovery.

5.4.2.2 Using Prometheus Federation
In the example of this section, the Federation Prometheus server is used as an entry

point for unified storage and query. This method is only considered for small data volumes.

5.4.2.2.1 Prerequisites
You need to configure the network and DNS of the Kubernetes clusters so that the

Kubernetes clusters meet the following conditions:

• The Federation Prometheus component has access to the Pod IP of the Prometheus
(TidbMonitor) component in each Kubernetes cluster.

• The Federation Prometheus component has access to the Pod FQDN of the Prometheus
(TidbMonitor) component in each Kubernetes cluster.

5.4.2.2.2 Architecture

206

https://thanos.io/tip/thanos/service-discovery.md

Figure 4: pull-prom-federation.png

5.4.2.2.3 Deploy TidbMonitor

1. According to the Kubernetes cluster that the TiDB cluster is deployed in, set the
following environment variables:

• cluster_name: the TiDB cluster name.
• cluster_namespace: the TiDB cluster namespace.
• kubernetes_cluster_name: the custom Kubernetes cluster name, which is used

in the externallabels of Prometheus.
• storageclass_name: the storage of the current Kubernetes cluster.

cluster_name="cluster1"
cluster_namespace="pingcap"
kubernetes_cluster_name="kind-cluster-1"
storageclass_name="local-storage"

207

2. Create a TidbMonitor component by running the following command:
cat << EOF | kubectl apply -n ${cluster_namespace} -f -
apiVersion: pingcap.com/v1alpha1
kind: TidbMonitor
metadata:
name: ${cluster_name}

spec:
clusters:
- name: ${cluster_name}
namespace: ${cluster_namespace}

externalLabels:
k8s_cluster indicates the k8s cluster name, you can change
the label's name on your own, but you should notice that the
"cluster" label has been used by the TiDB metrics already.
For more information, please refer to the issue
https://github.com/pingcap/tidb-operator/issues/4219.
k8s_cluster: ${kubernetes_cluster_name}
add other meta labels here
#region: us-east-1

initializer:
baseImage: pingcap/tidb-monitor-initializer
version: v5.4.0

persistent: true
storage: 20Gi
storageClassName: ${storageclass_name}
prometheus:
baseImage: prom/prometheus
logLevel: info
version: v2.27.1

reloader:
baseImage: pingcap/tidb-monitor-reloader
version: v1.0.1

imagePullPolicy: IfNotPresent
EOF

5.4.2.2.4 Configure Federation Prometheus
For details on Federation, refer to Federation. After the deployment of Prometheus,

you need to modify the Prometheus configuration, and add the host information of the
Prometheus (TidbMonitor) to be aggregated.
scrape_configs:
- job_name: 'federate'
scrape_interval: 15s

208

https://prometheus.io/docs/prometheus/latest/federation/#hierarchical-federation

honor_labels: true
metrics_path: '/federate'

params:
'match[]':
- '{__name__=~".+"}'

static_configs:
- targets:
- 'source-prometheus-1:9090'
- 'source-prometheus-2:9090'
- 'source-prometheus-3:9090'

5.4.3 Visualize monitoring data using Grafana

After collecting data using Prometheus, you can visualize multi-cluster monitoring data
using Grafana.

1. Obtain the Grafana dashboard configuration files related to TiDB components by run-
ning the following command:
set tidb version here
version=v8.5.0
docker run --rm -i -v ${PWD}/dashboards:/dashboards/ pingcap/tidb-

↪→ monitor-initializer:${version} && \
cd dashboards

Note:
In the command above, ${version} is the version of the Initializer image,
which should be consistent with the TiDB version. Currently, only v6
↪→ .0.0 and later versions of the Initializer image support multiple
Kubernetes clusters monitoring.

After running the command above, you can view all the dashboard JSON files in the
current directory.

2. Refer to the Grafana documentation to configure the Prometheus data source.
To keep the configuration consistent with the dashboard JSON files obtained in the
previous step, you need to set the Name field of the data source to tidb-cluster. If
you want to use the existing data source, run the following command to replace the
data source name in the dashboard JSON files. In the command, $DS_NAME is the
name of the data source.

209

https://grafana.com/docs/grafana/latest/datasources/prometheus/

define your datasource name here.
DS_NAME=thanos
sed -i 's/"datasource": "tidb-cluster"/"datasource": "$DS_NAME"/g' *.

↪→ json

3. Refer to the Grafana documentation to import dashboards into Grafana.

5.5 Enable Dynamic Configuration for TidbMonitor

This document describes how to enable dynamic configuration for TidbMonitor.
TidbMonitor supports monitoring across multiple clusters and shards. Without dy-

namic configuration, when the Prometheus configurations, rules, or targets are changed,
such changes only take effect after a restart. If you are monitoring a large dataset, after the
restart, it might take a long time to recover the Prometheus snapshot data.

With dynamic configuration enabled, any configuration change of TidbMonitor takes
effect immediately.

5.5.1 Enable the dynamic configuration feature

To enable the dynamic configuration feature, configure prometheusReloader in the spec
field of TidbMonitor. For example:
apiVersion: pingcap.com/v1alpha1
kind: TidbMonitor
metadata:
name: monitor

spec:
clusterScoped: true
clusters:
- name: ns1
namespace: ns1

- name: ns2
namespace: ns2

prometheusReloader:
baseImage: quay.io/prometheus-operator/prometheus-config-reloader
version: v0.49.0

imagePullPolicy: IfNotPresent

After you modify the prometheusReloader configuration, TidbMonitor restarts auto-
matically. After the restart, the dynamic configuration feature is enabled. All configuration
changes related to Prometheus are dynamically updated.

For more examples, refer to monitor-dynamic-configmap.

210

https://grafana.com/docs/grafana/latest/dashboards/export-import/#import-dashboard
https://github.com/pingcap/tidb-operator/tree/v1.6.1/examples/monitor-dynamic-configmap

5.5.2 Disable the dynamic configuration feature

To disable the dynamic configuration feature, remove the prometheusReloader configu-
ration from the spec field of TidbMonitor.

5.6 Enable Shards for TidbMonitor

This document describes how to use shards for TidbMonitor.

5.6.1 Shards

TidbMonitor collects monitoring data for a single TiDB cluster or multiple TiDB clusters.
When the amount of monitoring data is large, the computing capacity of one TidbMonitor
might hit a bottleneck. In this case, it is recommended to use shards of Prometheus Modulus.
This feature performs hashmod on __address__ to divide the monitoring data of multiple
targets (Targets) into multiple TidbMonitor Pods.

To use shards for TidbMonitor, you need a data aggregation plan. The Thanos method
is recommended.

5.6.2 Enable shards

To enable shards for TidbMonitor, you need to specify the shards field. For example:
apiVersion: pingcap.com/v1alpha1
kind: TidbMonitor
metadata:
name: monitor

spec:
replicas: 1
shards: 2
clusters:
- name: basic

prometheus:
baseImage: prom/prometheus
version: v2.27.1

initializer:
baseImage: pingcap/tidb-monitor-initializer
version: v5.2.1

reloader:
baseImage: pingcap/tidb-monitor-reloader
version: v1.0.1

prometheusReloader:
baseImage: quay.io/prometheus-operator/prometheus-config-reloader
version: v0.49.0

211

https://prometheus.io/docs/prometheus/latest/configuration/configuration/
https://thanos.io/tip/thanos/design.md/

imagePullPolicy: IfNotPresent

Note:

• The number of Pods corresponding to TidbMonitor is the product of
replicas and shards. For example, when replicas is 1 and shards is
2, TiDB Operator creates 2 TidbMonitor Pods.

• After shards is changed, Targets are reallocated. However, the moni-
toring data already stored on the Pods is not reallocated.

For details on the configuration, refer to shards example.

6 Migrate

6.1 Import Data

This document describes how to import data into a TiDB cluster on Kubernetes using
TiDB Lightning.

In Kubernetes, the tidb-lightning is in a separate Helm chart and deployed as a Job.
TiDB Lightning supports two backends: Local-backend, and TiDB-backend. For the

differences of these backends and how to choose backends, see TiDB Lightning Backends.

• For Local-backend, only tidb-lightning needs to be deployed.

• For TiDB-backend, only tidb-lightning needs to be deployed, and it is recommended
to import data using CustomResourceDefinition (CRD) in TiDB Operator v1.1 and
later versions. For details, refer to Restore Data from GCS Using TiDB Lightning or
Restore Data from S3-Compatible Storage Using TiDB Lightning

6.1.1 Deploy TiDB Lightning

6.1.1.1 Step 1. Configure TiDB Lightning
Use the following command to save the default configuration of TiDB Lightning to the

tidb-lightning-values.yaml file:
helm inspect values pingcap/tidb-lightning --version=${chart_version} > tidb

↪→ -lightning-values.yaml

212

https://github.com/pingcap/tidb-operator/tree/v1.6.1/examples/monitor-shards
https://docs.pingcap.com/tidb/stable/tidb-lightning-overview
https://docs.pingcap.com/tidb/stable/tidb-lightning-backends

Configure the backend field in the configuration file depending on your needs. The
optional values are local and tidb.
The delivery backend used to import data (valid options include `local`

↪→ and `tidb`).
If set to `local`, then the following `sortedKV` should be set.
backend: local

If you use the local backend, you must set sortedKV in values.yaml to create the
corresponding PVC. The PVC is used for local KV sorting.
For `local` backend, an extra PV is needed for local KV sorting.
sortedKV:
storageClassName: local-storage
storage: 100Gi

6.1.1.1.1 Configure checkpoint
Starting from v1.1.10, the tidb-lightning Helm chart saves the TiDB Lightning checkpoint

information in the directory of the source data. When the a new tidb-lightning job is running,
it can resume the data import according to the checkpoint information.

For versions earlier than v1.1.10, you can modify config in values.yaml to save the
checkpoint information in the target TiDB cluster, other MySQL-compatible databases or a
shared storage directory. For more information, refer to TiDB Lightning checkpoint.

6.1.1.1.2 Configure TLS
If TLS between components has been enabled on the target TiDB cluster (spec.

↪→ tlsCluster.enabled: true), refer to Generate certificates for components of the
TiDB cluster to generate a server-side certificate for TiDB Lightning, and configure
tlsCluster.enabled: true in values.yaml to enable TLS between components.

If the target TiDB cluster has enabled TLS for the MySQL client (spec.tidb.
↪→ tlsClient.enabled: true), and the corresponding client-side certificate is configured
(the Kubernetes Secret object is ${cluster_name}-tidb-client-secret), you can config-
ure tlsClient.enabled: true in values.yaml to enable TiDB Lightning to connect to
the TiDB server using TLS.

To use different client certificates to connect to the TiDB server, refer to Issue two sets of
certificates for the TiDB cluster to generate the client-side certificate for TiDB Lightning, and
configure the corresponding Kubernetes secret object in tlsCluster.tlsClientSecretName
in values.yaml.

213

https://docs.pingcap.com/tidb/stable/tidb-lightning-backends#tidb-lightning-local-backend
https://docs.pingcap.com/tidb/stable/tidb-lightning-checkpoints
https://docs.pingcap.com/tidb/stable/tidb-lightning-checkpoints
https://docs.pingcap.com/tidb/stable/tidb-lightning-checkpoints

Note:
If TLS is enabled between components via tlsCluster.enabled: true but
not enabled between TiDB Lightning and the TiDB server via tlsClient.
↪→ enabled: true, you need to explicitly disable TLS between TiDB Light-
ning and the TiDB server in config in values.yaml:
[tidb]
tls="false"

6.1.1.2 Step 2. Configure the data source
The tidb-lightning Helm chart supports both local and remote data sources. The three

types of data sources correspond to three modes: local, remote, and ad hoc. The three
modes cannot be used together. You can only configure one mode.

6.1.1.2.1 Local
In the local mode, tidb-lightning reads the backup data from a directory in one of the

Kubernetes node.
dataSource:
local:
nodeName: kind-worker3
hostPath: /data/export-20190820

The descriptions of the related fields are as follows:

• dataSource.local.nodeName: the node name that the directory is located at.
• dataSource.local.hostPath: the path of the backup data. The path must contain

a file named metadata.

6.1.1.2.2 Remote
Unlike the local mode, the remote mode uses rclone to download the backup tarball file

or the backup directory from a network storage to a PV. Any cloud storage supported by
rclone should work, but currently only the following have been tested: Google Cloud Storage
(GCS), Amazon S3, Ceph Object Storage.

To restore backup data from the remote source, take the following steps:

1. Grant permissions to the remote storage.
If you use Amazon S3 as the storage, refer to AWS account Permissions. The configu-
ration varies with different methods.

214

https://rclone.org
https://cloud.google.com/storage/
https://cloud.google.com/storage/
https://aws.amazon.com/s3/
https://ceph.com/ceph-storage/object-storage/

If you use Ceph as the storage, you can only grant permissions by importing AccessKey
and SecretKey. See Grant permissions by AccessKey and SecretKey.
If you use GCS as the storage, refer to GCS account permissions.

• Grant permissions by importing AccessKey and SecretKey
1. Create a Secret configuration file secret.yaml containing the rclone con-

figuration. A sample configuration is listed below. Only one cloud storage
configuration is required.
apiVersion: v1
kind: Secret
metadata:
name: cloud-storage-secret

type: Opaque
stringData:
rclone.conf: |
[s3]
type = s3
provider = AWS
env_auth = false
access_key_id = ${access_key}
secret_access_key = ${secret_key}
region = us-east-1

[ceph]
type = s3
provider = Ceph
env_auth = false
access_key_id = ${access_key}
secret_access_key = ${secret_key}
endpoint = ${endpoint}
region = :default-placement

[gcs]
type = google cloud storage
The service account must include Storage Object Viewer

↪→ role
The content can be retrieved by `cat ${service-account-

↪→ file} | jq -c .`
service_account_credentials = ${

↪→ service_account_json_file_content}

2. Execute the following command to create Secret:
kubectl apply -f secret.yaml -n ${namespace}

215

• Grant permissions by associating IAM with Pod or with ServiceAccount

If you use Amazon S3 as the storage, you can grant permissions by associating IAM with
Pod or with ServiceAccount, in which s3.access_key_id and s3.secret_access_key
can be ignored.
1. Save the following configurations as `secret.yaml`.

```yaml
apiVersion: v1
kind: Secret
metadata:
name: cloud-storage-secret

type: Opaque
stringData:
rclone.conf: |
[s3]
type = s3
provider = AWS
env_auth = true
access_key_id =
secret_access_key =
region = us-east-1

```

2. Execute the following command to create `Secret`:

```shell
kubectl apply -f secret.yaml -n ${namespace}
```

2. Configure the dataSource field. For example:
dataSource:
remote:
rcloneImage: rclone/rclone:1.55.1
storageClassName: local-storage
storage: 100Gi
secretName: cloud-storage-secret
path: s3:bench-data-us/sysbench/sbtest_16_1e7.tar.gz
directory: s3:bench-data-us

216

The descriptions of the related fields are as follows:

• dataSource.remote.storageClassName: the name of StorageClass used to cre-
ate PV.

• dataSource.remote.secretName: the name of the Secret created in the previous
step.

• dataSource.remote.path: If the backup data is packaged as a tarball file, use
this field to indicate the path to the tarball file.

• dataSource.remote.directory: If the backup data is in a directory, use this
field to specify the path to the directory.

6.1.1.2.3 Ad hoc
When restoring data from remote storage, sometimes the restore process is interrupted

due to the exception. In such cases, if you do not want to download backup data from the
network storage repeatedly, you can use the ad hoc mode to directly recover the data that
has been downloaded and decompressed into PV in the remote mode.

For example:
dataSource:
adhoc:
pvcName: tidb-cluster-scheduled-backup
backupName: scheduled-backup-20190822-041004

The descriptions of the related fields are as follows:

• dataSource.adhoc.pvcName: the PVC name used in restoring data from remote stor-
age. The PVC must be deployed in the same namespace as Tidb-Lightning.

• dataSource.adhoc.backupName: the name of the original backup data, such as:
backup-2020-12-17T10:12:51Z (Does not contain the ‘. tgz’ suffix of the compressed
file name on network storage).

6.1.1.3 Step 3. Deploy TiDB Lightning
The method of deploying TiDB Lightning varies with different methods of granting

permissions and with different storages.

• For Local Mode, Ad hoc Mode, and Remote Mode (only for remote modes that meet
one of the three requirements: using Amazon S3 AccessKey and SecretKey permission
granting methods, using Ceph as the storage backend, or using GCS as the storage
backend), run the following command to deploy TiDB Lightning.
helm install ${release_name} pingcap/tidb-lightning --namespace=${

↪→ namespace} --set failFast=true -f tidb-lightning-values.yaml --
↪→ version=${chart_version}

217

• For Remote Mode, if you grant permissions by associating Amazon S3 IAM with Pod,
take the following steps:

1. Create the IAM role:
Create an IAM role for the account, and grant the required permission to the
role. The IAM role requires the AmazonS3FullAccess permission because TiDB
Lightning needs to access Amazon S3 storage.

2. Modify tidb-lightning-values.yaml, and add the iam.amazonaws.com/role
↪→ : arn:aws:iam::123456789012:role/user annotation in the annotations
field.

3. Deploy TiDB Lightning:
helm install ${release_name} pingcap/tidb-lightning --namespace=${

↪→ namespace} --set failFast=true -f tidb-lightning-values.yaml
↪→ --version=${chart_version}

Note:
arn:aws:iam::123456789012:role/user is the IAM role created in
Step 1.

• For Remote Mode, if you grant permissions by associating Amazon S3 with ServiceAc-
count, take the following steps:

1. Enable the IAM role for the service account on the cluster:
To enable the IAM role permission on the EKS cluster, see AWS Documentation.

2. Create the IAM role:
Create an IAM role. Grant the AmazonS3FullAccess permission to the role, and
edit Trust relationships of the role.

3. Associate IAM with the ServiceAccount resources:
kubectl annotate sa ${servieaccount} -n ${namespace} eks.amazonaws.

↪→ com/role-arn=arn:aws:iam::123456789012:role/user

4. Deploy TiDB Lightning:
helm install ${release_name} pingcap/tidb-lightning --namespace=${

↪→ namespace} --set-string failFast=true,serviceAccount=${
↪→ servieaccount} -f tidb-lightning-values.yaml --version=${
↪→ chart_version}

218

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/eks/latest/userguide/enable-iam-roles-for-service-accounts.html
https://docs.aws.amazon.com/eks/latest/userguide/associate-service-account-role.html

Note:
arn:aws:iam::123456789012:role/user is the IAM role created in
Step 1. ${service-account} is the ServiceAccount used by TiDB
Lightning. The default value is default.

6.1.2 Destroy TiDB Lightning

Currently, TiDB Lightning only supports restoring data offline. After the restore, if
the TiDB cluster needs to provide service for external applications, you can destroy TiDB
Lightning to save cost.

To destroy tidb-lightning, execute the following command:
helm uninstall ${release_name} -n ${namespace}

6.1.3 Troubleshoot TiDB Lightning

When TiDB Lightning fails to restore data, you cannot simply restart it. Manual
intervention is required. Therefore, the TiDB Lightning’s Job restart policy is set to
Never.

Note:
If you have not configured to persist the checkpoint information in the target
TiDB cluster, other MySQL-compatible databases or a shared storage direc-
tory, after the restore failure, you need to first delete the part of data already
restored to the target cluster. After that, deploy tidb-lightning again and
retry the data restore.

If TiDB Lightning fails to restore data, and if you have configured to persist the check-
point information in the target TiDB cluster, other MySQL-compatible databases or a shared
storage directory, follow the steps below to do manual intervention:

1. View the log by executing the following command:
kubectl logs -n ${namespace} ${pod_name}

• If you restore data using the remote data source, and the error occurs when TiDB
Lightning downloads data from remote storage:
1. Address the problem according to the log.

219

2. Deploy tidb-lightning again and retry the data restore.
• For other cases, refer to the following steps.

2. Refer to TiDB Lightning Troubleshooting and learn the solutions to different issues.

3. Address the issues accordingly:

• If tidb-lightning-ctl is required:
1. Configure dataSource in values.yaml. Make sure the new Job uses the data

source and checkpoint information of the failed Job:
– In the local or ad hoc mode, you do not need to modify dataSource.
– In the remote mode, modify dataSource to the ad hoc mode. dataSource

↪→ .adhoc.pvcName is the PVC name created by the original Helm chart.
dataSource.adhoc.backupName is the backup name of the data to be
restored.

2. Modify failFast in values.yaml to false, and create a Job used for tidb
↪→ -lightning-ctl.

– Based on the checkpoint information, TiDB Lightning checks whether the
last data restore encountered an error. If yes, TiDB Lightning pauses the
restore automatically.

– TiDB Lightning uses the checkpoint information to avoid repeatedly
restoring the same data. Therefore, creating the Job does not affect data
correctness.

3. After the Pod corresponding to the new Job is running, view the log by
running kubectl logs -n ${namespace} ${pod_name} and confirm tidb-
lightning in the new Job already stops data restore. If the log has the following
message, the data restore is stopped:

– tidb lightning encountered error
– tidb lightning exit

4. Enter the container by running kubectl exec -it -n ${namespace} ${
↪→ pod_name} -it -- sh.

5. Obtain the starting script by running cat /proc/1/cmdline.
6. Get the command-line parameters from the starting script. Refer to TiDB

Lightning Troubleshooting and troubleshoot using tidb-lightning-ctl.
7. After the troubleshooting, modify failFast in values.yaml to true and

create a new Job to resume data restore.
• If tidb-lightning-ctl is not required:

1. Troubleshoot TiDB Lightning.
2. Configure dataSource in values.yaml. Make sure the new Job uses the data

source and checkpoint information of the failed Job:
– In the local or ad hoc mode, you do not need to modify dataSource.

220

https://docs.pingcap.com/tidb/stable/troubleshoot-tidb-lightning
https://docs.pingcap.com/tidb/stable/troubleshoot-tidb-lightning
https://docs.pingcap.com/tidb/stable/troubleshoot-tidb-lightning
https://docs.pingcap.com/tidb/stable/troubleshoot-tidb-lightning

– In the remote mode, modify dataSource to the ad hoc mode. dataSource
↪→ .adhoc.pvcName is the PVC name created by the original Helm chart.
dataSource.adhoc.backupName is the backup name of the data to be
restored.

3. Create a new Job using the modified values.yaml file and resume data re-
store.

4. After the troubleshooting and data restore is completed, delete the Jobs for data restore
and troubleshooting.

6.2 Migrate from MySQL

6.2.1 Deploy DM on Kubernetes

TiDB Data Migration (DM) is an integrated data migration task management platform
that supports the full data migration and the incremental data replication from MySQL/-
MariaDB into TiDB. This document describes how to deploy DM on Kubernetes using TiDB
Operator and how to migrate MySQL data to TiDB cluster using DM.

6.2.1.1 Prerequisites

• Complete deploying TiDB Operator.

Note:
Make sure that the TiDB Operator version >= 1.2.0.

6.2.1.2 Configure DM deployment
To configure the DM deployment, you need to configure the DMCluster Custom Resource

(CR). For the complete configurations of the DMCluster CR, refer to the DMCluster example
and API documentation. Note that you need to choose the example and API of the current
TiDB Operator version.

6.2.1.2.1 Cluster name
Configure the cluster name by changing the metadata.name in the DMCluster CR.

221

https://docs.pingcap.com/tidb-data-migration/v2.0
https://github.com/pingcap/tidb-operator/blob/v1.6.1/examples/dm/dm-cluster.yaml
https://github.com/pingcap/tidb-operator/blob/v1.6.1/docs/api-references/docs.md#dmcluster

6.2.1.2.2 Version
Usually, components in a cluster are in the same version. It is recommended to configure

only spec.<master/worker>.baseImage and spec.version. If you need to deploy different
versions for different components, configure spec.<master/worker>.version.

The formats of the related parameters are as follows:

• spec.version: the format is imageTag, such as v8.5.0.
• spec.<master/worker>.baseImage: the format is imageName, such as pingcap/dm.
• spec.<master/worker>.version: the format is imageTag, such as v8.5.0.

TiDB Operator only supports deploying DM 2.0 and later versions.

6.2.1.2.3 Cluster
Configure DM-master
DM-master is an indispensable component of the DM cluster. You need to deploy at

least three DM-master Pods if you want to achieve high availability.
You can configure DM-master parameters by spec.master.config in DMCluster CR.

For complete DM-master configuration parameters, refer to DM-master Configuration File.
apiVersion: pingcap.com/v1alpha1
kind: DMCluster
metadata:
name: ${dm_cluster_name}
namespace: ${namespace}

spec:
version: v8.5.0
configUpdateStrategy: RollingUpdate
pvReclaimPolicy: Retain
discovery: {}
master:
baseImage: pingcap/dm
maxFailoverCount: 0
imagePullPolicy: IfNotPresent
service:
type: NodePort
Configures masterNodePort when you need to expose the DM-master

↪→ service to a fixed NodePort
masterNodePort: 30020

replicas: 1
storageSize: "10Gi"
requests:
cpu: 1

config: |

222

https://docs.pingcap.com/tidb-data-migration/v2.0/dm-master-configuration-file

rpc-timeout = "40s"

Configure DM-worker
You can configure DM-worker parameters by spec.worker.config in DMCluster CR.

For complete DM-worker configuration parameters，refer to DM-worker Configuration File.
apiVersion: pingcap.com/v1alpha1
kind: DMCluster
metadata:
name: ${dm_cluster_name}
namespace: ${namespace}

spec:
...
worker:
baseImage: pingcap/dm
maxFailoverCount: 0
replicas: 1
storageSize: "100Gi"
requests:
cpu: 1

config: |
keepalive-ttl = 15

6.2.1.2.4 Topology Spread Constraint
By configuring topologySpreadConstraints, you can make pods evenly spread in dif-

ferent topologies. For instructions about configuring topologySpreadConstraints, see Pod
Topology Spread Constraints.

You can either configure topologySpreadConstraints at a cluster level (spec.
↪→ topologySpreadConstraints) for all components or at a component level (such as
spec.tidb.topologySpreadConstraints) for specific components.

The following is an example configuration:
topologySpreadConstrains:
- topologyKey: kubernetes.io/hostname
- topologyKey: topology.kubernetes.io/zone

The example configuration can make pods of the same component evenly spread on
different zones and nodes.

Currently, topologySpreadConstraints only supports the configuration of the
topologyKey field. In the pod spec, the above example configuration will be automatically
expanded as follows:
topologySpreadConstrains:

223

https://docs.pingcap.com/tidb-data-migration/v2.0/dm-worker-configuration-file
https://kubernetes.io/docs/concepts/workloads/pods/pod-topology-spread-constraints/
https://kubernetes.io/docs/concepts/workloads/pods/pod-topology-spread-constraints/

- topologyKey: kubernetes.io/hostname
maxSkew: 1
whenUnsatisfiable: DoNotSchedule
labelSelector: <object>

- topologyKey: topology.kubernetes.io/zone
maxSkew: 1
whenUnsatisfiable: DoNotSchedule
labelSelector: <object>

6.2.1.3 Deploy the DM cluster
After configuring the yaml file of the DM cluster in the above steps, execute the following

command to deploy the DM cluster:
kubectl apply -f ${dm_cluster_name}.yaml -n ${namespace}

If the server does not have an external network, you need to download the Docker image
used by the DM cluster and upload the image to the server, and then execute docker load
to install the Docker image on the server:

1. Deploy a DM cluster requires the following Docker image (assuming the version of the
DM cluster is v8.5.0):
pingcap/dm:v8.5.0

2. To download the image, execute the following command:
docker pull pingcap/dm:v8.5.0
docker save -o dm-v8.5.0.tar pingcap/dm:v8.5.0

3. Upload the Docker image to the server, and execute docker load to install the image
on the server:
docker load -i dm-v8.5.0.tar

After deploying the DM cluster, execute the following command to view the Pod status:
kubectl get po -n ${namespace} -l app.kubernetes.io/instance=${

↪→ dm_cluster_name}

You can use TiDB Operator to deploy and manage multiple DM clusters in a single
Kubernetes cluster by repeating the above procedure and replacing ${dm_cluster_name}
with a different name.

Different clusters can be in the same or different namespace, which is based on your
actual needs.

224

6.2.1.4 Access the DM cluster on Kubernetes
To access DM-master in the pod within a Kubernetes cluster, use the DM-master service

domain name ${cluster_name}-dm-master.${namespace}.
To access the DM cluster outside a Kubernetes cluster, expose the DM-master port by

editing the spec.master.service field configuration in the DMCluster CR.
spec:
...
master:
service:
type: NodePort

You can access the DM-master service via the address of ${kubernetes_node_ip}:${
↪→ node_port}.

For more service exposure methods, refer to Access the TiDB Cluster.

6.2.1.5 What’s next

• To migrate MySQL data to your TiDB cluster using DM on Kubernetes, see Migrate
MySQL Data to TiDB Cluster Using DM.

• To enable TLS between components of the DM cluster on Kubernetes, see Enable TLS
for DM.

6.2.2 Use DM on Kubernetes

TiDB Data Migration (DM) is an integrated data migration task management platform
that supports the full data migration and the incremental data replication from MySQL/-
MariaDB into TiDB. This document describes how to migrate MySQL data to TiDB cluster
using DM on Kubernetes.

6.2.2.1 Prerequisites

• Complete deploying TiDB Operator.
• Complete deploying DM on Kubernetes.

Note:
Make sure that the TiDB Operator version >= 1.2.0.

225

https://docs.pingcap.com/tidb-data-migration/v2.0

6.2.2.2 Enable DM data migration tasks
You can access the DM-master service using dmctl in the following two methods:
Method #1: Attach to the DM-master or DM-worker Pod to use the built-in dmctl in

the image.
Method #2: Expose the DM-master service by accessing the DM cluster on Kubernetes

and use dmctl outside the pods to access the exposed DM-master service.
It is recommended to use Method #1 for migration. The following steps take Method

#1 as an example to introduce how to start a DM data migration task.
The differences between Method #1 and Method #2 are that the file locations of source

↪→ .yaml and task.yaml are different, and that in Method #2 you need to configure the
exposed DM-master service address in the master-addr configuration item of dmctl.

6.2.2.2.1 Get into the Pod
Attach to the DM-master Pod by executing the following command:

kubectl exec -ti ${dm_cluster_name}-dm-master-0 -n ${namespace} -- /bin/sh

6.2.2.2.2 Create data source

1. Write MySQL-1 related information to source1.yaml file, which can refer to Create
data source.

2. Configure the from.host in the source1.yaml file as the MySQL host address that
the Kubernetes cluster can access internally.

3. Configure the relay-dir in the source1.yaml file as a subdirectory of the persistent
volume in the Pod mount /var/lib/dm-worker directory. For example, /var/lib/dm
↪→ -worker/relay.

4. After you prepare the source1.yaml file, load the MySQL-1 data source into the DM
cluster by executing the following command:
/dmctl --master-addr ${dm_cluster_name}-dm-master:8261 operate-source

↪→ create source1.yaml

5. For MySQL-2 and other data sources, use the same method to modify the relevant
information in the data source yaml file and execute the same dmctl command to load
the corresponding data source into the DM cluster.

226

https://docs.pingcap.com/tidb-data-migration/v2.0/migrate-data-using-dm#step-3-create-data-source
https://docs.pingcap.com/tidb-data-migration/v2.0/migrate-data-using-dm#step-3-create-data-source

6.2.2.2.3 Configure migration tasks

1. Edit task configuration file task.yaml, which can refer to Configure the data migration
task.

2. Configure the target-database.host in task.yaml as the TiDB host address that the
Kubernetes cluster can access internally. If the cluster is deployed by TiDB Operator,
configure the host as ${tidb_cluster_name}-tidb.${namespace}.

3. In the task.yaml file, take the following steps:

• Add the loaders.${customized_name}.dir field as the import and export di-
rectory for the full volume data, where ${customized_name} is a name that you
can customize.

• Configure the loaders.${customized_name}.dir field as the subdirectory of the
persistent volume in the Pod /var/lib/dm-worker directory. For example, /var
↪→ /lib/dm-worker/dumped_data.

• Reference ${customized_name} in the instance configuration. For example,
mysql-instances[0].loader-config-name: "{customized_name}".

6.2.2.2.4 Start/Check/Stop the migration tasks
Refer to the corresponding steps in Migrate Data Using DM and fill in the master-addr

as ${dm_cluster_name}-dm-master:8261.

6.3 Migrate TiDB to Kubernetes

This document describes how to migrate a TiDB cluster deployed in the physical or
virtual machine to a Kubernetes cluster, without using any backup and restore tool.

6.3.1 Prerequisites

• The physical or virtual machines outside Kubernetes have network access to the Pods
in Kubernetes.

• The physical or virtual machines outside Kubernetes can resolve the domain name of
the Pods in Kubernetes. (See Step 1 for configuration details.)

• The cluster to be migrated (that is, the source cluster) does not enable TLS between
components.

6.3.2 Step 1: Configure DNS service in all nodes of the cluster to be migrated

1. Get the Pod IP address list of the endpoints of the CoreDNS or kube-dns service of
the Kubernetes cluster:
kubectl describe svc/kube-dns -n kube-system

227

https://docs.pingcap.com/tidb-data-migration/v2.0/migrate-data-using-dm#step-4-configure-the-data-migration-task
https://docs.pingcap.com/tidb-data-migration/v2.0/migrate-data-using-dm#step-4-configure-the-data-migration-task
https://docs.pingcap.com/tidb-data-migration/v2.0/migrate-data-using-dm#step-5-start-the-data-migration-task

2. Modify the /etc/resolv.conf configuration of the source cluster node, and add the
following content to the configuration file:
search default.svc.cluster.local svc.cluster.local cluster.local
nameserver <CoreDNS Pod_IP_1>
nameserver <CoreDNS Pod_IP_2>
nameserver <CoreDNS Pod_IP_n>

3. Test whether the node can successfully resolve the domain name of the Pods in Kuber-
netes:
$ ping basic-pd-2.basic-pd-peer.blade.svc
PING basic-pd-2.basic-pd-peer.blade.svc (10.24.66.178) 56(84) bytes of

↪→ data.
64 bytes from basic-pd-2.basic-pd-peer.blade.svc (10.24.66.178):

↪→ icmp_seq=1 ttl=61 time=0.213 ms
64 bytes from basic-pd-2.basic-pd-peer.blade.svc (10.24.66.178):

↪→ icmp_seq=2 ttl=61 time=0.175 ms
64 bytes from basic-pd-2.basic-pd-peer.blade.svc (10.24.66.178):

↪→ icmp_seq=3 ttl=61 time=0.188 ms
64 bytes from basic-pd-2.basic-pd-peer.blade.svc (10.24.66.178):

↪→ icmp_seq=4 ttl=61 time=0.157 ms

6.3.3 Step 2: Create a TiDB cluster on Kubernetes

1. Get the PD node address and port of the source cluster via PD Control:
pd-ctl -u http://<address>:<port> member | jq '.members | .[] | .

↪→ client_urls'

2. Create the target TiDB cluster on Kubernetes, which must have at least 3 TiKV
nodes. Specify the PD node address of the source cluster in the spec.pdAddresses
field (starting with http://):
spec
...
pdAddresses:
- http://pd1_addr:port
- http://pd2_addr:port
- http://pd3_addr:port

3. Confirm that the source cluster and the target cluster compose of a new cluster that
runs normally:

• Get the number and state of stores in the new cluster:

228

https://docs.pingcap.com/tidb/stable/pd-control

Get the number of stores
pd-ctl -u http://<address>:<port> store | jq '.count'
Get the state of stores
pd-ctl -u http://<address>:<port> store | jq '.stores | .[] | .

↪→ store.state_name'

• Access the TiDB cluster on Kubernetes via MySQL client.

6.3.4 Step 3: Scale in the TiDB nodes of the source cluster

Remove all TiDB nodes of the source cluster:

• If the source cluster is deployed using TiUP, refer to Scale in a TiDB/PD/TiKV cluster.

• If the source cluster is deployed using TiDB Ansible, refer to Decrease the capacity of
a TiDB node.

Note:
If you access the source TiDB cluster via load balancer or database middle-
ware, you need to first modify the configuration to route your application
traffic to the target TiDB cluster. Otherwise, your application might be af-
fected.

6.3.5 Step 4: Scale in the TiKV nodes of the source cluster

Remove all TiKV nodes of the source cluster:

• If the source cluster is deployed using TiUP, refer to Scale in a TiDB/PD/TiKV cluster.

• If the source cluster is deployed using TiDB Ansible, refer to Decrease the capacity of
a TiKV node.

Note:

• You need to scale in the TiKV nodes one by one. Wait until the store
state of one TiKV node becomes “tombstone” and then scale in the next
TiKV node.

• You can view the store state using PD Control.

229

https://docs.pingcap.com/tidb/stable/scale-tidb-using-tiup#scale-in-a-tidbpdtikv-cluster
https://docs.pingcap.com/tidb/stable/scale-tidb-using-ansible#decrease-the-capacity-of-a-tidb-node
https://docs.pingcap.com/tidb/stable/scale-tidb-using-ansible#decrease-the-capacity-of-a-tidb-node
https://docs.pingcap.com/tidb/stable/scale-tidb-using-tiup#scale-in-a-tidbpdtikv-cluster
https://docs.pingcap.com/tidb/stable/scale-tidb-using-ansible#decrease-the-capacity-of-a-tikv-node
https://docs.pingcap.com/tidb/stable/scale-tidb-using-ansible#decrease-the-capacity-of-a-tikv-node

6.3.6 Step 5: Scale in the PD nodes of the source cluster

Remove all PD nodes of the source cluster:

• If the source cluster is deployed using TiUP, refer to Scale in a TiDB/PD/TiKV cluster.

• If the source cluster is deployed using TiDB Ansible, refer to Decrease the capacity of
a PD node.

6.3.7 Step 6: Delete the spec.pdAddresses field

To avoid confusion for further operations on the cluster, it is recommended that you
delete the spec.pdAddresses field in the new cluster after the migration.

7 Manage

7.1 Secure

7.1.1 Enable TLS for the MySQL Client

This document describes how to enable TLS for MySQL client of the TiDB cluster on
Kubernetes. Starting from TiDB Operator v1.1, TLS for the MySQL client of the TiDB
cluster on Kubernetes is supported.

To enable TLS for the MySQL client, perform the following steps:

1. Issue two sets of certificates: a set of server-side certificates for TiDB server, and a set of
client-side certificates for MySQL client. Create two Secret objects, ${cluster_name}-
↪→ tidb-server-secret and ${cluster_name}-tidb-client-secret, respectively
including these two sets of certificates.

Note:
The Secret objects you created must follow the above naming convention.
Otherwise, the deployment of the TiDB cluster will fail.

Certificates can be issued in multiple methods. This document describes two methods.
You can choose either of them to issue certificates for the TiDB cluster:

• Using the cfssl system
• Using the cert-manager system

2. Deploy the cluster, and set .spec.tidb.tlsClient.enabled to true.

230

https://docs.pingcap.com/tidb/stable/scale-tidb-using-tiup#scale-in-a-tidbpdtikv-cluster
https://docs.pingcap.com/tidb/stable/scale-tidb-using-ansible#decrease-the-capacity-of-a-pd-node
https://docs.pingcap.com/tidb/stable/scale-tidb-using-ansible#decrease-the-capacity-of-a-pd-node

• To skip TLS authentication for internal components that serve as the MySQL
client (such as TidbInitializer, Dashboard, Backup, and Restore), you can add the
tidb.tidb.pingcap.com/skip-tls-when-connect-tidb="true" annotation to
the cluster’s corresponding TidbCluster.

• To disable the client CA certificate authentication on the TiDB server, you can
set .spec.tidb.tlsClient.disableClientAuthn to true. This means skipping
setting the ssl-ca parameter when you configure TiDB server to enable secure
connections.

• To skip the CA certificate authentication for internal components that serve as
the MySQL client, you can set .spec.tidb.tlsClient.skipInternalClientCA
to true.

Note:
For an existing cluster, if you change .spec.tidb.tlsClient.enabled
from false to true, the TiDB Pods will be rolling restarted.

3. Configure the MySQL client to use an encrypted connection.

If you need to renew the existing TLS certificate, refer to Renew and Replace the TLS
Certificate.

7.1.1.1 Issue two sets of certificates for the TiDB cluster
This section describes how to issue certificates for the TiDB cluster using two methods:

cfssl and cert-manager.

7.1.1.1.1 Using cfssl

1. Download cfssl and initialize the certificate issuer:
mkdir -p ~/bin
curl -s -L -o ~/bin/cfssl https://pkg.cfssl.org/R1.2/cfssl_linux-amd64
curl -s -L -o ~/bin/cfssljson https://pkg.cfssl.org/R1.2/

↪→ cfssljson_linux-amd64
chmod +x ~/bin/{cfssl,cfssljson}
export PATH=$PATH:~/bin

mkdir -p cfssl
cd cfssl
cfssl print-defaults config > ca-config.json
cfssl print-defaults csr > ca-csr.json

231

https://docs.pingcap.com/tidb/stable/enable-tls-between-clients-and-servers#configure-tidb-server-to-use-secure-connections
https://docs.pingcap.com/tidb/stable/enable-tls-between-clients-and-servers#configure-tidb-server-to-use-secure-connections

2. Configure the client auth (CA) option in ca-config.json:
{

"signing": {
"default": {

"expiry": "8760h"
},
"profiles": {

"server": {
"expiry": "8760h",
"usages": [

"signing",
"key encipherment",
"server auth"

]
},
"client": {

"expiry": "8760h",
"usages": [

"signing",
"key encipherment",
"client auth"

]
}

}
}

}

3. Change the certificate signing request (CSR) of ca-csr.json:
{

"CN": "TiDB Server",
"CA": {

"expiry": "87600h"
},
"key": {

"algo": "rsa",
"size": 2048

},
"names": [

{
"C": "US",
"L": "CA",
"O": "PingCAP",
"ST": "Beijing",
"OU": "TiDB"

232

}
]

}

4. Generate CA by the configured option:
cfssl gencert -initca ca-csr.json | cfssljson -bare ca -

5. Generate the server-side certificate:
First, create the default server.json file:
cfssl print-defaults csr > server.json

Then, edit this file to change the CN, hosts attributes:
...

"CN": "TiDB Server",
"hosts": [
"127.0.0.1",
"::1",
"${cluster_name}-tidb",
"${cluster_name}-tidb.${namespace}",
"${cluster_name}-tidb.${namespace}.svc",
"*.${cluster_name}-tidb",
"*.${cluster_name}-tidb.${namespace}",
"*.${cluster_name}-tidb.${namespace}.svc",
"*.${cluster_name}-tidb-peer",
"*.${cluster_name}-tidb-peer.${namespace}",
"*.${cluster_name}-tidb-peer.${namespace}.svc"

],
...

${cluster_name} is the name of the cluster. ${namespace} is the namespace in which
the TiDB cluster is deployed. You can also add your customized hosts.
Finally, generate the server-side certificate:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -

↪→ profile=server server.json | cfssljson -bare server

6. Generate the client-side certificate:
First, create the default client.json file:
cfssl print-defaults csr > client.json

Then, edit this file to change the CN, hosts attributes. You can leave the hosts empty:

233

...
"CN": "TiDB Client",
"hosts": [],

...

Finally, generate the client-side certificate:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -

↪→ profile=client client.json | cfssljson -bare client

7. Create the Kubernetes Secret object.
If you have already generated two sets of certificates as described in the above steps,
create the Secret object for the TiDB cluster by the following command:
kubectl create secret generic ${cluster_name}-tidb-server-secret --

↪→ namespace=${namespace} --from-file=tls.crt=server.pem --from-file
↪→ =tls.key=server-key.pem --from-file=ca.crt=ca.pem

kubectl create secret generic ${cluster_name}-tidb-client-secret --
↪→ namespace=${namespace} --from-file=tls.crt=client.pem --from-file
↪→ =tls.key=client-key.pem --from-file=ca.crt=ca.pem

You have created two Secret objects for the server-side and client-side certificates:

• The TiDB server loads one Secret object when it starts
• The MySQL client uses another Secret object when it connects to the TiDB cluster

You can generate multiple sets of client-side certificates. At least one set of client-side
certificates is needed for the internal components of TiDB Operator to access the TiDB
server. Currently, TidbInitializer accesses the TiDB server to set the password or perform
initialization.

7.1.1.1.2 Using cert-manager

1. Install cert-manager.
Refer to cert-manager installation on Kubernetes.

2. Create an Issuer to issue certificates for the TiDB cluster.
To configure cert-manager, create the Issuer resources.
First, create a directory which saves the files that cert-manager needs to create cer-
tificates:
mkdir -p cert-manager
cd cert-manager

234

https://docs.cert-manager.io/en/release-0.11/getting-started/install/kubernetes.html

Then, create a tidb-server-issuer.yaml file with the following content:
apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
name: ${cluster_name}-selfsigned-ca-issuer
namespace: ${namespace}

spec:
selfSigned: {}

apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${cluster_name}-ca
namespace: ${namespace}

spec:
secretName: ${cluster_name}-ca-secret
commonName: "TiDB CA"
isCA: true
duration: 87600h # 10yrs
renewBefore: 720h # 30d
issuerRef:
name: ${cluster_name}-selfsigned-ca-issuer
kind: Issuer

apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
name: ${cluster_name}-tidb-issuer
namespace: ${namespace}

spec:
ca:
secretName: ${cluster_name}-ca-secret

This .yaml file creates three objects:

• An Issuer object of SelfSigned class, used to generate the CA certificate needed
by Issuer of CA class

• A Certificate object, whose isCa is set to true
• An Issuer, used to issue TLS certificates for the TiDB server

Finally, execute the following command to create an Issuer:
kubectl apply -f tidb-server-issuer.yaml

3. Generate the server-side certificate.

235

In cert-manager, the Certificate resource represents the certificate interface. This
certificate is issued and updated by the Issuer created in Step 2.
First, create a tidb-server-cert.yaml file with the following content:
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${cluster_name}-tidb-server-secret
namespace: ${namespace}

spec:
secretName: ${cluster_name}-tidb-server-secret
duration: 8760h # 365d
renewBefore: 360h # 15d
subject:
organizations:
- PingCAP

commonName: "TiDB Server"
usages:
- server auth

dnsNames:
- "${cluster_name}-tidb"
- "${cluster_name}-tidb.${namespace}"
- "${cluster_name}-tidb.${namespace}.svc"
- "*.${cluster_name}-tidb"
- "*.${cluster_name}-tidb.${namespace}"
- "*.${cluster_name}-tidb.${namespace}.svc"
- "*.${cluster_name}-tidb-peer"
- "*.${cluster_name}-tidb-peer.${namespace}"
- "*.${cluster_name}-tidb-peer.${namespace}.svc"

ipAddresses:
- 127.0.0.1
- ::1

issuerRef:
name: ${cluster_name}-tidb-issuer
kind: Issuer
group: cert-manager.io

${cluster_name} is the name of the cluster. Configure the items as follows:

• Set spec.secretName to ${cluster_name}-tidb-server-secret
• Add server auth in usages
• Add the following 6 DNSs in dnsNames. You can also add other DNSs according

to your needs:
– ${cluster_name}-tidb
– ${cluster_name}-tidb.${namespace}

236

– ${cluster_name}-tidb.${namespace}.svc
– *.${cluster_name}-tidb
– *.${cluster_name}-tidb.${namespace}
– *.${cluster_name}-tidb.${namespace}.svc
– *.${cluster_name}-tidb-peer
– *.${cluster_name}-tidb-peer.${namespace}
– *.${cluster_name}-tidb-peer.${namespace}.svc

• Add the following 2 IPs in ipAddresses. You can also add other IPs according
to your needs:

– 127.0.0.1
– ::1

• Add the Issuer created above in the issuerRef
• For other attributes, refer to cert-manager API.

Execute the following command to generate the certificate:
kubectl apply -f tidb-server-cert.yaml

After the object is created, cert-manager generates a ${cluster_name}-tidb-server
↪→ -secret Secret object to be used by the TiDB server.

4. Generate the client-side certificate:
Create a tidb-client-cert.yaml file with the following content:
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${cluster_name}-tidb-client-secret
namespace: ${namespace}

spec:
secretName: ${cluster_name}-tidb-client-secret
duration: 8760h # 365d
renewBefore: 360h # 15d
subject:
organizations:
- PingCAP

commonName: "TiDB Client"
usages:
- client auth

issuerRef:
name: ${cluster_name}-tidb-issuer
kind: Issuer
group: cert-manager.io

${cluster_name} is the name of the cluster. Configure the items as follows:

237

https://cert-manager.io/docs/reference/api-docs/#cert-manager.io/v1.CertificateSpec

• Set spec.secretName to ${cluster_name}-tidb-client-secret
• Add client auth in usages
• dnsNames and ipAddresses are not required
• Add the Issuer created above in the issuerRef
• For other attributes, refer to cert-manager API

Execute the following command to generate the certificate:
kubectl apply -f tidb-client-cert.yaml

After the object is created, cert-manager generates a ${cluster_name}-tidb-client
↪→ -secret Secret object to be used by the TiDB client.

5. Create multiple sets of client-side certificates (optional).
Four components in the TiDB Operator cluster need to request the TiDB server. When
TLS is enabled, these components can use certificates to request the TiDB server, each
with a separate certificate. The four components are listed as follows:

• TidbInitializer
• PD Dashboard
• Backup (when using Dumpling)
• Restore (when using TiDB Lightning)

If you need to restore data using TiDB Lightning, you need to generate a server-side
certificate for the TiDB Lightning component.
To create certificates for these components, take the following steps:

1. Create a tidb-components-client-cert.yaml file with the following content:
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${cluster_name}-tidb-initializer-client-secret
namespace: ${namespace}

spec:
secretName: ${cluster_name}-tidb-initializer-client-secret
duration: 8760h # 365d
renewBefore: 360h # 15d
subject:
organizations:
- PingCAP

commonName: "TiDB Initializer client"
usages:
- client auth

issuerRef:
name: ${cluster_name}-tidb-issuer

238

https://cert-manager.io/docs/reference/api-docs/#cert-manager.io/v1.CertificateSpec

kind: Issuer
group: cert-manager.io

apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${cluster_name}-pd-dashboard-client-secret
namespace: ${namespace}

spec:
secretName: ${cluster_name}-pd-dashboard-client-secret
duration: 8760h # 365d
renewBefore: 360h # 15d
subject:
organizations:
- PingCAP

commonName: "PD Dashboard client"
usages:
- client auth

issuerRef:
name: ${cluster_name}-tidb-issuer
kind: Issuer
group: cert-manager.io

apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${cluster_name}-backup-client-secret
namespace: ${namespace}

spec:
secretName: ${cluster_name}-backup-client-secret
duration: 8760h # 365d
renewBefore: 360h # 15d
subject:
organizations:
- PingCAP

commonName: "Backup client"
usages:
- client auth

issuerRef:
name: ${cluster_name}-tidb-issuer
kind: Issuer
group: cert-manager.io

apiVersion: cert-manager.io/v1
kind: Certificate

239

metadata:
name: ${cluster_name}-restore-client-secret
namespace: ${namespace}

spec:
secretName: ${cluster_name}-restore-client-secret
duration: 8760h # 365d
renewBefore: 360h # 15d
subject:
organizations:
- PingCAP

commonName: "Restore client"
usages:
- client auth

issuerRef:
name: ${cluster_name}-tidb-issuer
kind: Issuer
group: cert-manager.io

In the .yaml file above, ${cluster_name} is the name of the cluster. Configure
the items as follows:
• Set the value of spec.secretName to ${cluster_name}-${component}-

↪→ client-secret.
• Add client auth in usages.
• dnsNames and ipAddresses are not required.
• Add the Issuer created above in the issuerRef.
• For other attributes, refer to cert-manager API.

To generate a client-side certificate for TiDB Lightning, use the following content
and set tlsCluster.tlsClientSecretName to ${cluster_name}-lightning-
↪→ client-secret in TiDB Lightning’s values.yaml file.
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${cluster_name}-lightning-client-secret
namespace: ${namespace}

spec:
secretName: ${cluster_name}-lightning-client-secret
duration: 8760h # 365d
renewBefore: 360h # 15d
subject:
organizations:
- PingCAP

commonName: "Lightning client"
usages:
- client auth

240

https://cert-manager.io/docs/reference/api-docs/#cert-manager.io/v1.CertificateSpec

issuerRef:
name: ${cluster_name}-tidb-issuer
kind: Issuer
group: cert-manager.io

2. Create the certificate by running the following command:
kubectl apply -f tidb-components-client-cert.yaml

3. After creating these objects, cert-manager will generate four secret objects for the
four components.

Note:
TiDB server’s TLS is compatible with the MySQL protocol. When the
certificate content is changed, the administrator needs to manually ex-
ecute the SQL statement alter instance reload tls to refresh the
content.

7.1.1.2 Deploy the TiDB cluster
In this step, you create a TiDB cluster and perform the following operations:

• Enable TLS for the MySQL client
• Initialize the cluster (an app database is created for demonstration)
• Create a Backup object to back up the cluster
• Create a Restore object to restore the cluster
• Use separate client-side certificates for TidbInitializer, PD Dashboard, Backup, and

Restore (specified by tlsClientSecretName)

1. Create three .yaml files:

• tidb-cluster.yaml file:
apiVersion: pingcap.com/v1alpha1
kind: TidbCluster
metadata:
name: ${cluster_name}
namespace: ${namespace}

spec:
version: v8.5.0
timezone: UTC
pvReclaimPolicy: Retain
pd:
baseImage: pingcap/pd

241

maxFailoverCount: 0
replicas: 1
requests:
storage: "10Gi"

config: {}
tlsClientSecretName: ${cluster_name}-pd-dashboard-client-secret

tikv:
baseImage: pingcap/tikv
maxFailoverCount: 0
replicas: 1
requests:
storage: "100Gi"

config: {}
tidb:
baseImage: pingcap/tidb
maxFailoverCount: 0
replicas: 1
service:
type: ClusterIP

config: {}
tlsClient:
enabled: true

apiVersion: pingcap.com/v1alpha1
kind: TidbInitializer
metadata:
name: ${cluster_name}-init
namespace: ${namespace}

spec:
image: tnir/mysqlclient
cluster:
namespace: ${namespace}
name: ${cluster_name}

initSql: |-
create database app;

tlsClientSecretName: ${cluster_name}-tidb-initializer-client-
↪→ secret

• backup.yaml:
apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: ${cluster_name}-backup
namespace: ${namespace}

242

spec:
backupType: full
br:
cluster: ${cluster_name}
clusterNamespace: ${namespace}
sendCredToTikv: true

s3:
provider: aws
region: ${my_region}
secretName: ${s3_secret}
bucket: ${my_bucket}
prefix: ${my_folder}

• restore.yaml:
apiVersion: pingcap.com/v1alpha1
kind: Restore
metadata:
name: ${cluster_name}-restore
namespace: ${namespace}

spec:
backupType: full
br:
cluster: ${cluster_name}
clusterNamespace: ${namespace}
sendCredToTikv: true

s3:
provider: aws
region: ${my_region}
secretName: ${s3_secret}
bucket: ${my_bucket}
prefix: ${my_folder}

In the above file, ${cluster_name} is the name of the cluster, and ${namespace} is
the namespace in which the TiDB cluster is deployed. To enable TLS for the MySQL
client, set spec.tidb.tlsClient.enabled to true.

2. Deploy the TiDB cluster:
kubectl apply -f tidb-cluster.yaml

3. Back up the cluster:
kubectl apply -f backup.yaml

4. Restore the cluster:

243

kubectl apply -f restore.yaml

7.1.1.3 Configure the MySQL client to use an encrypted connection
To connect the MySQL client with the TiDB cluster, use the client-side certificate created

above and take the following methods. For details, refer to Configure the MySQL client to
use encrypted connections.

Execute the following command to acquire the client-side certificate and connect to the
TiDB server:
kubectl get secret -n ${namespace} ${cluster_name}-tidb-client-secret -

↪→ ojsonpath='{.data.tls\.crt}' | base64 --decode > client-tls.crt
kubectl get secret -n ${namespace} ${cluster_name}-tidb-client-secret -

↪→ ojsonpath='{.data.tls\.key}' | base64 --decode > client-tls.key
kubectl get secret -n ${namespace} ${cluster_name}-tidb-client-secret -

↪→ ojsonpath='{.data.ca\.crt}' | base64 --decode > client-ca.crt

mysql --comments -uroot -p -P 4000 -h ${tidb_host} --ssl-cert=client-tls.crt
↪→ --ssl-key=client-tls.key --ssl-ca=client-ca.crt

Note:
The default authentication plugin of MySQL 8.0 is updated from
mysql_native_password to caching_sha2_password. Therefore, if you use
MySQL client from MySQL 8.0 to access the TiDB service (TiDB version <
v4.0.7), and if the user account has a password, you need to explicitly specify
the --default-auth=mysql_native_password parameter.

Finally, to verify whether TLS is successfully enabled, refer to checking the current
connection.

7.1.2 Enable TLS between TiDB Components

This document describes how to enable Transport Layer Security (TLS) between com-
ponents of the TiDB cluster on Kubernetes, which is supported since TiDB Operator v1.1.

To enable TLS between TiDB components, perform the following steps:

1. Generate certificates for each component of the TiDB cluster to be created:

244

https://docs.pingcap.com/tidb/stable/enable-tls-between-clients-and-servers#configure-the-mysql-client-to-use-encrypted-connections
https://docs.pingcap.com/tidb/stable/enable-tls-between-clients-and-servers#configure-the-mysql-client-to-use-encrypted-connections
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_default_authentication_plugin
https://docs.pingcap.com/tidb/stable/enable-tls-between-clients-and-servers#check-whether-the-current-connection-uses-encryption
https://docs.pingcap.com/tidb/stable/enable-tls-between-clients-and-servers#check-whether-the-current-connection-uses-encryption

• A set of server-side certificates for the PD/TiKV/TiDB/Pump/Drainer/Ti-
Flash/TiProxy/TiKV Importer/TiDB Lightning component, saved as the Kubernetes
Secret objects: ${cluster_name}-${component_name}-cluster-secret.

• A set of shared client-side certificates for the various clients of each component, saved
as the Kubernetes Secret objects: ${cluster_name}-cluster-client-secret.

Note:
The Secret objects you created must follow the above naming convention.
Otherwise, the deployment of the TiDB components will fail.

2. Deploy the cluster, and set .spec.tlsCluster.enabled to true.

Note:
• After the cluster is created, do not modify this field; otherwise, the

cluster will fail to upgrade. If you need to modify this field, delete
the cluster and create a new one.

• If you cannot rebuild the cluster but need to enable TLS, see Upgrade
a non-TLS cluster to a TLS cluster.

3. Configure pd-ctl and tikv-ctl to connect to the cluster.

Note:

• TiDB 4.0.5 (or later versions) and TiDB Operator 1.1.4 (or later ver-
sions) support enabling TLS for TiFlash.

• TiDB 4.0.3 (or later versions) and TiDB Operator 1.1.3 (or later ver-
sions) support enabling TLS for TiCDC.

Certificates can be issued in multiple methods. This document describes two methods.
You can choose either of them to issue certificates for the TiDB cluster:

• Using the cfssl system
• Using the cert-manager system

If you need to renew the existing TLS certificate, refer to Renew and Replace the TLS
Certificate.

245

7.1.2.1 Step 1. Generate certificates for components of the TiDB cluster
This section describes how to issue certificates using two methods: cfssl and cert-

↪→ manager.

7.1.2.1.1 Using cfssl

1. Download cfssl and initialize the certificate issuer:
mkdir -p ~/bin
curl -s -L -o ~/bin/cfssl https://pkg.cfssl.org/R1.2/cfssl_linux-amd64
curl -s -L -o ~/bin/cfssljson https://pkg.cfssl.org/R1.2/

↪→ cfssljson_linux-amd64
chmod +x ~/bin/{cfssl,cfssljson}
export PATH=$PATH:~/bin

mkdir -p cfssl
cd cfssl

2. Generate the ca-config.json configuration file:
cat << EOF > ca-config.json
{

"signing": {
"default": {

"expiry": "8760h"
},
"profiles": {

"internal": {
"expiry": "8760h",
"usages": [

"signing",
"key encipherment",
"server auth",
"client auth"

]
},
"client": {

"expiry": "8760h",
"usages": [

"signing",
"key encipherment",
"client auth"

]
}

}

246

}
}
EOF

3. Generate the ca-csr.json configuration file:
cat << EOF > ca-csr.json
{

"CN": "TiDB",
"CA": {

"expiry": "87600h"
},
"key": {

"algo": "rsa",
"size": 2048

},
"names": [

{
"C": "US",
"L": "CA",
"O": "PingCAP",
"ST": "Beijing",
"OU": "TiDB"

}
]

}
EOF

4. Generate CA by the configured option:
cfssl gencert -initca ca-csr.json | cfssljson -bare ca -

5. Generate the server-side certificates:
In this step, a set of server-side certificate is created for each component of the TiDB
cluster.

• PD
First, generate the default pd-server.json file:
cfssl print-defaults csr > pd-server.json

Then, edit this file to change the CN and hosts attributes:
...

"CN": "TiDB",
"hosts": [

247

"127.0.0.1",
"::1",
"${cluster_name}-pd",
"${cluster_name}-pd.${namespace}",
"${cluster_name}-pd.${namespace}.svc",
"${cluster_name}-pd-peer",
"${cluster_name}-pd-peer.${namespace}",
"${cluster_name}-pd-peer.${namespace}.svc",
"*.${cluster_name}-pd-peer",
"*.${cluster_name}-pd-peer.${namespace}",
"*.${cluster_name}-pd-peer.${namespace}.svc"

],
...

Note:
Starting from v8.0.0, PD supports the microservice mode (experimen-
tal). To deploy PD microservices in your cluster, it is unnecessary to
generate certificates for each component of PD microservices. Instead,
you only need to add the host configurations for microservices to the
hosts field of the pd-server.json file. Taking the scheduling mi-
croservice as an example, you need to configure the following items:
...

"CN": "TiDB",
"hosts": [
"127.0.0.1",
"::1",
"${cluster_name}-pd",
...
"*.${cluster_name}-pd-peer.${namespace}.svc",
// The following are host configurations for the `

↪→ scheduling` microservice
"${cluster_name}-scheduling",
"${cluster_name}-scheduling.${cluster_name}",
"${cluster_name}-scheduling.${cluster_name}.svc",
"${cluster_name}-scheduling-peer",
"${cluster_name}-scheduling-peer.${cluster_name}",
"${cluster_name}-scheduling-peer.${cluster_name}.

↪→ svc",
"*.${cluster_name}-scheduling-peer",
"*.${cluster_name}-scheduling-peer.${cluster_name

↪→ }",
"*.${cluster_name}-scheduling-peer.${cluster_name}.

↪→ svc",

248

https://docs.pingcap.com/tidb/dev/pd-microservices

],
...

${cluster_name} is the name of the cluster. ${namespace} is the namespace in
which the TiDB cluster is deployed. You can also add your customized hosts.
Finally, generate the PD server-side certificate:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json

↪→ -profile=internal pd-server.json | cfssljson -bare pd-server

• TiKV
First, generate the default tikv-server.json file:
cfssl print-defaults csr > tikv-server.json

Then, edit this file to change the CN and hosts attributes:
...

"CN": "TiDB",
"hosts": [
"127.0.0.1",
"::1",
"${cluster_name}-tikv",
"${cluster_name}-tikv.${namespace}",
"${cluster_name}-tikv.${namespace}.svc",
"${cluster_name}-tikv-peer",
"${cluster_name}-tikv-peer.${namespace}",
"${cluster_name}-tikv-peer.${namespace}.svc",
"*.${cluster_name}-tikv-peer",
"*.${cluster_name}-tikv-peer.${namespace}",
"*.${cluster_name}-tikv-peer.${namespace}.svc"

],
...

${cluster_name} is the name of the cluster. ${namespace} is the namespace in
which the TiDB cluster is deployed. You can also add your customized hosts.
Finally, generate the TiKV server-side certificate:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json

↪→ -profile=internal tikv-server.json | cfssljson -bare tikv-
↪→ server

• TiDB
First, create the default tidb-server.json file:

249

cfssl print-defaults csr > tidb-server.json

Then, edit this file to change the CN, hosts attributes:
...

"CN": "TiDB",
"hosts": [
"127.0.0.1",
"::1",
"${cluster_name}-tidb",
"${cluster_name}-tidb.${namespace}",
"${cluster_name}-tidb.${namespace}.svc",
"${cluster_name}-tidb-peer",
"${cluster_name}-tidb-peer.${namespace}",
"${cluster_name}-tidb-peer.${namespace}.svc",
"*.${cluster_name}-tidb-peer",
"*.${cluster_name}-tidb-peer.${namespace}",
"*.${cluster_name}-tidb-peer.${namespace}.svc"

],
...

${cluster_name} is the name of the cluster. ${namespace} is the namespace in
which the TiDB cluster is deployed. You can also add your customized hosts.
Finally, generate the TiDB server-side certificate:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json

↪→ -profile=internal tidb-server.json | cfssljson -bare tidb-
↪→ server

• Pump
First, create the default pump-server.json file:
cfssl print-defaults csr > pump-server.json

Then, edit this file to change the CN, hosts attributes:
...

"CN": "TiDB",
"hosts": [
"127.0.0.1",
"::1",
"*.${cluster_name}-pump",
"*.${cluster_name}-pump.${namespace}",
"*.${cluster_name}-pump.${namespace}.svc"

],
...

250

${cluster_name} is the name of the cluster. ${namespace} is the namespace in
which the TiDB cluster is deployed. You can also add your customized hosts.
Finally, generate the Pump server-side certificate:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json

↪→ -profile=internal pump-server.json | cfssljson -bare pump-
↪→ server

• Drainer
First, generate the default drainer-server.json file:
cfssl print-defaults csr > drainer-server.json

Then, edit this file to change the CN, hosts attributes:
...

"CN": "TiDB",
"hosts": [
"127.0.0.1",
"::1",
"<for hosts list, see the following instructions>"

],
...

Drainer is deployed using Helm. The hosts field varies with different configuration
of the values.yaml file.
If you have set the drainerName attribute when deploying Drainer as follows:
...
Changes the names of the statefulset and Pod.
The default value is clusterName-ReleaseName-drainer.
Does not change the name of an existing running Drainer, which is

↪→ unsupported.
drainerName: my-drainer
...

Then you can set the hosts attribute as described below:
...

"CN": "TiDB",
"hosts": [
"127.0.0.1",
"::1",
"*.${drainer_name}",
"*.${drainer_name}.${namespace}",
"*.${drainer_name}.${namespace}.svc"

],
...

251

If you have not set the drainerName attribute when deploying Drainer, configure
the hosts attribute as follows:
...

"CN": "TiDB",
"hosts": [
"127.0.0.1",
"::1",
"*.${cluster_name}-${release_name}-drainer",
"*.${cluster_name}-${release_name}-drainer.${namespace}",
"*.${cluster_name}-${release_name}-drainer.${namespace}.svc"

],
...

${cluster_name} is the name of the cluster. ${namespace} is the namespace in
which the TiDB cluster is deployed. ${release_name} is the release name you
set when helm install is executed. ${drainer_name} is drainerName in the
values.yaml file. You can also add your customized hosts.
Finally, generate the Drainer server-side certificate:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json

↪→ -profile=internal drainer-server.json | cfssljson -bare
↪→ drainer-server

• TiCDC
1. Generate the default ticdc-server.json file:

cfssl print-defaults csr > ticdc-server.json

2. Edit this file to change the CN, hosts attributes:
...

"CN": "TiDB",
"hosts": [
"127.0.0.1",
"::1",
"${cluster_name}-ticdc",
"${cluster_name}-ticdc.${namespace}",
"${cluster_name}-ticdc.${namespace}.svc",
"${cluster_name}-ticdc-peer",
"${cluster_name}-ticdc-peer.${namespace}",
"${cluster_name}-ticdc-peer.${namespace}.svc",
"*.${cluster_name}-ticdc-peer",
"*.${cluster_name}-ticdc-peer.${namespace}",
"*.${cluster_name}-ticdc-peer.${namespace}.svc"

],
...

252

${cluster_name} is the name of the cluster. ${namespace} is the namespace
in which the TiDB cluster is deployed. You can also add your customized
hosts.

3. Generate the TiCDC server-side certificate:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.

↪→ json -profile=internal ticdc-server.json | cfssljson -
↪→ bare ticdc-server

• TiProxy
1. Generate the default tiproxy-server.json file:

cfssl print-defaults csr > tiproxy-server.json

2. Edit this file to change the CN and hosts attributes:
...

"CN": "TiDB",
"hosts": [
"127.0.0.1",
"::1",
"${cluster_name}-tiproxy",
"${cluster_name}-tiproxy.${namespace}",
"${cluster_name}-tiproxy.${namespace}.svc",
"${cluster_name}-tiproxy-peer",
"${cluster_name}-tiproxy-peer.${namespace}",
"${cluster_name}-tiproxy-peer.${namespace}.svc",
"*.${cluster_name}-tiproxy-peer",
"*.${cluster_name}-tiproxy-peer.${namespace}",
"*.${cluster_name}-tiproxy-peer.${namespace}.svc"

],
...

${cluster_name} is the name of the cluster. ${namespace} is the namespace
in which the TiDB cluster is deployed. You can also add your customized
hosts.

3. Generate the TiProxy server-side certificate:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.

↪→ json -profile=internal tiproxy-server.json | cfssljson -
↪→ bare tiproxy-server

• TiFlash
1. Generate the default tiflash-server.json file:

cfssl print-defaults csr > tiflash-server.json

253

2. Edit this file to change the CN and hosts attributes:
...

"CN": "TiDB",
"hosts": [
"127.0.0.1",
"::1",
"${cluster_name}-tiflash",
"${cluster_name}-tiflash.${namespace}",
"${cluster_name}-tiflash.${namespace}.svc",
"${cluster_name}-tiflash-peer",
"${cluster_name}-tiflash-peer.${namespace}",
"${cluster_name}-tiflash-peer.${namespace}.svc",
"*.${cluster_name}-tiflash-peer",
"*.${cluster_name}-tiflash-peer.${namespace}",
"*.${cluster_name}-tiflash-peer.${namespace}.svc"

],
...

${cluster_name} is the name of the cluster. ${namespace} is the namespace
in which the TiDB cluster is deployed. You can also add your customized
hosts.

3. Generate the TiFlash server-side certificate:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.

↪→ json -profile=internal tiflash-server.json | cfssljson -
↪→ bare tiflash-server

• TiKV Importer
If you need to restore data using TiDB Lightning, you need to generate a server-
side certificate for the TiKV Importer component.
1. Generate the default importer-server.json file:

cfssl print-defaults csr > importer-server.json

2. Edit this file to change the CN and hosts attributes:
...

"CN": "TiDB",
"hosts": [
"127.0.0.1",
"::1",
"${cluster_name}-importer",
"${cluster_name}-importer.${namespace}",
"${cluster_name}-importer.${namespace}.svc"
"${cluster_name}-importer.${namespace}.svc",
"*.${cluster_name}-importer",

254

"*.${cluster_name}-importer.${namespace}",
"*.${cluster_name}-importer.${namespace}.svc"

],
...

${cluster_name} is the name of the cluster. ${namespace} is the namespace
in which the TiDB cluster is deployed. You can also add your customized
hosts.

3. Generate the TiKV Importer server-side certificate:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.

↪→ json -profile=internal importer-server.json | cfssljson -
↪→ bare importer-server

• TiDB Lightning
If you need to restore data using TiDB Lightning, you need to generate a server-
side certificate for the TiDB Lightning component.
1. Generate the default lightning-server.json file:

cfssl print-defaults csr > lightning-server.json

2. Edit this file to change the CN and hosts attributes:
...

"CN": "TiDB",
"hosts": [
"127.0.0.1",
"::1",
"${cluster_name}-lightning",
"${cluster_name}-lightning.${namespace}",
"${cluster_name}-lightning.${namespace}.svc"

],
...

${cluster_name} is the name of the cluster. ${namespace} is the namespace
in which the TiDB cluster is deployed. You can also add your customized
hosts.

3. Generate the TiDB Lightning server-side certificate:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.

↪→ json -profile=internal lightning-server.json | cfssljson
↪→ -bare lightning-server

6. Generate the client-side certificate:
First, create the default client.json file:
cfssl print-defaults csr > client.json

255

Then, edit this file to change the CN, hosts attributes. You can leave the hosts empty:
...

"CN": "TiDB",
"hosts": [],

...

Finally, generate the client-side certificate:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -

↪→ profile=client client.json | cfssljson -bare client

7. Create the Kubernetes Secret object:
If you have already generated a set of certificates for each component and a set of
client-side certificate for each client as described in the above steps, create the Secret
objects for the TiDB cluster by executing the following command:

• The PD cluster certificate Secret:
kubectl create secret generic ${cluster_name}-pd-cluster-secret --

↪→ namespace=${namespace} --from-file=tls.crt=pd-server.pem --
↪→ from-file=tls.key=pd-server-key.pem --from-file=ca.crt=ca.
↪→ pem

• The TiKV cluster certificate Secret:
kubectl create secret generic ${cluster_name}-tikv-cluster-secret

↪→ --namespace=${namespace} --from-file=tls.crt=tikv-server.pem
↪→ --from-file=tls.key=tikv-server-key.pem --from-file=ca.crt=
↪→ ca.pem

• The TiDB cluster certificate Secret:
kubectl create secret generic ${cluster_name}-tidb-cluster-secret

↪→ --namespace=${namespace} --from-file=tls.crt=tidb-server.pem
↪→ --from-file=tls.key=tidb-server-key.pem --from-file=ca.crt=
↪→ ca.pem

• The Pump cluster certificate Secret:
kubectl create secret generic ${cluster_name}-pump-cluster-secret

↪→ --namespace=${namespace} --from-file=tls.crt=pump-server.pem
↪→ --from-file=tls.key=pump-server-key.pem --from-file=ca.crt=
↪→ ca.pem

• The Drainer cluster certificate Secret:

256

kubectl create secret generic ${cluster_name}-drainer-cluster-
↪→ secret --namespace=${namespace} --from-file=tls.crt=drainer-
↪→ server.pem --from-file=tls.key=drainer-server-key.pem --from
↪→ -file=ca.crt=ca.pem

• The TiCDC cluster certificate Secret:
kubectl create secret generic ${cluster_name}-ticdc-cluster-secret

↪→ --namespace=${namespace} --from-file=tls.crt=ticdc-server.
↪→ pem --from-file=tls.key=ticdc-server-key.pem --from-file=ca.
↪→ crt=ca.pem

• The TiProxy cluster certificate Secret:
kubectl create secret generic ${cluster_name}-tiproxy-cluster-

↪→ secret --namespace=${namespace} --from-file=tls.crt=tiproxy-
↪→ server.pem --from-file=tls.key=tiproxy-server-key.pem --from
↪→ -file=ca.crt=ca.pem

• The TiFlash cluster certificate Secret:
kubectl create secret generic ${cluster_name}-tiflash-cluster-

↪→ secret --namespace=${namespace} --from-file=tls.crt=tiflash-
↪→ server.pem --from-file=tls.key=tiflash-server-key.pem --from
↪→ -file=ca.crt=ca.pem

• The TiKV Importer cluster certificate Secret:
kubectl create secret generic ${cluster_name}-importer-cluster-

↪→ secret --namespace=${namespace} --from-file=tls.crt=importer
↪→ -server.pem --from-file=tls.key=importer-server-key.pem --
↪→ from-file=ca.crt=ca.pem

• The TiDB Lightning cluster certificate Secret:
kubectl create secret generic ${cluster_name}-lightning-cluster-

↪→ secret --namespace=${namespace} --from-file=tls.crt=
↪→ lightning-server.pem --from-file=tls.key=lightning-server-
↪→ key.pem --from-file=ca.crt=ca.pem

• The client certificate Secret:
kubectl create secret generic ${cluster_name}-cluster-client-secret

↪→ --namespace=${namespace} --from-file=tls.crt=client.pem --
↪→ from-file=tls.key=client-key.pem --from-file=ca.crt=ca.pem

You have created two Secret objects:

257

• One Secret object for each PD/TiKV/TiDB/Pump/Drainer server-side certificate
to load when the server is started;

• One Secret object for their clients to connect.

7.1.2.1.2 Using cert-manager

1. Install cert-manager.
Refer to cert-manager installation on Kubernetes for details.

2. Create an Issuer to issue certificates to the TiDB cluster.
To configure cert-manager, create the Issuer resources.
First, create a directory which saves the files that cert-manager needs to create cer-
tificates:
mkdir -p cert-manager
cd cert-manager

Then, create a tidb-cluster-issuer.yaml file with the following content:
apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
name: ${cluster_name}-selfsigned-ca-issuer
namespace: ${namespace}

spec:
selfSigned: {}

apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${cluster_name}-ca
namespace: ${namespace}

spec:
secretName: ${cluster_name}-ca-secret
commonName: "TiDB"
isCA: true
duration: 87600h # 10yrs
renewBefore: 720h # 30d
issuerRef:
name: ${cluster_name}-selfsigned-ca-issuer
kind: Issuer

apiVersion: cert-manager.io/v1
kind: Issuer
metadata:

258

https://docs.cert-manager.io/en/release-0.11/getting-started/install/kubernetes.html

name: ${cluster_name}-tidb-issuer
namespace: ${namespace}

spec:
ca:
secretName: ${cluster_name}-ca-secret

${cluster_name} is the name of the cluster. The above YAML file creates three
objects:

• An Issuer object of the SelfSigned type, used to generate the CA certificate needed
by Issuer of the CA type;

• A Certificate object, whose isCa is set to true.
• An Issuer, used to issue TLS certificates between TiDB components.

Finally, execute the following command to create an Issuer:
kubectl apply -f tidb-cluster-issuer.yaml

3. Generate the server-side certificate.
In cert-manager, the Certificate resource represents the certificate interface. This
certificate is issued and updated by the Issuer created in Step 2.
According to Enable TLS Authentication, each component needs a server-side certifi-
cate, and all components need a shared client-side certificate for their clients.

• PD
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${cluster_name}-pd-cluster-secret
namespace: ${namespace}

spec:
secretName: ${cluster_name}-pd-cluster-secret
duration: 8760h # 365d
renewBefore: 360h # 15d
subject:
organizations:
- PingCAP

commonName: "TiDB"
usages:
- server auth
- client auth

dnsNames:
- "${cluster_name}-pd"
- "${cluster_name}-pd.${namespace}"

259

https://docs.pingcap.com/tidb/stable/enable-tls-between-components

- "${cluster_name}-pd.${namespace}.svc"
- "${cluster_name}-pd-peer"
- "${cluster_name}-pd-peer.${namespace}"
- "${cluster_name}-pd-peer.${namespace}.svc"
- "*.${cluster_name}-pd-peer"
- "*.${cluster_name}-pd-peer.${namespace}"
- "*.${cluster_name}-pd-peer.${namespace}.svc"
ipAddresses:
- 127.0.0.1
- ::1
issuerRef:
name: ${cluster_name}-tidb-issuer
kind: Issuer
group: cert-manager.io

${cluster_name} is the name of the cluster. Configure the items as follows:
– Set spec.secretName to ${cluster_name}-pd-cluster-secret.
– Add server auth and client auth in usages.
– Add the following DNSs in dnsNames. You can also add other DNSs according

to your needs:
* ${cluster_name}-pd
* ${cluster_name}-pd.${namespace}
* ${cluster_name}-pd.${namespace}.svc
* ${cluster_name}-pd-peer
* ${cluster_name}-pd-peer.${namespace}
* ${cluster_name}-pd-peer.${namespace}.svc
* *.${cluster_name}-pd-peer
* *.${cluster_name}-pd-peer.${namespace}
* *.${cluster_name}-pd-peer.${namespace}.svc

– Add the following two IPs in ipAddresses. You can also add other IPs
according to your needs:
* 127.0.0.1
* ::1

– Add the Issuer created above in issuerRef.
– For other attributes, refer to cert-manager API.

After the object is created, cert-manager generates a ${cluster_name}-pd-
↪→ cluster-secret Secret object to be used by the PD component of the TiDB
server.

• TiKV
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${cluster_name}-tikv-cluster-secret

260

https://cert-manager.io/docs/reference/api-docs/#cert-manager.io/v1.CertificateSpec

namespace: ${namespace}
spec:
secretName: ${cluster_name}-tikv-cluster-secret
duration: 8760h # 365d
renewBefore: 360h # 15d
subject:
organizations:
- PingCAP

commonName: "TiDB"
usages:
- server auth
- client auth

dnsNames:
- "${cluster_name}-tikv"
- "${cluster_name}-tikv.${namespace}"
- "${cluster_name}-tikv.${namespace}.svc"
- "${cluster_name}-tikv-peer"
- "${cluster_name}-tikv-peer.${namespace}"
- "${cluster_name}-tikv-peer.${namespace}.svc"
- "*.${cluster_name}-tikv-peer"
- "*.${cluster_name}-tikv-peer.${namespace}"
- "*.${cluster_name}-tikv-peer.${namespace}.svc"
ipAddresses:
- 127.0.0.1
- ::1
issuerRef:
name: ${cluster_name}-tidb-issuer
kind: Issuer
group: cert-manager.io

${cluster_name} is the name of the cluster. Configure the items as follows:
– Set spec.secretName to ${cluster_name}-tikv-cluster-secret.
– Add server auth and client auth in usages.
– Add the following DNSs in dnsNames. You can also add other DNSs according

to your needs:
* ${cluster_name}-tikv
* ${cluster_name}-tikv.${namespace}
* ${cluster_name}-tikv.${namespace}.svc
* ${cluster_name}-tikv-peer
* ${cluster_name}-tikv-peer.${namespace}
* ${cluster_name}-tikv-peer.${namespace}.svc
* *.${cluster_name}-tikv-peer
* *.${cluster_name}-tikv-peer.${namespace}
* *.${cluster_name}-tikv-peer.${namespace}.svc

261

– Add the following 2 IPs in ipAddresses. You can also add other IPs according
to your needs:
* 127.0.0.1
* ::1

– Add the Issuer created above in issuerRef.
– For other attributes, refer to cert-manager API.

After the object is created, cert-manager generates a ${cluster_name}-tikv
↪→ -cluster-secret Secret object to be used by the TiKV component of the
TiDB server.

• TiDB
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${cluster_name}-tidb-cluster-secret
namespace: ${namespace}

spec:
secretName: ${cluster_name}-tidb-cluster-secret
duration: 8760h # 365d
renewBefore: 360h # 15d
subject:
organizations:
- PingCAP

commonName: "TiDB"
usages:
- server auth
- client auth

dnsNames:
- "${cluster_name}-tidb"
- "${cluster_name}-tidb.${namespace}"
- "${cluster_name}-tidb.${namespace}.svc"
- "${cluster_name}-tidb-peer"
- "${cluster_name}-tidb-peer.${namespace}"
- "${cluster_name}-tidb-peer.${namespace}.svc"
- "*.${cluster_name}-tidb-peer"
- "*.${cluster_name}-tidb-peer.${namespace}"
- "*.${cluster_name}-tidb-peer.${namespace}.svc"
ipAddresses:
- 127.0.0.1
- ::1
issuerRef:
name: ${cluster_name}-tidb-issuer
kind: Issuer
group: cert-manager.io

262

https://cert-manager.io/docs/reference/api-docs/#cert-manager.io/v1.CertificateSpec

${cluster_name} is the name of the cluster. Configure the items as follows:
– Set spec.secretName to ${cluster_name}-tidb-cluster-secret
– Add server auth and client auth in usages
– Add the following DNSs in dnsNames. You can also add other DNSs according

to your needs:
* ${cluster_name}-tidb
* ${cluster_name}-tidb.${namespace}
* ${cluster_name}-tidb.${namespace}.svc
* ${cluster_name}-tidb-peer
* ${cluster_name}-tidb-peer.${namespace}
* ${cluster_name}-tidb-peer.${namespace}.svc
* *.${cluster_name}-tidb-peer
* *.${cluster_name}-tidb-peer.${namespace}
* *.${cluster_name}-tidb-peer.${namespace}.svc

– Add the following 2 IPs in ipAddresses. You can also add other IPs according
to your needs:
* 127.0.0.1
* ::1

– Add the Issuer created above in issuerRef.
– For other attributes, refer to cert-manager API.

After the object is created, cert-manager generates a ${cluster_name}-tidb
↪→ -cluster-secret Secret object to be used by the TiDB component of the
TiDB server.

• Pump
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${cluster_name}-pump-cluster-secret
namespace: ${namespace}

spec:
secretName: ${cluster_name}-pump-cluster-secret
duration: 8760h # 365d
renewBefore: 360h # 15d
subject:
organizations:
- PingCAP

commonName: "TiDB"
usages:
- server auth
- client auth

dnsNames:
- "*.${cluster_name}-pump"

263

https://cert-manager.io/docs/reference/api-docs/#cert-manager.io/v1.CertificateSpec

- "*.${cluster_name}-pump.${namespace}"
- "*.${cluster_name}-pump.${namespace}.svc"
ipAddresses:
- 127.0.0.1
- ::1
issuerRef:
name: ${cluster_name}-tidb-issuer
kind: Issuer
group: cert-manager.io

${cluster_name} is the name of the cluster. Configure the items as follows:
– Set spec.secretName to ${cluster_name}-pump-cluster-secret
– Add server auth and client auth in usages
– Add the following DNSs in dnsNames. You can also add other DNSs according

to your needs:
* *.${cluster_name}-pump
* *.${cluster_name}-pump.${namespace}
* *.${cluster_name}-pump.${namespace}.svc

– Add the following 2 IPs in ipAddresses. You can also add other IPs according
to your needs:
* 127.0.0.1
* ::1

– Add the Issuer created above in the issuerRef
– For other attributes, refer to cert-manager API.

After the object is created, cert-manager generates a ${cluster_name}-pump
↪→ -cluster-secret Secret object to be used by the Pump component of the
TiDB server.

• Drainer
Drainer is deployed using Helm. The dnsNames field varies with different config-
uration of the values.yaml file.
If you set the drainerName attributes when deploying Drainer as follows:
...
Changes the name of the statefulset and Pod.
The default value is clusterName-ReleaseName-drainer
Does not change the name of an existing running Drainer, which is

↪→ unsupported.
drainerName: my-drainer
...

Then you need to configure the certificate as described below:
apiVersion: cert-manager.io/v1

264

https://cert-manager.io/docs/reference/api-docs/#cert-manager.io/v1.CertificateSpec

kind: Certificate
metadata:
name: ${cluster_name}-drainer-cluster-secret
namespace: ${namespace}

spec:
secretName: ${cluster_name}-drainer-cluster-secret
duration: 8760h # 365d
renewBefore: 360h # 15d
subject:
organizations:
- PingCAP

commonName: "TiDB"
usages:
- server auth
- client auth

dnsNames:
- "*.${drainer_name}"
- "*.${drainer_name}.${namespace}"
- "*.${drainer_name}.${namespace}.svc"
ipAddresses:
- 127.0.0.1
- ::1
issuerRef:
name: ${cluster_name}-tidb-issuer
kind: Issuer
group: cert-manager.io

If you didn’t set the drainerName attribute when deploying Drainer, configure
the dnsNames attributes as follows:
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${cluster_name}-drainer-cluster-secret
namespace: ${namespace}

spec:
secretName: ${cluster_name}-drainer-cluster-secret
duration: 8760h # 365d
renewBefore: 360h # 15d
subject:
organizations:
- PingCAP

commonName: "TiDB"
usages:
- server auth
- client auth

265

dnsNames:
- "*.${cluster_name}-${release_name}-drainer"
- "*.${cluster_name}-${release_name}-drainer.${namespace}"
- "*.${cluster_name}-${release_name}-drainer.${namespace}.svc"
ipAddresses:
- 127.0.0.1
- ::1
issuerRef:
name: ${cluster_name}-tidb-issuer
kind: Issuer
group: cert-manager.io

${cluster_name} is the name of the cluster. ${namespace} is the namespace in
which the TiDB cluster is deployed. ${release_name} is the release name you
set when helm install is executed. ${drainer_name} is drainerName in the
values.yaml file. You can also add your customized dnsNames.

– Set spec.secretName to ${cluster_name}-drainer-cluster-secret.
– Add server auth and client auth in usages.
– See the above descriptions for dnsNames.
– Add the following 2 IPs in ipAddresses. You can also add other IPs according

to your needs:
* 127.0.0.1
* ::1

– Add the Issuer created above in issuerRef.
– For other attributes, refer to cert-manager API.

After the object is created, cert-manager generates a ${cluster_name}-drainer
↪→ -cluster-secret Secret object to be used by the Drainer component of the
TiDB server.

• TiCDC
Starting from v4.0.3, TiCDC supports TLS. TiDB Operator supports enabling
TLS for TiCDC since v1.1.3.
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${cluster_name}-ticdc-cluster-secret
namespace: ${namespace}

spec:
secretName: ${cluster_name}-ticdc-cluster-secret
duration: 8760h # 365d
renewBefore: 360h # 15d
subject:
organizations:
- PingCAP

266

https://cert-manager.io/docs/reference/api-docs/#cert-manager.io/v1.CertificateSpec

commonName: "TiDB"
usages:
- server auth
- client auth

dnsNames:
- "${cluster_name}-ticdc"
- "${cluster_name}-ticdc.${namespace}"
- "${cluster_name}-ticdc.${namespace}.svc"
- "${cluster_name}-ticdc-peer"
- "${cluster_name}-ticdc-peer.${namespace}"
- "${cluster_name}-ticdc-peer.${namespace}.svc"
- "*.${cluster_name}-ticdc-peer"
- "*.${cluster_name}-ticdc-peer.${namespace}"
- "*.${cluster_name}-ticdc-peer.${namespace}.svc"
ipAddresses:
- 127.0.0.1
- ::1
issuerRef:
name: ${cluster_name}-tidb-issuer
kind: Issuer
group: cert-manager.io

In the file, ${cluster_name} is the name of the cluster:
– Set spec.secretName to ${cluster_name}-ticdc-cluster-secret.
– Add server auth and client auth in usages.
– Add the following DNSs in dnsNames. You can also add other DNSs according

to your needs:
* ${cluster_name}-ticdc
* ${cluster_name}-ticdc.${namespace}
* ${cluster_name}-ticdc.${namespace}.svc
* ${cluster_name}-ticdc-peer
* ${cluster_name}-ticdc-peer.${namespace}
* ${cluster_name}-ticdc-peer.${namespace}.svc
* *.${cluster_name}-ticdc-peer
* *.${cluster_name}-ticdc-peer.${namespace}
* *.${cluster_name}-ticdc-peer.${namespace}.svc

– Add the following 2 IPs in ipAddresses. You can also add other IPs according
to your needs:
* 127.0.0.1
* ::1

– Add the Issuer created above in issuerRef.
– For other attributes, refer to cert-manager API.

After the object is created, cert-manager generates a ${cluster_name}-ticdc
↪→ -cluster-secret Secret object to be used by the TiCDC component of the

267

https://cert-manager.io/docs/reference/api-docs/#cert-manager.io/v1.CertificateSpec

TiDB server.
• TiFlash

apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${cluster_name}-tiflash-cluster-secret
namespace: ${namespace}

spec:
secretName: ${cluster_name}-tiflash-cluster-secret
duration: 8760h # 365d
renewBefore: 360h # 15d
subject:
organizations:
- PingCAP

commonName: "TiDB"
usages:
- server auth
- client auth

dnsNames:
- "${cluster_name}-tiflash"
- "${cluster_name}-tiflash.${namespace}"
- "${cluster_name}-tiflash.${namespace}.svc"
- "${cluster_name}-tiflash-peer"
- "${cluster_name}-tiflash-peer.${namespace}"
- "${cluster_name}-tiflash-peer.${namespace}.svc"
- "*.${cluster_name}-tiflash-peer"
- "*.${cluster_name}-tiflash-peer.${namespace}"
- "*.${cluster_name}-tiflash-peer.${namespace}.svc"
ipAddresses:
- 127.0.0.1
- ::1
issuerRef:
name: ${cluster_name}-tidb-issuer
kind: Issuer
group: cert-manager.io

In the file, ${cluster_name} is the name of the cluster:
– Set spec.secretName to ${cluster_name}-tiflash-cluster-secret.
– Add server auth and client auth in usages.
– Add the following DNSs in dnsNames. You can also add other DNSs according

to your needs:
* ${cluster_name}-tiflash
* ${cluster_name}-tiflash.${namespace}

268

* ${cluster_name}-tiflash.${namespace}.svc
* ${cluster_name}-tiflash-peer
* ${cluster_name}-tiflash-peer.${namespace}
* ${cluster_name}-tiflash-peer.${namespace}.svc
* *.${cluster_name}-tiflash-peer
* *.${cluster_name}-tiflash-peer.${namespace}
* *.${cluster_name}-tiflash-peer.${namespace}.svc

– Add the following 2 IP addresses in ipAddresses. You can also add other IP
addresses according to your needs:
* 127.0.0.1
* ::1

– Add the Issuer created above in issuerRef.
– For other attributes, refer to cert-manager API.

After the object is created, cert-manager generates a ${cluster_name}-tiflash
↪→ -cluster-secret Secret object to be used by the TiFlash component of the
TiDB server.

• TiKV Importer
If you need to restore data using TiDB Lightning, you need to generate a server-
side certificate for the TiKV Importer component.
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${cluster_name}-importer-cluster-secret
namespace: ${namespace}

spec:
secretName: ${cluster_name}-importer-cluster-secret
duration: 8760h # 365d
renewBefore: 360h # 15d
subject:
organizations:
- PingCAP

commonName: "TiDB"
usages:
- server auth
- client auth

dnsNames:
- "${cluster_name}-importer"
- "${cluster_name}-importer.${namespace}"
- "${cluster_name}-importer.${namespace}.svc"
- "*.${cluster_name}-importer"
- "*.${cluster_name}-importer.${namespace}"
- "*.${cluster_name}-importer.${namespace}.svc"
ipAddresses:

269

https://cert-manager.io/docs/reference/api-docs/#cert-manager.io/v1.CertificateSpec

- 127.0.0.1
- ::1
issuerRef:
name: ${cluster_name}-tidb-issuer
kind: Issuer
group: cert-manager.io

In the file, ${cluster_name} is the name of the cluster:
– Set spec.secretName to ${cluster_name}-importer-cluster-secret.
– Add server auth and client auth in usages.
– Add the following DNSs in dnsNames. You can also add other DNSs according

to your needs:
* ${cluster_name}-importer
* ${cluster_name}-importer.${namespace}
* ${cluster_name}-importer.${namespace}.svc

– Add the following 2 IP addresses in ipAddresses. You can also add other IP
addresses according to your needs:
* 127.0.0.1
* ::1

– Add the Issuer created above in issuerRef.
– For other attributes, refer to cert-manager API.

After the object is created, cert-manager generates a ${cluster_name}-
↪→ importer-cluster-secret Secret object to be used by the TiKV Importer
component of the TiDB server.

• TiDB Lightning
If you need to restore data using TiDB Lightning, you need to generate a server-
side certificate for the TiDB Lightning component.
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${cluster_name}-lightning-cluster-secret
namespace: ${namespace}

spec:
secretName: ${cluster_name}-lightning-cluster-secret
duration: 8760h # 365d
renewBefore: 360h # 15d
subject:
organizations:
- PingCAP

commonName: "TiDB"
usages:
- server auth

270

https://cert-manager.io/docs/reference/api-docs/#cert-manager.io/v1.CertificateSpec

- client auth
dnsNames:
- "${cluster_name}-lightning"
- "${cluster_name}-lightning.${namespace}"
- "${cluster_name}-lightning.${namespace}.svc"
ipAddresses:
- 127.0.0.1
- ::1
issuerRef:
name: ${cluster_name}-tidb-issuer
kind: Issuer
group: cert-manager.io

In the file, ${cluster_name} is the name of the cluster:
– Set spec.secretName to ${cluster_name}-lightning-cluster-secret.
– Add server auth and client auth in usages.
– Add the following DNSs in dnsNames. You can also add other DNSs according

to your needs:
* ${cluster_name}-lightning
* ${cluster_name}-lightning.${namespace}
* ${cluster_name}-lightning.${namespace}.svc

– Add the following 2 IP addresses in ipAddresses. You can also add other IP
addresses according to your needs:
* 127.0.0.1
* ::1

– Add the Issuer created above in issuerRef.
– For other attributes, refer to cert-manager API.

After the object is created, cert-manager generates a ${cluster_name}-
↪→ lightning-cluster-secret Secret object to be used by the TiDB Lightning
component of the TiDB server.

4. Generate the client-side certificate for components of the TiDB cluster.
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${cluster_name}-cluster-client-secret
namespace: ${namespace}

spec:
secretName: ${cluster_name}-cluster-client-secret
duration: 8760h # 365d
renewBefore: 360h # 15d
subject:
organizations:

271

https://cert-manager.io/docs/reference/api-docs/#cert-manager.io/v1.CertificateSpec

- PingCAP
commonName: "TiDB"
usages:
- client auth
issuerRef:
name: ${cluster_name}-tidb-issuer
kind: Issuer
group: cert-manager.io

${cluster_name} is the name of the cluster. Configure the items as follows:

• Set spec.secretName to ${cluster_name}-cluster-client-secret.
• Add client auth in usages.
• You can leave dnsNames and ipAddresses empty.
• Add the Issuer created above in issuerRef.
• For other attributes, refer to cert-manager API.

After the object is created, cert-manager generates a ${cluster_name}-cluster-
↪→ client-secret Secret object to be used by the clients of the TiDB components.

7.1.2.2 Step 2. Deploy the TiDB cluster
When you deploy a TiDB cluster, you can enable TLS between TiDB components, and

set the cert-allowed-cn configuration item (for TiDB, the configuration item is cluster-
↪→ verify-cn) to verify the CN (Common Name) of each component’s certificate.

Note:
Currently, you can set only one value for the cert-allowed-cn configuration
item of PD. Therefore, the commonName of all Certificate objects must be
the same.

In this step, you need to perform the following operations:

• Create a TiDB cluster
• Enable TLS between the TiDB components, and enable CN verification
• Deploy a monitoring system
• Deploy the Pump component, and enable CN verification

1. Create a TiDB cluster with a monitoring system and the Pump component:
Create the tidb-cluster.yaml file:

272

https://cert-manager.io/docs/reference/api-docs/#cert-manager.io/v1.CertificateSpec

apiVersion: pingcap.com/v1alpha1
kind: TidbCluster
metadata:
name: ${cluster_name}
namespace: ${namespace}
spec:
tlsCluster:
enabled: true

version: v8.5.0
timezone: UTC
pvReclaimPolicy: Retain
pd:
baseImage: pingcap/pd
maxFailoverCount: 0
replicas: 1
requests:
storage: "10Gi"

config:
security:
cert-allowed-cn:
- TiDB

tikv:
baseImage: pingcap/tikv
maxFailoverCount: 0
replicas: 1
requests:
storage: "100Gi"

config:
security:
cert-allowed-cn:
- TiDB

tidb:
baseImage: pingcap/tidb
maxFailoverCount: 0
replicas: 1
service:
type: ClusterIP

config:
security:
cluster-verify-cn:
- TiDB

pump:
baseImage: pingcap/tidb-binlog
replicas: 1

273

requests:
storage: "100Gi"

config:
security:
cert-allowed-cn:
- TiDB

apiVersion: pingcap.com/v1alpha1
kind: TidbMonitor
metadata:
name: ${cluster_name}
namespace: ${namespace}
spec:
clusters:
- name: ${cluster_name}
prometheus:
baseImage: prom/prometheus
version: v2.27.1

grafana:
baseImage: grafana/grafana
version: 7.5.11

initializer:
baseImage: pingcap/tidb-monitor-initializer
version: v8.5.0

reloader:
baseImage: pingcap/tidb-monitor-reloader
version: v1.0.1

prometheusReloader:
baseImage: quay.io/prometheus-operator/prometheus-config-reloader
version: v0.49.0

imagePullPolicy: IfNotPresent

Execute kubectl apply -f tidb-cluster.yaml to create a TiDB cluster.

Note:
Starting from v8.0.0, PD supports the microservice mode (experimental).
To deploy PD microservices, you need to configure cert-allowed-cn for
each microservice. Taking the Scheduling service as an example, you
need to make the following configurations:
• Update pd.mode to ms.
• Configure the security field for the scheduling microservice.

pd:
baseImage: pingcap/pd

274

https://docs.pingcap.com/tidb/dev/pd-microservices

maxFailoverCount: 0
replicas: 1
requests:
storage: "10Gi"
config:
security:
cert-allowed-cn:
- TiDB

mode: "ms"
pdms:
- name: "scheduling"
baseImage: pingcap/pd
replicas: 1
config:
security:
cert-allowed-cn:
- TiDB

2. Create a Drainer component and enable TLS and CN verification:

• Method 1: Set drainerName when you create Drainer.
Edit the values.yaml file, set drainer-name, and enable the TLS feature:
...
drainerName: ${drainer_name}
tlsCluster:
enabled: true
certAllowedCN:
- TiDB

...

Deploy the Drainer cluster:
helm install ${release_name} pingcap/tidb-drainer --namespace=${

↪→ namespace} --version=${helm_version} -f values.yaml

• Method 2: Do not set drainerName when you create Drainer.
Edit the values.yaml file, and enable the TLS feature:
...
tlsCluster:
enabled: true
certAllowedCN:
- TiDB

275

...

Deploy the Drainer cluster:
helm install ${release_name} pingcap/tidb-drainer --namespace=${

↪→ namespace} --version=${helm_version} -f values.yaml

3. Create the Backup/Restore resource object:

• Create the backup.yaml file:
apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: ${cluster_name}-backup
namespace: ${namespace}

spec:
backupType: full
br:
cluster: ${cluster_name}
clusterNamespace: ${namespace}
sendCredToTikv: true

s3:
provider: aws
region: ${my_region}
secretName: ${s3_secret}
bucket: ${my_bucket}
prefix: ${my_folder}

Deploy Backup:
kubectl apply -f backup.yaml

• Create the restore.yaml file:
yaml apiVersion: pingcap.com/v1alpha1 kind: Restore metadata:
↪→ name: ${cluster_name}-restore namespace: ${namespace} spec:
↪→ backupType: full br: cluster: ${cluster_name} clusterNamespace:
↪→ ${namespace} sendCredToTikv: true s3: provider: aws region: ${
↪→ my_region} secretName: ${s3_secret} bucket: ${my_bucket} prefix:
↪→ ${my_folder}
Deploy Restore:
kubectl apply -f restore.yaml

276

7.1.2.3 Step 3. Configure pd-ctl, tikv-ctl and connect to the cluster

1. Mount the certificates.
Configure spec.pd.mountClusterClientSecret: true and spec.tikv.mountClusterClientSecret
↪→ : true with the following command:
kubectl patch tc ${cluster_name} -n ${namespace} --type merge -p '{"

↪→ spec":{"pd":{"mountClusterClientSecret": true},"tikv":{"
↪→ mountClusterClientSecret": true}}}'

Note:
• The above configuration will trigger the rolling update of PD and

TiKV cluster.
• The above configurations are supported since TiDB Operator v1.1.5.

2. Use pd-ctl to connect to the PD cluster.
Get into the PD Pod:
kubectl exec -it ${cluster_name}-pd-0 -n ${namespace} sh

Use pd-ctl:
cd /var/lib/cluster-client-tls
/pd-ctl --cacert=ca.crt --cert=tls.crt --key=tls.key -u https

↪→ ://127.0.0.1:2379 member

3. Use tikv-ctl to connect to the TiKV cluster.
Get into the TiKV Pod:
kubectl exec -it ${cluster_name}-tikv-0 -n ${namespace} sh

Use tikv-ctl:
cd /var/lib/cluster-client-tls
/tikv-ctl --ca-path=ca.crt --cert-path=tls.crt --key-path=tls.key --

↪→ host 127.0.0.1:20160 cluster

7.1.2.4 Upgrade a non-TLS cluster to a TLS cluster
This section describes how to enable TLS encrypted communication for an existing non-

TLS TiDB cluster.

277

Note:
This operation is only applicable to existing clusters that cannot be rebuilt.
Before starting, make sure that you fully understand each step and its poten-
tial risks.

1. If the cluster contains multiple PD nodes, first reduce the number of PD nodes to 1.

2. Refer to Step 1. Generate certificates for components of the TiDB Cluster to generate
TLS certificates and create Kubernetes Secret objects.

3. Enable TLS:
You can choose one of the following methods to enable TLS:

• Method 1: Execute the following command to update the TiDB cluster configu-
ration. Wait for the PD Pod to restart before proceeding to the next step.
kubectl patch tc ${cluster_name} -n ${namespace} --type merge -p '{
"spec": {
"tlsCluster": {
"enabled": true

}
}

}'

Example output:
tidbcluster.pingcap.com/basic patched

• Method 2: Refer to Step 2. Deploy the TiDB cluster to enable TLS and set
the cert-allowed-cn configuration item (for TiDB, the configuration item is
cluster-verify-cn) to verify the CN (Common Name) of each component’s
certificate.

4. Configure PD nodes:

1. Use kubectl exec to enter the PD Pod and install etcdctl. For detailed in-
stallation steps, see the etcdctl installation guide. After installation, etcdctl is
located in the extracted folder directory.

2. View the etcd member information. At this point, peerURLs use the HTTP
protocol:
./etcdctl --endpoints https://127.0.0.1:2379 --cert /var/lib/pd-tls

↪→ /tls.crt --key /var/lib/pd-tls/tls.key --cacert /var/lib/pd-
↪→ tls/ca.crt member list

278

https://etcd.io/docs/v3.4/install/

Example output:
memberID status name peerURLs

↪→ clientURL
↪→ isLearner

e94cfb12fa384e23, started, basic-pd-0, http://basic-pd-0.basic-pd-
↪→ peer.pingcap.svc:2380, https://basic-pd-0.basic-pd-peer.
↪→ pingcap.svc:2379, false

Record the following information for the next step:
• memberID: In the example, it is e94cfb12fa384e23.
• peerURLs: In the example, it is http://basic-pd-0.basic-pd-peer.

↪→ pingcap.svc:2380.
3. Update the etcd member’s peerURLs from HTTP to the HTTPS protocol:

./etcdctl --endpoints https://127.0.0.1:2379 --cert /var/lib/pd-tls
↪→ /tls.crt --key /var/lib/pd-tls/tls.key --cacert /var/lib/pd-
↪→ tls/ca.crt member update e94cfb12fa384e23 --peer-urls="https
↪→ ://basic-pd-0.basic-pd-peer.pingcap.svc:2380"

Example output:
Member e94cfb12fa384e23 updated in cluster 32ab5936d81ad54c

4. View the updated peerURLs to ensure they have been updated to the HTTPS
protocol:
./etcdctl --endpoints https://127.0.0.1:2379 --cert /var/lib/pd-tls

↪→ /tls.crt --key /var/lib/pd-tls/tls.key --cacert /var/lib/pd-
↪→ tls/ca.crt member list

Example output:
e94cfb12fa384e23, started, basic-pd-0, https://basic-pd-0.basic-pd-

↪→ peer.pingcap.svc:2380, https://basic-pd-0.basic-pd-peer.
↪→ pingcap.svc:2379, false

5. If you previously scaled down the PD nodes, scale them back up to the original number.

6. Wait for all Pods in the TiDB cluster to restart.

7.1.3 Enable TLS for DM

This document describes how to enable TLS between components of the DM cluster
on Kubernetes and how to use DM to migrate data between MySQL/TiDB databases that
enable TLS for the MySQL client.

279

7.1.3.1 Enable TLS between DM components
Starting from v1.2, TiDB Operator supports enabling TLS between components of the

DM cluster on Kubernetes.
To enable TLS between components of the DM cluster, perform the following steps:

1. Generate certificates for each component of the DM cluster to be created:

• A set of server-side certificates for the DM-master/DM-worker component,
saved as the Kubernetes Secret objects: ${cluster_name}-${component_name
↪→ }-cluster-secret

• A set of shared client-side certificates for the various clients of each component,
saved as the Kubernetes Secret objects: ${cluster_name}-dm-client-secret.

Note:
The Secret objects you created must follow the above naming convention.
Otherwise, the deployment of the DM cluster will fail.

2. Deploy the cluster, and set .spec.tlsCluster.enabled to true.

Note:
After the cluster is created, do not modify this field; otherwise, the cluster
will fail to upgrade. If you need to modify this field, delete the cluster
and create a new one.

3. Configure dmctl to connect to the cluster.

Certificates can be issued in multiple methods. This document describes two methods.
You can choose either of them to issue certificates for the DM cluster:

• Using the cfssl system
• Using the cert-manager system

If you need to renew the existing TLS certificate, refer to Renew and Replace the TLS
Certificate.

280

7.1.3.1.1 Generate certificates for components of the DM cluster
This section describes how to issue certificates using two methods: cfssl and cert-

↪→ manager.
Using cfssl

1. Download cfssl and initialize the certificate issuer:
mkdir -p ~/bin
curl -s -L -o ~/bin/cfssl https://pkg.cfssl.org/R1.2/cfssl_linux-amd64
curl -s -L -o ~/bin/cfssljson https://pkg.cfssl.org/R1.2/

↪→ cfssljson_linux-amd64
chmod +x ~/bin/{cfssl,cfssljson}
export PATH=$PATH:~/bin

mkdir -p cfssl
cd cfssl

2. Generate the ca-config.json configuration file:
cat << EOF > ca-config.json
{

"signing": {
"default": {

"expiry": "8760h"
},
"profiles": {

"internal": {
"expiry": "8760h",
"usages": [

"signing",
"key encipherment",
"server auth",
"client auth"

]
},
"client": {

"expiry": "8760h",
"usages": [

"signing",
"key encipherment",
"client auth"

]
}

}
}

281

}
EOF

3. Generate the ca-csr.json configuration file:
cat << EOF > ca-csr.json
{

"CN": "TiDB",
"CA": {

"expiry": "87600h"
},
"key": {

"algo": "rsa",
"size": 2048

},
"names": [

{
"C": "US",
"L": "CA",
"O": "PingCAP",
"ST": "Beijing",
"OU": "TiDB"

}
]

}
EOF

4. Generate CA by the configured option:
cfssl gencert -initca ca-csr.json | cfssljson -bare ca -

5. Generate the server-side certificates:
In this step, a set of server-side certificate is created for each component of the DM
cluster.

• DM-master
First, generate the default dm-master-server.json file:
cfssl print-defaults csr > dm-master-server.json

Then, edit this file to change the CN and hosts attributes:
...

"CN": "TiDB",
"hosts": [
"127.0.0.1",

282

"::1",
"${cluster_name}-dm-master",
"${cluster_name}-dm-master.${namespace}",
"${cluster_name}-dm-master.${namespace}.svc",
"${cluster_name}-dm-master-peer",
"${cluster_name}-dm-master-peer.${namespace}",
"${cluster_name}-dm-master-peer.${namespace}.svc",
"*.${cluster_name}-dm-master-peer",
"*.${cluster_name}-dm-master-peer.${namespace}",
"*.${cluster_name}-dm-master-peer.${namespace}.svc"

],
...

${cluster_name} is the name of the DM cluster. ${namespace} is the namespace
in which the DM cluster is deployed. You can also add your customized hosts.
Finally, generate the DM-master server-side certificate:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json

↪→ -profile=internal dm-master-server.json | cfssljson -bare dm
↪→ -master-server

• DM-worker
First, generate the default dm-worker-server.json file:
cfssl print-defaults csr > dm-worker-server.json

Then, edit this file to change the CN and hosts attributes:
...

"CN": "TiDB",
"hosts": [
"127.0.0.1",
"::1",
"${cluster_name}-dm-worker",
"${cluster_name}-dm-worker.${namespace}",
"${cluster_name}-dm-worker.${namespace}.svc",
"${cluster_name}-dm-worker-peer",
"${cluster_name}-dm-worker-peer.${namespace}",
"${cluster_name}-dm-worker-peer.${namespace}.svc",
"*.${cluster_name}-dm-worker-peer",
"*.${cluster_name}-dm-worker-peer.${namespace}",
"*.${cluster_name}-dm-worker-peer.${namespace}.svc"

],
...

${cluster_name} is the name of the cluster. ${namespace} is the namespace in
which the DM cluster is deployed. You can also add your customized hosts.

283

Finally, generate the DM-worker server-side certificate:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json

↪→ -profile=internal dm-worker-server.json | cfssljson -bare dm
↪→ -worker-server

6. Generate the client-side certificates:
First, generate the default client.json file:
cfssl print-defaults csr > client.json

Then, edit this file to change the CN, hosts attributes. You can leave the hosts empty:
...

"CN": "TiDB",
"hosts": [],

...

Finally, generate the client-side certificate:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -

↪→ profile=client client.json | cfssljson -bare client

7. Create the Kubernetes Secret object:
If you have already generated a set of certificates for each component and a set of
client-side certificate for each client as described in the above steps, create the Secret
objects for the DM cluster by executing the following command:

• The DM-master cluster certificate Secret:
kubectl create secret generic ${cluster_name}-dm-master-cluster-

↪→ secret --namespace=${namespace} --from-file=tls.crt=dm-
↪→ master-server.pem --from-file=tls.key=dm-master-server-key.
↪→ pem --from-file=ca.crt=ca.pem

• The DM-worker cluster certificate Secret：
kubectl create secret generic ${cluster_name}-dm-worker-cluster-

↪→ secret --namespace=${namespace} --from-file=tls.crt=dm-
↪→ worker-server.pem --from-file=tls.key=dm-worker-server-key.
↪→ pem --from-file=ca.crt=ca.pem

• Client certificate Secret：
kubectl create secret generic ${cluster_name}-dm-client-secret --

↪→ namespace=${namespace} --from-file=tls.crt=client.pem --from
↪→ -file=tls.key=client-key.pem --from-file=ca.crt=ca.pem

284

You have created two Secret objects:

• One Secret object for each DM-master/DM-worker server-side certificate to load
when the server is started;

• One Secret object for their clients to connect.

Using cert-manager

1. Install cert-manager.
Refer to cert-manager installation on Kubernetes for details.

2. Create an Issuer to issue certificates to the DM cluster.
To configure cert-manager, create the Issuer resources.
First, create a directory which saves the files that cert-manager needs to create cer-
tificates:
mkdir -p cert-manager
cd cert-manager

Then, create a dm-cluster-issuer.yaml file with the following content:
apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
name: ${cluster_name}-selfsigned-ca-issuer
namespace: ${namespace}

spec:
selfSigned: {}

apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${cluster_name}-ca
namespace: ${namespace}

spec:
secretName: ${cluster_name}-ca-secret
commonName: "TiDB"
isCA: true
duration: 87600h # 10yrs
renewBefore: 720h # 30d
issuerRef:
name: ${cluster_name}-selfsigned-ca-issuer
kind: Issuer

apiVersion: cert-manager.io/v1

285

https://docs.cert-manager.io/en/release-0.11/getting-started/install/kubernetes.html

kind: Issuer
metadata:
name: ${cluster_name}-dm-issuer
namespace: ${namespace}

spec:
ca:
secretName: ${cluster_name}-ca-secret

${cluster_name} is the name of the cluster. The above YAML file creates three
objects:

• An Issuer object of the SelfSigned type, used to generate the CA certificate needed
by Issuer of the CA type;

• A Certificate object, whose isCa is set to true.
• An Issuer, used to issue TLS certificates between components of the DM cluster.

Finally, execute the following command to create an Issuer:
kubectl apply -f dm-cluster-issuer.yaml

3. Generate the server-side certificate.
In cert-manager, the Certificate resource represents the certificate interface. This
certificate is issued and updated by the Issuer created in Step 2.
Each component needs a server-side certificate, and all components need a shared
client-side certificate for their clients.

• The DM-master server-side certificate
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${cluster_name}-dm-master-cluster-secret
namespace: ${namespace}

spec:
secretName: ${cluster_name}-dm-master-cluster-secret
duration: 8760h # 365d
renewBefore: 360h # 15d
subject:
organizations:
- PingCAP

commonName: "TiDB"
usages:
- server auth
- client auth

dnsNames:

286

- "${cluster_name}-dm-master"
- "${cluster_name}-dm-master.${namespace}"
- "${cluster_name}-dm-master.${namespace}.svc"
- "${cluster_name}-dm-master-peer"
- "${cluster_name}-dm-master-peer.${namespace}"
- "${cluster_name}-dm-master-peer.${namespace}.svc"
- "*.${cluster_name}-dm-master-peer"
- "*.${cluster_name}-dm-master-peer.${namespace}"
- "*.${cluster_name}-dm-master-peer.${namespace}.svc"
ipAddresses:
- 127.0.0.1
- ::1
issuerRef:
name: ${cluster_name}-dm-issuer
kind: Issuer
group: cert-manager.io

${cluster_name} is the name of the cluster. Configure the items as follows:
– Set spec.secretName to ${cluster_name}-dm-master-cluster-secret.
– Add server auth and client auth in usages.
– Add the following DNSs in dnsNames. You can also add other DNSs according

to your needs:
* “${cluster_name}-dm-master”
* “clustername − dm − master.{namespace}”
* “clustername − dm − master.{namespace}.svc”
* “${cluster_name}-dm-master-peer”
* “clustername − dm − master − peer.{namespace}”
* “clustername − dm − master − peer.{namespace}.svc”
* “*.${cluster_name}-dm-master-peer”
* “*.clustername − dm − master − peer.{namespace}”
* “*.clustername − dm − master − peer.{namespace}.svc”

– Add the following two IPs in ipAddresses. You can also add other IPs
according to your needs:
* 127.0.0.1
* ::1

– Add the Issuer created above in issuerRef.
– For other attributes, refer to cert-manager API.

After the object is created, cert-manager generates a ${cluster_name}-dm-
↪→ master-cluster-secret Secret object to be used by the DM-master compo-
nent of the DM cluster.

• The DM-worker server-side certificate
apiVersion: cert-manager.io/v1
kind: Certificate

287

https://cert-manager.io/docs/reference/api-docs/#cert-manager.io/v1.CertificateSpec

metadata:
name: ${cluster_name}-dm-worker-cluster-secret
namespace: ${namespace}

spec:
secretName: ${cluster_name}-dm-worker-cluster-secret
duration: 8760h # 365d
renewBefore: 360h # 15d
subject:
organizations:
- PingCAP

commonName: "TiDB"
usages:
- server auth
- client auth

dnsNames:
- "${cluster_name}-dm-worker"
- "${cluster_name}-dm-worker.${namespace}"
- "${cluster_name}-dm-worker.${namespace}.svc"
- "${cluster_name}-dm-worker-peer"
- "${cluster_name}-dm-worker-peer.${namespace}"
- "${cluster_name}-dm-worker-peer.${namespace}.svc"
- "*.${cluster_name}-dm-worker-peer"
- "*.${cluster_name}-dm-worker-peer.${namespace}"
- "*.${cluster_name}-dm-worker-peer.${namespace}.svc"
ipAddresses:
- 127.0.0.1
- ::1
issuerRef:
name: ${cluster_name}-dm-issuer
kind: Issuer
group: cert-manager.io

${cluster_name} is the name of the cluster. Configure the items as follows:
– Set spec.secretName to ${cluster_name}-dm-worker-cluster-secret.
– Add server auth and client auth in usages.
– Add the following DNSs in dnsNames. You can also add other DNSs according

to your needs:
* “${cluster_name}-dm-worker”
* “clustername − dm − worker.{namespace}”
* “clustername − dm − worker.{namespace}.svc”
* “${cluster_name}-dm-worker-peer”
* “clustername − dm − worker − peer.{namespace}”
* “clustername − dm − worker − peer.{namespace}.svc”
* “*.${cluster_name}-dm-worker-peer”
* “*.clustername − dm − worker − peer.{namespace}”

288

* “*.clustername − dm − worker − peer.{namespace}.svc”
– Add the following two IPs in ipAddresses. You can also add other IPs

according to your needs:
* 127.0.0.1
* ::1

– Add the Issuer created above in issuerRef.
– For other attributes, refer to cert-manager API.

After the object is created, cert-manager generates a ${cluster_name}-dm-
↪→ cluster-secret Secret object to be used by the DM-worker component of
the DM cluster.

• A set of client-side certificates of DM cluster components.
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${cluster_name}-dm-client-secret
namespace: ${namespace}

spec:
secretName: ${cluster_name}-dm-client-secret
duration: 8760h # 365d
renewBefore: 360h # 15d
subject:
organizations:
- PingCAP

commonName: "TiDB"
usages:
- client auth

issuerRef:
name: ${cluster_name}-dm-issuer
kind: Issuer
group: cert-manager.io

${cluster_name} is the name of the cluster. The above YAML file creates three
objects:

– Set spec.secretName to ${cluster_name}-dm-master-cluster-secret.
– Add server auth and client auth in usages.
– dnsNames and ipAddresses are not required.
– Add the Issuer created above in the issuerRef
– For other attributes, refer to cert-manager API

After the object is created, cert-manager generates a ${cluster_name}-cluster
↪→ -client-secret Secret object to be used by the clients of the DM compo-
nents.

289

https://cert-manager.io/docs/reference/api-docs/#cert-manager.io/v1.CertificateSpec
https://cert-manager.io/docs/reference/api-docs/#cert-manager.io/v1.CertificateSpec

7.1.3.1.2 Deploy the DM cluster
When you deploy a DM cluster, you can enable TLS between DM components, and

set the cert-allowed-cn configuration item to verify the CN (Common Name) of each
component’s certificate.

Note:
Currently, you can set only one value for the cert-allowed-cn configuration
item of DM-master. Therefore, the commonName of all Certificate objects
must be the same.

• Create the dm-cluster.yaml file:

apiVersion: pingcap.com/v1alpha1
kind: DMCluster
metadata:
name: ${cluster_name}
namespace: ${namespace}

spec:
tlsCluster:
enabled: true

version: v8.5.0
pvReclaimPolicy: Retain
discovery: {}
master:
baseImage: pingcap/dm
maxFailoverCount: 0
replicas: 1
storageSize: "1Gi"
config:
cert-allowed-cn:
- TiDB

worker:
baseImage: pingcap/dm
maxFailoverCount: 0
replicas: 1
storageSize: "1Gi"
config:
cert-allowed-cn:
- TiDB

Use the kubectl apply -f dm-cluster.yaml file to create a DM cluster.

290

7.1.3.1.3 Configure dmctl and connect to the cluster
Get into the DM-master Pod:

kubectl exec -it ${cluster_name}-dm-master-0 -n ${namespace} sh

Use dmctl:
cd /var/lib/dm-master-tls
/dmctl --ssl-ca=ca.crt --ssl-cert=tls.crt --ssl-key=tls.key --master-addr

↪→ 127.0.0.1:8261 list-member

7.1.3.2 Use DM to migrate data between MySQL/TiDB databases that enable
TLS for the MySQL client

This section describes how to configure DM to migrate data between MySQL/TiDB
databases that enable TLS for the MySQL client.

To learn how to enable TLS for the MySQL client of TiDB, refer to Enable TLS for the
MySQL Client.

7.1.3.2.1 Step 1: Create the Kubernetes Secret object for each TLS-enabled
MySQL

Suppose you have deployed a MySQL/TiDB database with TLS-enabled for the MySQL
client. To create Secret objects for the TiDB cluster, execute the following command:
kubectl create secret generic ${mysql_secret_name1} --namespace=${namespace}

↪→ --from-file=tls.crt=client.pem --from-file=tls.key=client-key.pem --
↪→ from-file=ca.crt=ca.pem

kubectl create secret generic ${tidb_secret_name} --namespace=${namespace}
↪→ --from-file=tls.crt=client.pem --from-file=tls.key=client-key.pem --
↪→ from-file=ca.crt=ca.pem

7.1.3.2.2 Step 2: Mount the Secret objects to the DM cluster
After creating the Kubernetes Secret objects for the upstream and downstream

databases, you need to set spec.tlsClientSecretNames so that you can mount the Secret
objects to the Pod of DM-master/DM-worker.
apiVersion: pingcap.com/v1alpha1
kind: DMCluster
metadata:
name: ${cluster_name}
namespace: ${namespace}

spec:
version: v8.5.0
pvReclaimPolicy: Retain

291

discovery: {}
tlsClientSecretNames:
- ${mysql_secret_name1}
- ${tidb_secret_name}

master:
...

7.1.3.2.3 Step 3: Modify the data source and migration task configuration

After configuring spec.tlsClientSecretNames, TiDB Operator will mount the Secret
objects ${secret_name} to the path /var/lib/source-tls/${secret_name}.

1. Configure from.security in the source1.yaml file as described in the data source
configuration:
source-id: mysql-replica-01
relay-dir: /var/lib/dm-worker/relay
from:
host: ${mysql_host1}
user: dm
password: ""
port: 3306
security:
ssl-ca: /var/lib/source-tls/${mysql_secret_name1}/ca.crt
ssl-cert: /var/lib/source-tls/${mysql_secret_name1}/tls.crt
ssl-key: /var/lib/source-tls/${mysql_secret_name1}/tls.key

2. Configure target-database.security in the task.yaml file as described in the Con-
figure Migration Tasks:
name: test
task-mode: all
is-sharding: false

target-database:
host: ${tidb_host}
port: 4000
user: "root"
password: ""
security:
ssl-ca: /var/lib/source-tls/${tidb_secret_name}/ca.crt
ssl-cert: /var/lib/source-tls/${tidb_secret_name}/tls.crt
ssl-key: /var/lib/source-tls/${tidb_secret_name}/tls.key

292

mysql-instances:
- source-id: "replica-01"
loader-config-name: "global"

loaders:
global:
dir: "/var/lib/dm-worker/dumped_data"

7.1.3.2.4 Step 4: Start the migration tasks
Refer to Start the migration tasks.

7.1.4 Replicate Data to TLS-enabled Downstream Services

This document describes how to replicate data to TLS-enabled downstream services on
Kubernetes.

7.1.4.1 Preparations
Before you begin, do the following preparations:

1. Deploy a downstream service, and enable the TLS authentication on the client.
2. Generate the key file required for the client to access the downstream service.

7.1.4.2 Steps

1. Create a Kubernetes Secret object that contains a client TLS certificate used to access
the downstream service. You can get the certificate from the key file you generated for
the client.
kubectl create secret generic ${secret_name} --namespace=${

↪→ cluster_namespace} --from-file=tls.crt=client.pem --from-file=
↪→ tls.key=client-key.pem --from-file=ca.crt=ca.pem

2. Mount the certificate file to the TiCDC Pod.

• If you have not deployed a TiDB cluster yet, add the spec.ticdc.tlsClientSecretNames
↪→ field to the TidbCluster CR definition, and then deploy the TiDB cluster.

• If you have already deployed a TiDB cluster, run kubectl edit tc $
↪→ {cluster_name} -n ${cluster_namespace}, add the spec.tiddc.
↪→ tlsClientSecretNames field, and then wait for the TiCDC pod to au-
tomatically roll over for updates.

293

apiVersion: pingcap.com/v1alpha1
kind: TidbCluster
metadata:
name: ${cluster_name}
namespace: ${cluster_namespace}

spec:
...
ticdc:
baseImage: pingcap/ticdc
version: "v5.0.1"
...
tlsClientSecretNames:
- ${secret_name}

Once the TiCDC Pod is running, the created Kubernetes Secret object is mounted
to the TiCDC Pod. You can get the mounted key file in the /var/lib/sink-tls/${
↪→ secret_name} directory of the Pod.

3. Create a replication task using the cdc cli tool.
kubectl exec ${cluster_name}-ticdc-0 -- /cdc cli changefeed create --pd

↪→ =https://${cluster_name}-pd:2379 --sink-uri="mysql://${user}:{
↪→ $password}@${downstream_service}/?ssl-ca=/var/lib/sink-tls/${
↪→ secret_name}/ca.crt&ssl-cert=/var/lib/sink-tls/${secret_name}/tls
↪→ .crt&ssl-key=/var/lib/sink-tls/${secret_name}/tls.key"

7.1.5 Renew and Replace the TLS Certificate

This document introduces how to renew and replace certificates of the corresponding
components before certificates expire, taking TLS certificates between PD, TiKV, and TiDB
components in the TiDB cluster as an example.

If you need to renew and replace certificates between other components in the TiDB
cluster, TiDB server-side certificate, or MySQL client-side certificate, you can take similar
steps to complete the operation.

The renewal and replacement operations in this document assume that the original certifi-
cates have not expired. If the original certificates expire or become invalid, to generate new
certificates and restart the TiDB cluster, refer to Enable TLS between TiDB components or
Enable TLS for MySQL client.

7.1.5.1 Renew and replace certificates issued by the cfssl system
If the original TLS certificates are issued by the cfssl system and the original certificates

have not expired, you can renew and replace the certificates between PD, TiKV and TiDB
components as follows.

294

7.1.5.1.1 Renew and replace the CA certificate

Note:
If you don’t need to renew the CA certificate, you can skip the operations
in this section and directly refer to renew and replace certificates between
components.

1. Back up the original CA certificate and key.
mv ca.pem ca.old.pem && \
mv ca-key.pem ca-key.old.pem

2. Generate the new CA certificate and key based on the configuration of the original CA
certificate and certificate signing request (CSR).
cfssl gencert -initca ca-csr.json | cfssljson -bare ca -

Note:
If necessary, you can update expiry in the configuration file and in CSR.

3. Back up the new CA certificate and key, and generate a combined CA certificate based
on the original CA certificate and the new CA certificate.
mv ca.pem ca.new.pem && \
mv ca-key.pem ca-key.new.pem && \
cat ca.new.pem ca.old.pem > ca.pem

4. Update each corresponding Kubernetes Secret objects based on the combined CA cer-
tificate.
kubectl create secret generic ${cluster_name}-pd-cluster-secret --

↪→ namespace=${namespace} --from-file=tls.crt=pd-server.pem --from-
↪→ file=tls.key=pd-server-key.pem --from-file=ca.crt=ca.pem --dry-
↪→ run=client -o yaml | kubectl apply -f -

kubectl create secret generic ${cluster_name}-tikv-cluster-secret --
↪→ namespace=${namespace} --from-file=tls.crt=tikv-server.pem --from
↪→ -file=tls.key=tikv-server-key.pem --from-file=ca.crt=ca.pem --dry
↪→ -run=client -o yaml | kubectl apply -f -

295

kubectl create secret generic ${cluster_name}-tidb-cluster-secret --
↪→ namespace=${namespace} --from-file=tls.crt=tidb-server.pem --from
↪→ -file=tls.key=tidb-server-key.pem --from-file=ca.crt=ca.pem --dry
↪→ -run=client -o yaml | kubectl apply -f -

kubectl create secret generic ${cluster_name}-cluster-client-secret --
↪→ namespace=${namespace} --from-file=tls.crt=client.pem --from-file
↪→ =tls.key=client-key.pem --from-file=ca.crt=ca.pem --dry-run=
↪→ client -o yaml | kubectl apply -f -

In the above command, ${cluster_name} is the name of the cluster, and ${namespace
↪→ } is the namespace in which the TiDB cluster is deployed.

Note:
The above command only renews the server-side CA certificate and the
client-side CA certificate between PD, TiKV, and TiDB components. If
you need to renew the server-side CA certificates for other components,
such as TiCDC, TiFlash and TiProxy, you can execute the similar com-
mand.

5. Perform the rolling restart to components that need to load the combined CA certifi-
cate.
After the completion of the rolling restart, based on the combined CA certificate, each
component can accept the certificate issued by either the original CA certificate or the
new CA certificate at the same time.

7.1.5.1.2 Renew and replace certificates between components

Note:
Before renewing and replacing certificates between components, make sure
that the CA certificate can verify the certificates between components before
and after the renewal as valid. If you have renewed and replaced the CA
certificate, make sure that the TiDB cluster is restarted based on the new
CA certificate.

1. Generate new server-side and client-side certificates based on the original configuration
information of each component.
cfssl gencert -ca=ca.new.pem -ca-key=ca-key.new.pem -config=ca-config.

↪→ json -profile=internal pd-server.json | cfssljson -bare pd-server

296

cfssl gencert -ca=ca.new.pem -ca-key=ca-key.new.pem -config=ca-config.
↪→ json -profile=internal tikv-server.json | cfssljson -bare tikv-
↪→ server

cfssl gencert -ca=ca.new.pem -ca-key=ca-key.new.pem -config=ca-config.
↪→ json -profile=internal tidb-server.json | cfssljson -bare tidb-
↪→ server

cfssl gencert -ca=ca.new.pem -ca-key=ca-key.new.pem -config=ca-config.
↪→ json -profile=client client.json | cfssljson -bare client

Note:
• The above command assumes that you have renewed and replaced

the CA certificate and saved the new CA certificate as ca.new.pem
and the new key as ca-key.new.pem. If you have not renewed the
CA certificate and the key, modify the corresponding parameters in
the command to ca.pem and ca-key.pem.

• The above command only generates the server-side and the client-
side certificates between PD, TiKV, and TiDB components. If you
need to generate the server-side CA certificates for other components,
such as TiCDC and TiFlash, you can execute the similar command.

2. Update each corresponding Kubernetes Secret object based on the newly generated
server-side and client-side certificates.
kubectl create secret generic ${cluster_name}-pd-cluster-secret --

↪→ namespace=${namespace} --from-file=tls.crt=pd-server.pem --from-
↪→ file=tls.key=pd-server-key.pem --from-file=ca.crt=ca.pem --dry-
↪→ run=client -o yaml | kubectl apply -f -

kubectl create secret generic ${cluster_name}-tikv-cluster-secret --
↪→ namespace=${namespace} --from-file=tls.crt=tikv-server.pem --from
↪→ -file=tls.key=tikv-server-key.pem --from-file=ca.crt=ca.pem --dry
↪→ -run=client -o yaml | kubectl apply -f -

kubectl create secret generic ${cluster_name}-tidb-cluster-secret --
↪→ namespace=${namespace} --from-file=tls.crt=tidb-server.pem --from
↪→ -file=tls.key=tidb-server-key.pem --from-file=ca.crt=ca.pem --dry
↪→ -run=client -o yaml | kubectl apply -f -

kubectl create secret generic ${cluster_name}-cluster-client-secret --
↪→ namespace=${namespace} --from-file=tls.crt=client.pem --from-file
↪→ =tls.key=client-key.pem --from-file=ca.crt=ca.pem --dry-run=
↪→ client -o yaml | kubectl apply -f -

In the above command, ${cluster_name} is the name of the cluster, and ${namespace
↪→ } is the namespace in which the TiDB cluster is deployed.

297

Note:
The above command only renews the server-side and the client-side cer-
tificate between PD, TiKV, and TiDB components. If you need to renew
the server-side certificates for other components, such as TiCDC, TiFlash
and TiProxy, you can execute the similar command.

3. Perform the rolling restart to components that need to load the new certificates.
After the completion of the rolling restart, each component use the new certificate for
TLS communication. If you refer to Renew and replace the CA certificate and make
each component load the combined CA certificate, each component can still accept the
certificate issued by the original CA certificate.

7.1.5.1.3 Optional: Remove the original CA certificate from the combined
CA certificate

After you renew and replace the combined CA certificate, server-side and client-side
certificates between components, you might want to remove the original CA certificate (for
example, because the CA certificate has expired or the private key is compromised). To
remove the original CA certificate, take steps as follows:

1. Renew the Kubernetes Secret objects based on the new CA certificate.
kubectl create secret generic ${cluster_name}-pd-cluster-secret --

↪→ namespace=${namespace} --from-file=tls.crt=pd-server.pem --from-
↪→ file=tls.key=pd-server-key.pem --from-file=ca.crt=ca.new.pem --
↪→ dry-run=client -o yaml | kubectl apply -f -

kubectl create secret generic ${cluster_name}-tikv-cluster-secret --
↪→ namespace=${namespace} --from-file=tls.crt=tikv-server.pem --from
↪→ -file=tls.key=tikv-server-key.pem --from-file=ca.crt=ca.new.pem
↪→ --dry-run=client -o yaml | kubectl apply -f -

kubectl create secret generic ${cluster_name}-tidb-cluster-secret --
↪→ namespace=${namespace} --from-file=tls.crt=tidb-server.pem --from
↪→ -file=tls.key=tidb-server-key.pem --from-file=ca.crt=ca.new.pem
↪→ --dry-run=client -o yaml | kubectl apply -f -

kubectl create secret generic ${cluster_name}-cluster-client-secret --
↪→ namespace=${namespace} --from-file=tls.crt=client.pem --from-file
↪→ =tls.key=client-key.pem --from-file=ca.crt=ca.new.pem --dry-run=
↪→ client -o yaml | kubectl apply -f -

In the above command, ${cluster_name} is the name of the cluster, and ${namespace
↪→ } is the namespace in which the TiDB cluster is deployed.

298

Note:
• The above command assumes that you have renewed and replaced

the CA certificate and saved the new CA certificate as ca.new.pem.

2. Perform the rolling restart to components that need to load the new certificates.
After the completion of the rolling restart, each component can only accept the certifi-
cate issued by the new CA certificate.

7.1.5.2 Renew and replace the certificate issued by cert-manager
If the original TLS certificate is issued by the cert-manager system, and the original

certificate has not expired, the procedure varies with whether to renew the CA certificate.

7.1.5.2.1 Renew and replace the CA certificate and certificates between com-
ponents

When you use cert-manager to issue the certificate, if you specify the spec.
↪→ renewBefore of the Certificate resource, cert-manager can automatically update
the certificate before it expires.

Although cert-manager can automatically renew the CA certificate and the correspond-
ing Kubernetes Secret objects, it currently does not support merging the old and new CA
certificates into a combined CA certificate to accept certificates issued by the new and old
CA certificates at the same time. Therefore, during the process of renewing and replacing
the CA certificate, the cluster components cannot authenticate each other via TLS.

Warning:
Because the components cannot accept certificates issued by the new and
old CAs at the same time, during the process of renewing and replacing
certificates, some components’ Pods need to be recreated. This might cause
some requests to access the TiDB cluster to fail.

The steps to renew and replace the CA certificates of PD, TiKV, TiDB and certificates
between components are as follows.

1. The cert-manager automatically renews the CA certificate and the Kubernetes Secret
object ${cluster_name}-ca-secret before the certificate expires.
${cluster_name} is the name of the cluster.
To manually renew the CA certificate, you can directly delete the corresponding Ku-
bernetes Secret objects and trigger cert-manager to regenerate the CA certificate.

299

2. Delete the Kubernetes Secret objects corresponding to the certificate of each compo-
nent.
kubectl delete secret ${cluster_name}-pd-cluster-secret --namespace=${

↪→ namespace}
kubectl delete secret ${cluster_name}-tikv-cluster-secret --namespace=$

↪→ {namespace}
kubectl delete secret ${cluster_name}-tidb-cluster-secret --namespace=$

↪→ {namespace}
kubectl delete secret ${cluster_name}-cluster-client-secret --namespace

↪→ =${namespace}

In the above command, ${cluster_name} is the name of the cluster, and ${namespace
↪→ } is the namespace in which the TiDB cluster is deployed.

3. Wait for cert-manager to issue new certificates for each component based on the new
CA certificate.
Observe the output of kubectl get secret --namespace=${namespace} until the
Kubernetes Secret objects corresponding to all components are created.

4. Forcibly recreate the Pods of the PD, TiKV, and TiDB components in sequence.
Because cert-manager does not support combined CA certificates, if you try to per-
form a rolling update of each component, the Pods using the different CAs to issue
certificates cannot communicate with each other via TLS. Therefore, you need to delete
the Pods forcibly and recreate the Pods based on the certificate issued by the new CA.
kubectl delete -n ${namespace} pod ${pod_name}

In the above command, ${namespace} is the namespace in which the TiDB cluster is
deployed, and ${pod_name} is the Pod name of each replica of PD, TiKV, and TiDB.

7.1.5.2.2 Only renew and replace certificates between components

1. The cert-manager automatically updates the certificate of each component and the
Kubernetes Secret object before the certificate expires.
For PD, TiKV, and TiDB components, the namespace in which the TiDB cluster is
deployed contains the following Kubernetes Secret objects:
${cluster_name}-pd-cluster-secret
${cluster_name}-tikv-cluster-secret
${cluster_name}-tidb-cluster-secret
${cluster_name}-cluster-client-secret

In the above command, ${cluster_name} is the name of the cluster.
If you want to manually update the certificate between components, you can directly
delete the corresponding Kubernetes Secret objects and trigger cert-manager to re-
generate the certificate between components.

300

2. For certificates between components, each component automatically reloads the new
certificates when creating the new connection later.

Note:
• Currently, each component does not support reload CA certificates

manually，you need to refer to renew and replace the CA certificate
and certificates between components.

• For the TiDB server-side certificate, you can manually reload by
referring to any of the following methods:

– Refer to Reload certificate, key, and CA.
– Refer to Rolling restart the TiDB Cluster to perform a rolling

restart of TiDB server.

7.1.6 Run Containers as a Non-root User

In some Kubernetes environments, containers cannot be run as the root user. In this
case, you can set securityContext to run containers as a non-root user.

7.1.6.1 Configure TiDB Operator containers
For TiDB Operator containers, you can configure security context in the Helm

values.yaml file. All TiDB Operator components (at <controllerManager/scheduler/
↪→ advancedStatefulset/admissionWebhook>.securityContext) support this configura-
tion.

The following is an example configuration:
controllerManager:
securityContext:
runAsUser: 1000
runAsGroup: 2000
fsGroup: 2000

7.1.6.2 Configure containers controlled by CR
For the containers controlled by Custom Resource (CR), you can configure security

context in any CRs (TidbCluster/DmCluster/TidbInitializer/TidbMonitor/Backup
↪→ /BackupSchedule/Restore) to make the containers run as a non-root user.

You can use either of the following two types of configuration. If you configure both
the cluster level and the component level for a component, only the configuration of the
component level takes effect.

• Configure podSecurityContext at the cluster level (spec.podSecurityContext) for
all components. The following is an example configuration:

301

https://docs.pingcap.com/tidb/stable/enable-tls-between-components#reload-certificates
https://docs.pingcap.com/tidb/stable/enable-tls-between-clients-and-servers#reload-certificate-key-and-ca
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-security-context-for-a-pod

spec:
podSecurityContext:
runAsUser: 1000
runAsGroup: 2000
fsGroup: 2000

• Configure at the component level for a specific component. For example,
configuring spec.tidb.podSecurityContext for TidbCluster, spec.master.
↪→ podSecurityContext for DMCluster. The following is an example configuration:
spec:
pd:
podSecurityContext:
runAsUser: 1000
runAsGroup: 2000
fsGroup: 2000

tidb:
podSecurityContext:
runAsUser: 1000
runAsGroup: 2000
fsGroup: 2000

7.2 Manually Scale TiDB on Kubernetes

This document introduces how to horizontally and vertically scale a TiDB cluster on
Kubernetes.

7.2.1 Horizontal scaling

Horizontally scaling TiDB means that you scale TiDB out or in by adding or remove
Pods in your pool of resources. When you scale a TiDB cluster, PD, TiKV, and TiDB are
scaled out or in sequentially according to the values of their replicas.

• To scale out a TiDB cluster, increase the value of replicas of a certain component.
The scaling out operations add Pods based on the Pod ID in ascending order, until the
number of Pods equals the value of replicas.

• To scale in a TiDB cluster, decrease the value of replicas of a certain component.
The scaling in operations remove Pods based on the Pod ID in descending order, until
the number of Pods equals the value of replicas.

302

7.2.1.1 Horizontally scale PD, TiKV, TiDB, and TiProxy
To scale PD, TiKV, TiDB, or TiProxy horizontally, use kubectl to modify spec.pd.

↪→ replicas, spec.tikv.replicas, spec.tidb.replicas, and spec.tiproxy.replicas
in the TidbCluster object of the cluster to desired values.

1. Modify the replicas value of a component as needed. For example, configure the
replicas value of PD to 3:
kubectl patch -n ${namespace} tc ${cluster_name} --type merge --patch

↪→ '{"spec":{"pd":{"replicas":3}}}'

2. Check whether your configuration has been updated in the corresponding TiDB cluster
on Kubernetes.
kubectl get tidbcluster ${cluster_name} -n ${namespace} -oyaml

If your configuration is successfully updated, in the TidbCluster CR output by the
command above, the values of spec.pd.replicas, spec.tidb.replicas, and spec.
↪→ tikv.replicas are consistent with the values you have configured.

3. Check whether the number of TidbCluster Pods has increased or decreased.
watch kubectl -n ${namespace} get pod -o wide

For the PD and TiDB components, it might take 10-30 seconds to scale in or out.
For the TiKV component, it might take 3-5 minutes to scale in or out because the
process involves data migration.

7.2.1.2 Horizontally scale TiFlash
This section describes how to horizontally scale out or scale in TiFlash if you have

deployed TiFlash in the cluster.

7.2.1.2.1 Horizontally scale out TiFlash
To scale out TiFlash horizontally, you can modify spec.tiflash.replicas.
For example, configure the replicas value of TiFlash to 3:

kubectl patch -n ${namespace} tc ${cluster_name} --type merge --patch '{"
↪→ spec":{"tiflash":{"replicas":3}}}'

303

7.2.1.2.2 Horizontally scale in TiFlash
To scale in TiFlash horizontally, perform the following steps:

1. Expose the PD service by using port-forward:
kubectl port-forward -n ${namespace} svc/${cluster_name}-pd 2379:2379

2. Open a new terminal tab or window. Check the maximum number (N) of replicas of
all data tables with which TiFlash is enabled by running the following command:
curl 127.0.0.1:2379/pd/api/v1/config/rules/group/tiflash | grep count

In the printed result, the largest value of count is the maximum number (N) of replicas
of all data tables.

3. Go back to the terminal window in Step 1, where port-forward is running. Press
Ctrl+C to stop port-forward.

4. After the scale-in operation, if the number of remaining Pods in TiFlash >= N, skip
to Step 6. Otherwise, take the following steps:

1. Refer to Access TiDB and connect to the TiDB service.
2. For all the tables that have more replicas than the remaining Pods in TiFlash,

run the following command:
alter table <db_name>.<table_name> set tiflash replica ${

↪→ pod_number};

${pod_number} indicates the number of remaining Pods in the TiFlash cluster
after scaling in.

5. Wait for the number of TiFlash replicas in the related tables to be updated.
Connect to the TiDB service, and run the following command to check the number:
SELECT * FROM information_schema.tiflash_replica WHERE TABLE_SCHEMA =

↪→ '<db_name>' and TABLE_NAME = '<table_name>';

If you cannot view the replication information of related tables, the TiFlash replicas
are successfully deleted.

6. Modify spec.tiflash.replicas to scale in TiFlash.
Check whether TiFlash in the TiDB cluster on Kubernetes has updated to your desired
definition. Run the following command and see whether the value of spec.tiflash.
↪→ replicas returned is expected:
kubectl get tidbcluster ${cluster-name} -n ${namespace} -oyaml

304

7.2.1.3 Horizontally scale TiCDC
If TiCDC is deployed in the cluster, you can horizontally scale out or scale in TiCDC by

modifying the value of spec.ticdc.replicas.
For example, configure the replicas value of TiCDC to 3:

kubectl patch -n ${namespace} tc ${cluster_name} --type merge --patch '{"
↪→ spec":{"ticdc":{"replicas":3}}}'

7.2.1.4 View the horizontal scaling status
To view the scaling status of the cluster, run the following command:

watch kubectl -n ${namespace} get pod -o wide

When the number of Pods for all components reaches the preset value and all components
go to the Running state, the horizontal scaling is completed.

Note:

• The PD, TiKV and TiFlash components do not trigger the rolling update
operations during scaling in and out.

• When the TiKV component scales in, TiDB Operator calls the PD in-
terface to mark the corresponding TiKV instance as offline, and then
migrates the data on it to other TiKV nodes. During the data migra-
tion, the TiKV Pod is still in the Running state, and the corresponding
Pod is deleted only after the data migration is completed. The time
consumed by scaling in depends on the amount of data on the TiKV
instance to be scaled in. You can check whether TiKV is in the Offline
↪→ state by running kubectl get -n ${namespace} tidbcluster $
↪→ {cluster_name} -o json | jq '.status.tikv.stores'.

• When the number of UP stores is equal to or less than the parameter
value of MaxReplicas in the PD configuration, the TiKV components
can not be scaled in.

• The TiKV component does not support scale out while a scale-in opera-
tion is in progress. Forcing a scale-out operation might cause anomalies
in the cluster. If an anomaly already happens, refer to TiKV Store is in
Tombstone status abnormally to fix it.

• The TiFlash component has the same scale-in logic as TiKV.
• When the PD, TiKV, and TiFlash components scale in, the PVC of the

deleted node is retained during the scaling in process. Because the PV’s
reclaim policy is changed to Retain, the data can still be retrieved even
if the PVC is deleted.

305

7.2.2 Vertical scaling

Vertically scaling TiDB means that you scale TiDB up or down by increasing or decreas-
ing the limit of resources on the Pod. Vertical scaling is essentially the rolling update of the
Pods.

7.2.2.1 Vertically scale components
This section describes how to vertically scale up or scale down components including

PD, TiKV, TiDB, TiProxy, TiFlash, and TiCDC.

• To scale up or scale down PD, TiKV, TiDB, and TiProxy, use kubectl to mod-
ify spec.pd.resources, spec.tikv.resources, spec.tidb.resources, and spec.
↪→ tiproxy.replicas in the TidbCluster object that corresponds to the cluster to
desired values.

• To scale up or scale down TiFlash, modify the value of spec.tiflash.resources.

• To scale up or scale down TiCDC, modify the value of spec.ticdc.resources.

7.2.2.2 View the vertical scaling progress
To view the upgrade progress of the cluster, run the following command:

watch kubectl -n ${namespace} get pod -o wide

When all Pods are rebuilt and in the Running state, the vertical scaling is completed.

Note:

• If the resource’s requests field is modified during the vertical scaling
process, and if PD, TiKV, and TiFlash use Local PV, they will be sched-
uled back to the original node after the upgrade. At this time, if the
original node does not have enough resources, the Pod ends up staying
in the Pending status and thus impacts the service.

• TiDB is a horizontally scalable database, so it is recommended to take
advantage of it simply by adding more nodes rather than upgrading
hardware resources like you do with a traditional database.

7.2.3 Scale PD microservice components

306

Note:
Starting from v8.0.0, PD supports the microservice mode (experimental).

PD microservices are typically used to address performance bottlenecks in PD and im-
prove the quality of PD services. To determine whether it is necessary to scale PD microser-
vices, see PD microservice FAQs.

• Currently, the PD microservices mode splits the timestamp allocation and cluster
scheduling functions of PD into two independently deployed components: the tso
microservice and the scheduling microservice.

– The tso microservice implements a primary-secondary architecture. If the tso
microservice becomes the bottleneck, it is recommended to scale it vertically.

– The scheduling microservice serves as a scheduling component. If the
scheduling microservice becomes the bottleneck, it is recommended to scale it
horizontally.

• To vertically scale each component of PD microservices, use the kubectl command
to modify the spec.pdms.resources of the TidbCluster object corresponding to the
cluster to your desired value.

• To horizontally scale each component of PD microservices, use the kubectl command
to modify spec.pdms.replicas of the TidbCluster object corresponding to the clus-
ter to your desired value.

Taking the scheduling microservice as an example, the steps for horizontal scaling are
as follows:

1. Modify the replicas value of the corresponding TidbCluster object to your de-
sired value. For example, run the following command to set the replicas value of
scheduling to 3:
kubectl patch -n ${namespace} tc ${cluster_name} --type merge --patch

↪→ '{"spec":{"pdms":[{"name":"scheduling", "replicas":3}]}}'

2. Check whether the corresponding TiDB cluster configuration for the Kubernetes cluster
is updated:
kubectl get tidbcluster ${cluster_name} -n ${namespace} -oyaml

In the output of this command, the scheduling.replicas value of spec.pdms in
TidbCluster is expected to be the same as the value you configured.

307

https://docs.pingcap.com/tidb/dev/pd-microservices
https://docs.pingcap.com/tidb/dev/pd-microservices#FAQ

3. Observe whether the number of TidbCluster Pods is increased or decreased:
watch kubectl -n ${namespace} get pod -o wide

It usually takes about 10 to 30 seconds for PD microservice components to scale in or
out.

7.2.4 Scaling troubleshooting

During the horizontal or vertical scaling operation, Pods might go to the Pending state
because of insufficient resources. See Troubleshoot the Pod in Pending state to resolve it.

7.3 Upgrade

7.3.1 Upgrade a TiDB Cluster on Kubernetes

If you deploy and manage your TiDB clusters on Kubernetes using TiDB Operator, you
can upgrade your TiDB clusters using the rolling update feature. Rolling update can limit
the impact of upgrade on your application.

This document describes how to upgrade a TiDB cluster on Kubernetes using rolling
updates.

7.3.1.1 Rolling update introduction
Kubernetes provides the rolling update feature to update your application with zero

downtime.
When you perform a rolling update, TiDB Operator serially deletes an old Pod and

creates the corresponding new Pod in the order of PD, TiProxy, TiFlash, TiKV, and TiDB.
After the new Pod runs normally, TiDB Operator proceeds with the next Pod.

Note:
If PD microservices (introduced in TiDB v8.0.0) are deployed in a cluster,
when you perform a rolling update to upgrade the cluster, TiDB Operator
serially deletes an old Pod and creates the corresponding new Pod in the
order of each PD microservice component, PD, TiKV, and TiDB. After the
new Pod runs normally, TiDB Operator proceeds with the next Pod.

During the rolling update, TiDB Operator automatically completes Leader transfer for
PD and TiKV. Under the highly available deployment topology (minimum requirements:
PD * 3, TiKV * 3, TiDB * 2), performing a rolling update to PD and TiKV servers does not

308

https://kubernetes.io/docs/tutorials/kubernetes-basics/update/update-intro/
https://docs.pingcap.com/tidb/dev/pd-microservices

impact the running application. If your client supports retrying stale connections, performing
a rolling update to TiDB servers does not impact application, either.

Warning:

• For the clients that cannot retry stale connections, performing a
rolling update to TiDB servers closes the client connections
and cause the request to fail. In such cases, it is recommended
to add a retry function for the clients to retry, or to perform a rolling
update to TiDB servers in idle time.

• Before upgrading, refer to the documentation to confirm that there are
no DDL operations in progress.

7.3.1.2 Preparations before upgrade

1. Refer to the upgrade caveat to learn about the precautions. Note that all TiDB
versions, including patch versions, currently do not support downgrade or rollback
after upgrade.

2. Refer to TiDB release notes to learn about the compatibility changes in each interme-
diate version. If any changes affect your upgrade, take appropriate measures.
For example, if you upgrade from TiDB v6.4.0 to v6.5.2, you need to check the com-
patibility changes in the following versions:

• TiDB v6.5.0 compatibility changes and deprecated features
• TiDB v6.5.1 compatibility changes
• TiDB v6.5.2 compatibility changes

If you upgrade from v6.3.0 or an earlier version to v6.5.2, you also need to check the
compatibility changes in all intermediate versions.

7.3.1.3 Upgrade steps

Note:
By default, TiDB (versions starting from v4.0.2 and released before February
20, 2023) periodically shares usage details with PingCAP to help understand
how to improve the product. For details about what is shared and how to
disable the sharing, see Telemetry. Starting from February 20, 2023, the
telemetry feature is disabled by default in newly released TiDB versions. See
TiDB Release Timeline for details.

309

https://docs.pingcap.com/tidb/stable/sql-statement-admin-show-ddl
https://docs.pingcap.com/tidb/dev/upgrade-tidb-using-tiup#upgrade-caveat
https://docs.pingcap.com/tidb/dev/release-notes
https://docs.pingcap.com/tidb/stable/release-6.5.0#compatibility-changes
https://docs.pingcap.com/tidb/stable/release-6.5.0#deprecated-feature
https://docs.pingcap.com/tidb/stable/release-6.5.1#compatibility-changes
https://docs.pingcap.com/tidb/stable/release-6.5.2#compatibility-changes
https://docs.pingcap.com/tidb/stable/telemetry
https://docs.pingcap.com/tidb/stable/release-timeline

1. In TidbCluster CR, modify the image configurations of all components of the cluster
to be upgraded.
kubectl edit tc ${cluster_name} -n ${namespace}

Usually, all components in a cluster are in the same version. You can upgrade the TiDB
cluster simply by modifying spec.version. If you need to use different versions for
different components, modify spec.<pd/tidb/tikv/pump/tiflash/ticdc>.version.
The version field has following formats:

• spec.version: the format is imageTag, such as v8.5.0
• spec.<pd/tidb/tikv/pump/tiflash/ticdc>.version: the format is imageTag,

such as v3.1.0

2. Check the upgrade progress:
watch kubectl -n ${namespace} get pod -o wide

After all the Pods finish rebuilding and become Running, the upgrade is completed.

7.3.1.4 Troubleshoot the upgrade
If the PD cluster is unavailable due to PD configuration errors, PD image tag errors,

NodeAffinity, or other causes, you might not be able to successfully upgrade the TiDB cluster.
In such cases, you can force an upgrade of the cluster to recover the cluster functionality.

The steps of force upgrade are as follows:

1. Set annotation for the cluster:
kubectl annotate --overwrite tc ${cluster_name} -n ${namespace} tidb.

↪→ pingcap.com/force-upgrade=true

2. Change the related PD configuration to make sure that PD turns into a normal state.

3. After the PD cluster recovers, you must execute the following command to disable the
forced upgrade; otherwise, an exception may occur in the next upgrade:
kubectl annotate tc ${cluster_name} -n ${namespace} tidb.pingcap.com/

↪→ force-upgrade-

After taking the steps above, your TiDB cluster recovers its functionality. You can
upgrade the cluster normally.

310

7.3.2 Upgrade TiDB Operator

7.3.2.1 Upgrade TiDB Operator
This document describes how to upgrade TiDB Operator to a specific version. You can

choose either online upgrade or offline upgrade.

7.3.2.1.1 Online upgrade
If your server has access to the internet, you can perform online upgrade by taking the

following steps:

1. Before upgrading TiDB Operator, make sure that the Helm repo contains the TiDB
Operator version you want to upgrade to. To check the TiDB Operator versions in the
Helm repo, run the following command:
helm search repo -l tidb-operator

If the command output does not include the version you need, update the repo using
the helm repo update command. For details, refer to Configure the Help repo.

2. Update CustomResourceDefinition (CRD) for Kubernetes:

1. If you upgrade TiDB Operator from v1.3.x to v1.4.0 or later versions, you need
to execute the following command to create the new TidbDashboard CRD. If you
upgrade TiDB Operator from v1.4.0 or later versions, you can skip this step.
kubectl create -f https://raw.githubusercontent.com/pingcap/tidb-

↪→ operator/${operator_version}/manifests/crd/v1/pingcap.
↪→ com_tidbdashboards.yaml

2. Update CRD.
kubectl replace -f https://raw.githubusercontent.com/pingcap/tidb-

↪→ operator/${operator_version}/manifests/crd.yaml && \
kubectl get crd tidbclusters.pingcap.com

This document takes TiDB v1.6.1 as an example. You can replace ${operator_version
↪→ } with the specific version you want to upgrade to.

3. Get the values.yaml file of the tidb-operator chart:
mkdir -p ${HOME}/tidb-operator/v1.6.1 && \
helm inspect values pingcap/tidb-operator --version=v1.6.1 > ${HOME}/

↪→ tidb-operator/v1.6.1/values-tidb-operator.yaml

4. In the ${HOME}/tidb-operator/v1.6.1/values-tidb-operator.yaml file, modify
the operatorImage version to the new TiDB Operator version.

311

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/

5. If you have added customized configuration in the old values.yaml file, merge your
customized configuration to the ${HOME}/tidb-operator/v1.6.1/values-tidb-
↪→ operator.yaml file.

6. Perform upgrade:
helm upgrade tidb-operator pingcap/tidb-operator --version=v1.6.1 -f ${

↪→ HOME}/tidb-operator/v1.6.1/values-tidb-operator.yaml -n tidb-
↪→ admin

7. After all the Pods start normally, check the image of TiDB Operator:
kubectl get po -n tidb-admin -l app.kubernetes.io/instance=tidb-

↪→ operator -o yaml | grep 'image:.*operator:'

If you see a similar output as follows, TiDB Operator is successfully upgraded. v1.6.1
represents the TiDB Operator version you have upgraded to.
image: pingcap/tidb-operator:v1.6.1
image: docker.io/pingcap/tidb-operator:v1.6.1
image: pingcap/tidb-operator:v1.6.1
image: docker.io/pingcap/tidb-operator:v1.6.1

7.3.2.1.2 Offline upgrade
If your server cannot access the Internet, you can offline upgrade by taking the following

steps:

1. Download the files and images required for the upgrade using a machine with Internet
access:

1. Download the crd.yaml file for the new TiDB Operator version. For more infor-
mation about CRD, see CustomResourceDefinition.
wget -O crd.yaml https://raw.githubusercontent.com/pingcap/tidb-

↪→ operator/${operator_version}/manifests/crd.yaml

This document takes TiDB v1.6.1 as an example. You can replace ${
↪→ operator_version} with the specific version you want to upgrade to.

2. Download the tidb-operator chart package file.
wget http://charts.pingcap.org/tidb-operator-v1.6.1.tgz

3. Download the Docker images required for the new TiDB Operator version:

312

https://kubernetes.io/docs/tasks/access-kubernetes-api/custom-resources/custom-resource-definitions/

docker pull pingcap/tidb-operator:v1.6.1
docker pull pingcap/tidb-backup-manager:v1.6.1

docker save -o tidb-operator-v1.6.1.tar pingcap/tidb-operator:v1
↪→ .6.1

docker save -o tidb-backup-manager-v1.6.1.tar pingcap/tidb-backup-
↪→ manager:v1.6.1

2. Upload the downloaded files and images to the server where TiDB Operator is deployed,
and install the new TiDB Operator version:

1. If you upgrade TiDB Operator from v1.2.x or earlier versions to v1.3.x or later
versions, you need to execute the following command to create the new TidbNG-
Monitoring CRD. If you upgrade TiDB Operator from v1.3.x or later versions,
you can skip this step.
kubectl create -f ./crd.yaml

After executing this command, you can expect to see an “AlreadyExists” error
for other CRDs. You can ignore this error.

2. Install the crd.yaml file for TiDB Operator:
kubectl replace -f ./crd.yaml

3. Unpack the tidb-operator chart package file, and copy the values.yaml file to
the directory of the new TiDB Operator:
tar zxvf tidb-operator-v1.6.1.tgz && \
mkdir -p ${HOME}/tidb-operator/v1.6.1 && \
cp tidb-operator/values.yaml ${HOME}/tidb-operator/v1.6.1/values-

↪→ tidb-operator.yaml

4. Install the Docker images on the server:
docker load -i tidb-operator-v1.6.1.tar && \
docker load -i tidb-backup-manager-v1.6.1.tar

3. In the ${HOME}/tidb-operator/v1.6.1/values-tidb-operator.yaml file, modify
the operatorImage version to the new TiDB Operator version.

4. If you have added customized configuration in the old values.yaml file, merge your
customized configuration to the ${HOME}/tidb-operator/v1.6.1/values-tidb-
↪→ operator.yaml file.

5. Perform upgrade:

313

helm upgrade tidb-operator ./tidb-operator --version=v1.6.1 -f ${HOME}/
↪→ tidb-operator/v1.6.1/values-tidb-operator.yaml

6. After all the Pods start normally, check the image version of TiDB Operator:
kubectl get po -n tidb-admin -l app.kubernetes.io/instance=tidb-

↪→ operator -o yaml | grep 'image:.*operator:'

If you see a similar output as follows, TiDB Operator is successfully upgraded. v1.6.1
represents the TiDB Operator version you have upgraded to.
image: pingcap/tidb-operator:v1.6.1
image: docker.io/pingcap/tidb-operator:v1.6.1
image: pingcap/tidb-operator:v1.6.1
image: docker.io/pingcap/tidb-operator:v1.6.1

Note:
After TiDB Operator is upgraded, the discovery Deployment in all
TiDB clusters is automatically upgraded to the corresponding version
of TiDB Operator.

7.3.2.2 Perform a Canary Upgrade on TiDB Operator
If you want to upgrade TiDB Operator to a new version, and hope to limit the impact of

the upgrade to avoid the unpredictable impact on all TiDB clusters in the entire Kubernetes
cluster, you can perform a canary upgrade on TiDB Operator. After the canary upgrade,
you can check the impact of the TiDB Operator upgrade on the canary cluster. After you
confirm that the new version of TiDB Operator is working stably, you can then upgrade
TiDB Operator normally.

You can perform a canary upgrade only on two components: tidb-controller-manager
↪→ and tidb-scheduler. Canary upgrades for the advanced StatefulSet controller and the
admission controller are not supported.

When you use TiDB Operator, tidb-scheduler is not mandatory. Refer to tidb-
scheduler and default-scheduler to confirm whether you need to deploy tidb-scheduler.

7.3.2.2.1 Step 1: Configure selector for the current TiDB Operator and
perform an upgrade

In values.yaml of the current TiDB Operator, add the following selector configuration:
controllerManager:
selector:
- version!=canary

314

Refer to Online upgrade or Offline upgrade to upgrade the current TiDB Operator:
helm upgrade tidb-operator pingcap/tidb-operator --version=${chart_version}

↪→ -f ${HOME}/tidb-operator/values-tidb-operator.yaml

7.3.2.2.2 Step 2: Deploy the canary TiDB Operator

1. Refer to Step 1~2 in Online deployment and obtain the values.yaml file of the version
you want to upgrade to. Add the following configuration in values.yaml:
controllerManager:
selector:
- version=canary

appendReleaseSuffix: true
#scheduler:
create: false # If you do not need tidb-scheduler, set this value to

↪→ false.
advancedStatefulset:
create: false

admissionWebhook:
create: false

appendReleaseSuffix must be set to true.
If you do not need to perform a canary upgrade on tidb-scheduler, configure
scheduler.create: false. If you need to perform a canary upgrade on tidb-
↪→ scheduler, configuring scheduler.create: true creates a scheduler named
{{ .scheduler.schedulerName }}-{{.Release.Name}}. To use this scheduler in
the canary TiDB Operator, in the TidbCluster CR, configure spec.schedulerName
to the name of this scheduler.
Because canary upgrades for the advanced StatefulSet controller and the admission
controller are not supported, you need to set advancedStatefulset.create: false
and admissionWebhook.create: false.
For details on the parameters related to canary upgrade, refer to related parameters.

2. Deploy the canary TiDB Operator in a different namespace (such as tidb-admin
↪→ -canary) with a different Helm Release name (such as helm install tidb-
↪→ operator-canary ...):
helm install tidb-operator-canary pingcap/tidb-operator --namespace=

↪→ tidb-admin-canary --version=${operator_version} -f ${HOME}/tidb-
↪→ operator/${operator_version}/values-tidb-operator.yaml

Replace ${operator_version} with the version of TiDB Operator you want to up-
grade to.

315

https://helm.sh/docs/intro/using_helm/#three-big-concepts

7.3.2.2.3 Step 3: Test the canary TiDB Operator (optional)
Before you upgrade TiDB Operator in a normal way, you can test whether the canary

TiDB Operator works stably. You can test tidb-controller-manager and tidb-scheduler
↪→ .

1. To test the canary tidb-controller-manager, set a label for a TiDB cluster by run-
ning the following command:
kubectl -n ${namespace} label tc ${cluster_name} version=canary

Check the logs of the two deployed tidb-controller-managers, and you can see this
TiDB cluster with the canary label is now managed by the canary TiDB Operator.
The steps to check logs are as follows:

1. View the log of tidb-controller-manager of the current TiDB Operator:
kubectl -n tidb-admin logs tidb-controller-manager-55b887bdc9-lzdwv

Expected output:
I0305 07:52:04.558973 1 tidb_cluster_controller.go:148]

↪→ TidbCluster has been deleted tidb-cluster-1/basic1

2. View the log of tidb-controller-manager of the canary TiDB Operator:
kubectl -n tidb-admin-canary logs tidb-controller-manager-canary-6

↪→ dcb9bdd95-qf4qr

Expected output:
I0113 03:38:43.859387 1 tidbcluster_control.go:69] TidbCluster:

↪→ [tidb-cluster-1/basic1] updated successfully

2. To test the canary upgrade of tidb-scheduler, modify spec.schedulerName of a
TiDB cluster to tidb-scheduler-canary by running the following command:
kubectl -n ${namespace} edit tc ${cluster_name}

After the modification, all components in the cluster will be rolling updated.
Check the logs of tidb-scheduler of the canary TiDB Operator, and you can see this
TiDB cluster is now using the canary tidb-scheduler:
kubectl -n tidb-admin-canary logs tidb-scheduler-canary-7f7b6c7c6-j5p2j

↪→ -c tidb-scheduler

3. After the tests, you can revert the changes in the previous two steps so that the TiDB
cluster is again managed by the current TiDB Operator.
kubectl -n ${namespace} label tc ${cluster_name} version-

kubectl -n ${namespace} edit tc ${cluster_name}

316

7.3.2.2.4 Step 4: Upgrade TiDB Operator normally
After you confirm that the canary TiDB Operator works stably, you can upgrade the

TiDB Operator normally.

1. Delete the canary TiDB Operator:
helm -n tidb-admin-canary uninstall ${release_name}

2. Upgrade TiDB Operator normally.

7.4 Backup and Restore

7.4.1 Backup and Restore Overview

This document describes how to perform backup and restore on the TiDB cluster on
Kubernetes. To back up and restore your data, you can use the Dumpling, TiDB Lightning,
and Backup & Restore (BR) tools.

Dumpling is a data export tool, which exports data stored in TiDB or MySQL as SQL
or CSV data files. You can use Dumpling to make a logical full backup or export.

TiDB Lightning is a tool used for fast full data import into a TiDB cluster. TiDB
Lightning supports Dumpling or CSV format data source. You can use TiDB Lightning to
make a logical full data restore or import.

BR is a command-line tool for distributed backup and restoration of the TiDB cluster
data. Compared with Dumpling and Mydumper, BR is more suitable for huge data volumes.
BR only supports TiDB v3.1 and later versions. For incremental backup insensitive to
latency, refer to BR Overview. For real-time incremental backup, refer to TiCDC.

7.4.1.1 Usage scenarios

7.4.1.1.1 Back up data
If you have the following backup needs, you can use BR to make a backup of your TiDB

cluster data:

• To back up a large volume of data (more than 1 TB) at a fast speed
• To get a direct backup of data as SST files (key-value pairs)
• To perform incremental backup that is insensitive to latency

Refer to the following documents for more information:

• Back up Data to S3-Compatible Storage Using BR
• Back up Data to GCS Using BR

317

https://docs.pingcap.com/tidb/stable/dumpling-overview
https://docs.pingcap.com/tidb/stable/get-started-with-tidb-lightning
https://docs.pingcap.com/tidb/stable/backup-and-restore-overview
https://docs.pingcap.com/tidb/stable/backup-and-restore-overview
https://docs.pingcap.com/tidb/stable/ticdc-overview

• Back up Data to Azure Blob Storage Using BR
• Back up Data to PV Using BR
• Back up Data Using EBS Snapshots across Multiple Kubernetes

If you have the following backup needs, you can use Dumpling to make a backup of the
TiDB cluster data:

• To export SQL or CSV files
• To limit the memory usage of a single SQL statement
• To export the historical data snapshot of TiDB

Refer to the following documents for more information:

• Back up Data to S3-Compatible Storage Using Dumpling
• Back up Data to GCS Using Dumpling

7.4.1.1.2 Restore data
To recover the SST files exported by BR to a TiDB cluster, use BR. Refer to the following

documents for more information:

• Restore Data from S3-Compatible Storage Using BR
• Restore Data from GCS Using BR
• Restore Data from Azure Blob Storage Using BR
• Restore Data from PV Using BR
• Restore Data Using EBS Snapshots across Multiple Kubernetes

To restore data from SQL or CSV files exported by Dumpling or other compatible data
sources to a TiDB cluster, use TiDB Lightning. Refer to the following documents for more
information:

• Restore Data from S3-Compatible Storage Using TiDB Lightning
• Restore Data from GCS Using TiDB Lightning

7.4.1.2 Backup and restore process
To make a backup of the TiDB cluster on Kubernetes, you need to create a Backup CR

object to describe the backup or create a BackupSchedule CR object to describe a scheduled
backup.

To restore data to the TiDB cluster on Kubernetes, you need to create a Restore CR
object to describe the restore.

After creating the CR object, according to your configuration, TiDB Operator chooses
the corresponding tool and performs the backup or restore.

318

7.4.1.3 Delete the Backup CR
You can delete the Backup CR or BackupSchedule CR by running the following com-

mands:
kubectl delete backup ${name} -n ${namespace}
kubectl delete backupschedule ${name} -n ${namespace}

If you use TiDB Operator v1.1.2 or an earlier version, or if you use TiDB Operator v1.1.3
or a later version and set the value of spec.cleanPolicy to Delete, TiDB Operator cleans
the backup data when it deletes the CR.

If you use v1.5.5, v1.6.1, or a later version, TiDB Operator automatically attempts to
stop running log backup tasks when you delete the Custom Resource (CR). This automatic
stop feature only applies to log backup tasks that are running normally and does not handle
tasks in an error or failed state.

If you back up cluster data using AWS EBS volume snapshots and set the value of spec
↪→ .cleanPolicy to Delete, TiDB Operator deletes the CR, and cleans up the backup file
and the volume snapshots on AWS.

In such cases, if you need to delete the namespace, it is recommended that you first
delete all the Backup/BackupSchedule CRs and then delete the namespace.

If you delete the namespace before you delete the Backup/BackupSchedule CR, TiDB
Operator will keep creating jobs to clean the backup data. However, because the namespace is
in Terminating state, TiDB Operator fails to create such a job, which causes the namespace
to be stuck in this state.

To address this issue, delete finalizers by running the following command:
kubectl patch -n ${namespace} backup ${name} --type merge -p '{"metadata":{"

↪→ finalizers":[]}}'

7.4.1.3.1 Clean backup data
For TiDB Operator v1.2.3 and earlier versions, TiDB Operator cleans the backup data

by deleting the backup files one by one.
For TiDB Operator v1.2.4 and later versions, TiDB Operator cleans the backup data

by deleting the backup files in batches. For the batch deletion, the deletion methods are
different depending on the type of backend storage used for backups.

• For the S3-compatible backend storage, TiDB Operator uses the concurrent batch dele-
tion method, which deletes files in batch concurrently. TiDB Operator starts multiple
goroutines concurrently, and each goroutine uses the batch delete API “DeleteObjects”
to delete multiple files.

• For other types of backend storage, TiDB Operator uses the concurrent deletion
method, which deletes files concurrently. TiDB Operator starts multiple goroutines,
and each goroutine deletes one file at a time.

319

https://docs.aws.amazon.com/AmazonS3/latest/API/API_DeleteObjects.html

For TiDB Operator v1.2.4 and later versions, you can configure the following fields in
the Backup CR to control the clean behavior:

• .spec.cleanOption.pageSize: Specifies the number of files to be deleted in each
batch at a time. The default value is 10000.

• .spec.cleanOption.disableBatchConcurrency: If the value of this field is true,
TiDB Operator disables the concurrent batch deletion method and uses the concurrent
deletion method.
If your S3-compatible backend storage does not support the DeleteObjects API, the
default concurrent batch deletion method fails. You need to configure this field to true
to use the concurrent deletion method.

• .spec.cleanOption.batchConcurrency: Specifies the number of goroutines to start
for the concurrent batch deletion method. The default value is 10.

• .spec.cleanOption.routineConcurrency: Specifies the number of goroutines to
start for the concurrent deletion method. The default value is 100.

7.4.2 Backup and Restore Custom Resources

This document describes the fields in the Backup, Restore, and BackupSchedule custom
resources (CR). You can use these fields to better perform the backup or restore of TiDB
clusters on Kubernetes.

7.4.2.1 Backup CR fields
To back up data for a TiDB cluster on Kubernetes, you can create a Backup custom

resource (CR) object. For detailed backup process, refer to documents listed in Back up
data.

This section introduces the fields in the Backup CR.

7.4.2.1.1 General fields

• .spec.metadata.namespace: the namespace where the Backup CR is located.

• .spec.toolImage: the tool image used by Backup. TiDB Operator supports this
configuration item starting from v1.1.9.

– When using BR for backup, you can specify the BR version in this field.
* If the field is not specified or the value is empty, the pingcap/br:${

↪→ tikv_version} image is used for backup by default.
* If the BR version is specified in this field, such as .spec.toolImage: pingcap

↪→ /br:v8.5.0, the image of the specified version is used for backup.

320

* If an image is specified without the version, such as .spec.toolImage:
↪→ private/registry/br, the private/registry/br:${tikv_version}
image is used for backup.

– When using Dumpling for backup, you can specify the Dumpling version in this
field.
* If the Dumpling version is specified in this field, such as spec.toolImage:

↪→ pingcap/dumpling:v8.5.0, the image of the specified version is used for
backup.

* If the field is not specified, the Dumpling version specified in TOOLKIT_VERSION
↪→ of the Backup Manager Dockerfile is used for backup by default.

• .spec.backupType: the backup type. This field is valid only when you use BR for
backup. Currently, the following three types are supported, and this field can be
combined with the .spec.tableFilter field to configure table filter rules:

– full: back up all databases in a TiDB cluster.
– db: back up a specified database in a TiDB cluster.
– table: back up a specified table in a TiDB cluster.

• .spec.backupMode: the backup mode. The default value is snapshot, which means
backing up data through the snapshots in the KV layer. This field is valid only for
backup and has three value options currently:

– snapshot: back up data through snapshots in the KV layer.
– volume-snapshot: back up data by volume snapshots.
– log: back up log data in real time in the KV layer.

• .spec.logSubcommand: the subcommand for controlling the log backup status in the
Backup CR. This field provides three options for managing a log backup task:

– log-start: initiates a new log backup task or resumes a paused task. Use this
command to start the log backup process or resume a task from a paused state.

– log-pause: temporarily pauses the currently running log backup task. After
pausing, you can use the log-start command to resume the task.

– log-stop: permanently stops the log backup task. After executing this command,
the Backup CR enters a stopped state and cannot be restarted.

For versions before v1.5.5, use the logStop field with boolean values (true/false) to
control log backup operations. While logStop is still supported in v1.5.5 and v1.6.1, it is
recommended to use logSubcommand instead.

• .spec.restoreMode: the restore mode. The default value is snapshot, which means
restoring data from snapshots in the KV layer. This field is valid only for restore and
has three value options currently:

321

https://github.com/pingcap/tidb-operator/blob/v1.6.1/images/tidb-backup-manager/Dockerfile

– snapshot: restore data from snapshots in the KV layer.
– volume-snapshot: restore data from volume snapshots.
– pitr: restore cluster data to a specific point in time based on snapshots and log

data.

• .spec.tikvGCLifeTime: The temporary tikv_gc_life_time time setting during the
backup, which defaults to 72h.
Before the backup begins, if the tikv_gc_life_time setting in the TiDB cluster is
smaller than spec.tikvGCLifeTime set by the user, TiDB Operator adjusts the value
of tikv_gc_life_time to the value of spec.tikvGCLifeTime. This operation makes
sure that the backup data is not garbage-collected by TiKV.
After the backup, whether the backup is successful or not, as long as the previous
tikv_gc_life_time value is smaller than .spec.tikvGCLifeTime, TiDB Operator
tries to set tikv_gc_life_time to the previous value.
In extreme cases, if TiDB Operator fails to access the database, TiDB Operator cannot
automatically recover the value of tikv_gc_life_time and treats the backup as failed.
In such cases, you can view tikv_gc_life_time of the current TiDB cluster using the
following statement:
SELECT VARIABLE_NAME, VARIABLE_VALUE FROM mysql.tidb WHERE

↪→ VARIABLE_NAME LIKE "tikv_gc_life_time";

In the output of the command above, if the value of tikv_gc_life_time is still larger
than expected (usually 10m), you need to manually set tikv_gc_life_time back to
the previous value.

• .spec.cleanPolicy: The cleaning policy for the backup data when the backup CR is
deleted. You can choose one from the following three clean policies:

– Retain: under any circumstances, retain the backup data when deleting the
backup CR.

– Delete: under any circumstances, delete the backup data when deleting the
backup CR.

– OnFailure: if the backup fails, delete the backup data when deleting the backup
CR.

If this field is not configured, or if you configure a value other than the three policies
above, the backup data is retained.
Note that in v1.1.2 and earlier versions, this field does not exist. The backup data is
deleted along with the CR by default. For v1.1.3 or later versions, if you want to keep
this earlier behavior, set this field to Delete.

• .spec.cleanOption: the clean behavior for the backup files when the backup CR is
deleted after the cluster backup. For details, refer to Clean backup data

322

https://docs.pingcap.com/tidb/stable/dumpling-overview#tidb-gc-settings-when-exporting-a-large-volume-of-data
https://docs.pingcap.com/tidb/stable/dumpling-overview#tidb-gc-settings-when-exporting-a-large-volume-of-data
https://docs.pingcap.com/tidb/stable/dumpling-overview#tidb-gc-settings-when-exporting-a-large-volume-of-data

• .spec.from.host: the address of the TiDB cluster to be backed up, which is the
service name of the TiDB cluster to be exported, such as basic-tidb.

• .spec.from.port: the port of the TiDB cluster to be backed up.

• .spec.from.user: the user of the TiDB cluster to be backed up.

• .spec.from.secretName: the secret that contains the password of the .spec.from.
↪→ user.

• .spec.from.tlsClientSecretName: the secret of the certificate used during the
backup.
If TLS is enabled for the TiDB cluster, but you do not want to back up data using the
${cluster_name}-cluster-client-secret created when you enable TLS between
TiDB components, you can use the .spec.from.tlsClient.tlsSecret parameter to
specify a secret for the backup. To generate the secret, run the following command:
kubectl create secret generic ${secret_name} --namespace=${namespace}

↪→ --from-file=tls.crt=${cert_path} --from-file=tls.key=${key_path}
↪→ --from-file=ca.crt=${ca_path}

• .spec.storageClassName: the persistent volume (PV) type specified for the backup
operation.

• .spec.storageSize: the PV size specified for the backup operation (100 GiB by
default). This value must be greater than the size of the TiDB cluster to be backed
up.
The PVC name corresponding to the Backup CR of a TiDB cluster is fixed. If the PVC
already exists in the cluster namespace and the size is smaller than spec.storageSize,
you need to first delete this PVC and then run the Backup job.

• .spec.resources: the resource requests and limits for the Pod that runs the backup
job.

• .spec.env: the environment variables for the Pod that runs the backup job.

• .spec.affinity: the affinity configuration for the Pod that runs the backup job. For
details on affinity, refer to Affinity and anti-affinity.

• .spec.tolerations: specifies that the Pod that runs the backup job can schedule
onto nodes with matching taints. For details on taints and tolerations, refer to Taints
and Tolerations.

• .spec.podSecurityContext: the security context configuration for the Pod that runs
the backup job, which allows the Pod to run as a non-root user. For details on
podSecurityContext, refer to Run Containers as a Non-root User.

323

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/reference/glossary/?all=true#term-taint
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

• .spec.priorityClassName: the name of the priority class for the Pod that runs the
backup job, which sets priority for the Pod. For details on priority classes, refer to
Pod Priority and Preemption.

• .spec.imagePullSecrets: the imagePullSecrets for the Pod that runs the backup
job.

• .spec.serviceAccount: the name of the ServiceAccount used for the backup.

• .spec.useKMS: whether to use AWS-KMS to decrypt the S3 storage key used for the
backup.

• .spec.tableFilter: specifies tables that match the table filter rules for BR or
Dumpling. This field can be ignored by default.
When the field is not configured, if you use Dumpling, the default value of tableFilter
is as follows:
tableFilter:
- "*.*"
- "!/^(mysql|test|INFORMATION_SCHEMA|PERFORMANCE_SCHEMA|METRICS_SCHEMA|

↪→ INSPECTION_SCHEMA)$/.*"

When the field is not configured, if you use BR, BR backs up all schemas except the
system schema.

Note:
If you want to back up all tables except db.table using the "!db.table"
rule, you need to first add the *.* rule to include all tables. For example:
tableFilter:
- "*.*"
- "!db.table"

• .spec.backoffRetryPolicy: the retry policy for abnormal failures (such as Kuber-
netes killing the node due to insufficient resources) of the Job/Pod during the backup.
This configuration currently only takes effect on the snapshot backup.

– minRetryDuration: the minimum retry interval after an abnormal failure is
found. The retry interval increases with the number of failures. RetryDuration
↪→ = minRetryDuration << (retryNum -1). The time format is specified in
func ParseDuration, and the default value is 300s.

– maxRetryTimes: the maximum number of retries. The default value is 2.
– retryTimeout: the retry timeout. The timeout starts from the first abnormal

failure. The time format is specified in func ParseDuration, and the default
value is 30m.

324

https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/
https://kubernetes.io/docs/concepts/containers/images/#specifying-imagepullsecrets-on-a-pod
https://docs.pingcap.com/tidb/stable/table-filter/
https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration

7.4.2.1.2 BR fields

• .spec.br.cluster: the name of the cluster to be backed up.
• .spec.br.clusterNamespace: the namespace of the cluster to be backed up.
• .spec.br.logLevel: the log level (info by default).
• .spec.br.statusAddr: the listening address through which BR provides statistics. If

not specified, BR does not listen on any status address by default.
• .spec.br.concurrency: the number of threads used by each TiKV process during

backup. Defaults to 4 for backup and 128 for restore.
• .spec.br.rateLimit: the speed limit, in MB/s. If set to 4, the speed limit is 4 MB/s.

The speed limit is not set by default.
• .spec.br.checksum: whether to verify the files after the backup is completed. Defaults

to true.
• .spec.br.timeAgo: backs up the data before timeAgo. If the parameter value is not

specified (empty by default), it means backing up the current data. It supports data
formats such as "1.5h" and "2h45m". See ParseDuration for more information.

• .spec.br.sendCredToTikv: whether the BR process passes its AWS, Google Cloud,
or Azure permissions to the TiKV process. Defaults to true.

• .spec.br.onLine: whether to enable the online restore feature when restoring data.
• .spec.br.options: the extra arguments that BR supports. This field is supported

since TiDB Operator v1.1.6. It accepts an array of strings and can be used to specify
the last backup timestamp --lastbackupts for incremental backup.

7.4.2.1.3 S3 storage fields

• .spec.s3.provider: the supported S3-compatible storage provider. All supported
providers are as follows:

– alibaba: Alibaba Cloud Object Storage System (OSS), formerly Aliyun
– digitalocean: Digital Ocean Spaces
– dreamhost: Dreamhost DreamObjects
– ibmcos: IBM COS S3
– minio: Minio Object Storage
– netease: Netease Object Storage (NOS)
– wasabi: Wasabi Object Storage
– other: any other S3 compatible provider

• spec.s3.region: if you want to use Amazon S3 for backup storage, configure this
field as the region where Amazon S3 is located.

• .spec.s3.bucket: the name of the bucket of the S3-compatible storage.

• .spec.s3.prefix: if you set this field, the value is used to make up the remote storage
path s3://${.spec.s3.bucket}/${.spec.s3.prefix}/backupName.

325

https://golang.org/pkg/time/#ParseDuration
https://docs.pingcap.com/tidb/stable/use-br-command-line-tool#online-restore-experimental-feature

• .spec.s3.path: specifies the storage path of backup files on the remote storage. This
field is valid only when the data is backed up using Dumpling or restored using TiDB
Lightning. For example, s3://test1-demo1/backup-2019-12-11T04:32:12Z.tgz.

• .spec.s3.endpoint：the endpoint of S3 compatible storage service, for example, http
↪→ ://minio.minio.svc.cluster.local:9000.

• .spec.s3.secretName：the name of secret which stores S3 compatible storage’s access
key and secret key.

• .spec.s3.sse: specifies the S3 server-side encryption method. For example, aws:kms.

• .spec.s3.acl: the supported access-control list (ACL) policies.
Amazon S3 supports the following ACL options:

– private
– public-read
– public-read-write
– authenticated-read
– bucket-owner-read
– bucket-owner-full-control

If the field is not configured, the policy defaults to private. For more information on
the ACL policies, refer to AWS documentation.

• .spec.s3.storageClass: the supported storage class.
Amazon S3 supports the following storage class options:

– STANDARD
– REDUCED_REDUNDANCY
– STANDARD_IA
– ONEZONE_IA
– GLACIER
– DEEP_ARCHIVE

If the field is not configured, the storage class defaults to STANDARD_IA. For more
information on storage classes, refer to AWS documentation.

7.4.2.1.4 GCS fields

• .spec.gcs.projectId: the unique identifier of the user project on Google Cloud. To
obtain the project ID, refer to Google Cloud documentation.

• .spec.gcs.location: the location of the GCS bucket. For example, us-west2.

326

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/storage-class-intro.html
https://cloud.google.com/resource-manager/docs/creating-managing-projects

• .spec.gcs.path: the storage path of backup files on the remote storage. This field
is valid only when the data is backed up using Dumpling or restored using TiDB
Dumpling. For example, gcs://test1-demo1/backup-2019-11-11T16:06:05Z.tgz.

• .spec.gcs.secretName: the name of the secret that stores the GCS account creden-
tial.

• .spec.gcs.bucket: the name of the bucket which stores data.

• .spec.gcs.prefix: if you set this field, the value is used to make up the path of the
remote storage: gcs://${.spec.gcs.bucket}/${.spec.gcs.prefix}/backupName.

• .spec.gcs.storageClass: the supported storage class.
GCS supports the following storage class options:

– MULTI_REGIONAL
– REGIONAL
– NEARLINE
– COLDLINE
– DURABLE_REDUCED_AVAILABILITY

If the field is not configured, the storage class defaults to COLDLINE. For more infor-
mation on storage classes, refer to GCS documentation.

• .spec.gcs.objectAcl: the supported object access-control list (ACL) policies.
GCS supports the following object ACL options:

– authenticatedRead
– bucketOwnerFullControl
– bucketOwnerRead
– private
– projectPrivate
– publicRead

If the field is not configured, the policy defaults to private. For more information on
the ACL policies, refer to GCS documentation.

• .spec.gcs.bucketAcl: the supported bucket access-control list (ACL) policies.
GCS supports the following bucket ACL options:

– authenticatedRead
– private
– projectPrivate
– publicRead
– publicReadWrite

If the field is not configured, the policy defaults to private. For more information on
the ACL policies, refer to GCS documentation.

327

https://cloud.google.com/storage/docs/storage-classes
https://cloud.google.com/storage/docs/access-control/lists
https://cloud.google.com/storage/docs/access-control/lists

7.4.2.1.5 Azure Blob Storage fields

• .spec.azblob.secretName: the name of the secret which stores Azure Blob Storage
account credential.

• .spec.azblob.container: the name of the container which stores data.

• .spec.azblob.prefix: if you set this field, the value is used to make up the re-
mote storage path azure://${.spec.azblob.container}/${.spec.azblob.prefix
↪→ }/backupName.

• .spec.azblob.accessTier: the access tier of the uploaded data.
Azure Blob Storage supports the following access tier options:

– Hot
– Cool
– Archive

If this field is not configured, Cool is used by default.

7.4.2.1.6 Local storage fields

• .spec.local.prefix: the storage directory of the persistent volumes. If you set this
field, the value is used to make up the storage path of the persistent volume: local
↪→ ://${.spec.local.volumeMount.mountPath}/${.spec.local.prefix}/.

• .spec.local.volume: the persistent volume configuration.
• .spec.local.volumeMount: the persistent volume mount configuration.

7.4.2.2 CompactBackup CR fields
For TiDB v9.0.0 and later versions, you can use CompactBackup to accelerate PITR

(Point-in-time recovery). To compact log backup data into structured SST files, you can
create a custom CompactBackup CR object to define a backup task. The following introduces
the fields in the CompactBackup CR:

• .spec.startTs: the start timestamp for log compaction backup.

• .spec.endTs: the end timestamp for log compaction backup.

• .spec.concurrency: the maximum number of concurrent log compaction tasks. The
default value is 4.

• .spec.maxRetryTimes: the maximum number of retries for failed compaction tasks.
The default value is 6.

328

• .spec.toolImage：the tool image used by CompactBackup. BR is the only tool image
used in CompactBackup. When using BR for backup, you can specify the BR version
with this field:

– If not specified or left empty, the pingcap/br:${tikv_version} image is used
for backup by default.

– If a BR version is specified, such as .spec.toolImage: pingcap/br:v9.0.0, the
image of the specified version is used for backup.

– If an image is specified without a version, such as .spec.toolImage: private
↪→ /registry/br, the private/registry/br:${tikv_version} image is used
for backup.

• .spec.env: the environment variables for the Pod that runs the compaction task.

• .spec.affinity: the affinity configuration for the Pod that runs the compaction task.
For details on affinity, refer to Affinity and anti-affinity.

• .spec.tolerations: specifies that the Pod that runs the compaction task can schedule
onto nodes with matching taints. For details on taints and tolerations, refer to Taints
and Tolerations.

• .spec.podSecurityContext: the security context configuration for the Pod that runs
the compaction task, which allows the Pod to run as a non-root user. For details on
podSecurityContext, refer to Run Containers as a Non-root User.

• .spec.priorityClassName: the name of the priority class for the Pod that runs the
compaction task, which sets priority for the Pod. For details on priority classes, refer
to Pod Priority and Preemption.

• .spec.imagePullSecrets: the imagePullSecrets for the Pod that runs the compaction
task.

• .spec.serviceAccount: the name of the ServiceAccount used for compact.

• .spec.useKMS: whether to use AWS-KMS to decrypt the S3 storage key used for the
backup.

• .spec.br: BR-related configuration. For more information, refer to BR fields.

• .spec.s3: S3-related configuration. For more information, refer to S3 storage fields.

• .spec.gcs: GCS-related configuration. For more information, refer to GCS fields.

• .spec.azblob：Azure Blob Storage-related configuration. For more information, refer
to Azure Blob Storage fields.

329

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/reference/glossary/?all=true#term-taint
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/
https://kubernetes.io/docs/concepts/containers/images/#specifying-imagepullsecrets-on-a-pod

7.4.2.3 Restore CR fields
To restore data to a TiDB cluster on Kubernetes, you can create a Restore CR object.

For detailed restore process, refer to documents listed in Restore data.
This section introduces the fields in the Restore CR.

• .spec.metadata.namespace: the namespace where the Restore CR is located.

• .spec.toolImage：the tools image used by Restore. TiDB Operator supports this
configuration starting from v1.1.9.

– When using BR for restoring, you can specify the BR version in this field. For
example,spec.toolImage: pingcap/br:v8.5.0. If not specified, pingcap/br:$
↪→ {tikv_version} is used for restoring by default.

– When using Lightning for restoring, you can specify the Lightning version in this
field. For example, spec.toolImage: pingcap/lightning:v8.5.0. If not speci-
fied, the Lightning version specified in TOOLKIT_VERSION of the Backup Manager
Dockerfile is used for restoring by default.

• .spec.backupType: the restore type. This field is valid only when you use BR to
restore data. Currently, the following three types are supported, and this field can be
combined with the .spec.tableFilter field to configure table filter rules:

– full: restore all databases in a TiDB cluster.
– db: restore a specified database in a TiDB cluster.
– table: restore a specified table in a TiDB cluster.

• .spec.tikvGCLifeTime: the temporary tikv_gc_life_time setting during the re-
store, which defaults to 72h.
Before the restore begins, if the tikv_gc_life_time setting in the TiDB cluster is
smaller than spec.tikvGCLifeTime set by users, TiDB Operator adjusts the value
of tikv_gc_life_time to the value of spec.tikvGCLifeTime. This operation makes
sure that the restored data is not garbage-collected by TiKV.
After the restore, whether the restore is successful or not, as long as the original
tikv_gc_life_time value is smaller than .spec.tikvGCLifeTime, TiDB Operator
tries to set tikv_gc_life_time back to the original value.
In extreme cases, if TiDB Operator fails to access the database, TiDB Operator cannot
automatically recover the value of tikv_gc_life_time and treats the restore as failed.
In such cases, you can view tikv_gc_life_time of the current TiDB cluster using the
following statement:
SELECT VARIABLE_NAME, VARIABLE_VALUE FROM mysql.tidb WHERE

↪→ VARIABLE_NAME LIKE "tikv_gc_life_time";

330

https://github.com/pingcap/tidb-operator/blob/v1.6.1/images/tidb-backup-manager/Dockerfile
https://github.com/pingcap/tidb-operator/blob/v1.6.1/images/tidb-backup-manager/Dockerfile
https://docs.pingcap.com/tidb/stable/dumpling-overview#tidb-gc-settings-when-exporting-a-large-volume-of-data
https://docs.pingcap.com/tidb/stable/dumpling-overview#tidb-gc-settings-when-exporting-a-large-volume-of-data

In the output of the command above, if the value of tikv_gc_life_time is still larger
than expected (usually 10m), you need to manually set tikv_gc_life_time back to
the previous value.

• .spec.to.host: the address of the TiDB cluster to be restored.

• .spec.to.port: the port of the TiDB cluster to be restored.

• .spec.to.user: the user of the TiDB cluster to be restored.

• .spec.to.secretName: the secret that contains the password of the .spec.to.user.

• .spec.to.tlsClientSecretName: the secret of the certificate used during the restore.
If TLS is enabled for the TiDB cluster, but you do not want to restore data using the $
↪→ {cluster_name}-cluster-client-secret created when you enable TLS between
TiDB components, you can use the .spec.to.tlsClient.tlsSecret parameter to
specify a secret for the restore. To generate the secret, run the following command:
kubectl create secret generic ${secret_name} --namespace=${namespace}

↪→ --from-file=tls.crt=${cert_path} --from-file=tls.key=${key_path}
↪→ --from-file=ca.crt=${ca_path}

• .spec.resources: the resource requests and limits for the Pod that runs the restore
job.

• .spec.env: the environment variables for the Pod that runs the restore job.

• .spec.affinity: the affinity configuration for the Pod that runs the restore job. For
details on affinity, refer to Affinity and anti-affinity.

• .spec.tolerations: specifies that the Pod that runs the restore job can schedule onto
nodes with matching taints. For details on taints and tolerations, refer to Taints and
Tolerations.

• .spec.podSecurityContext: the security context configuration for the Pod that runs
the restore job, which allows the Pod to run as a non-root user. For details on
podSecurityContext, refer to Run Containers as a Non-root User.

• .spec.priorityClassName: the name of the priority class for the Pod that runs the
restore job, which sets priority for the Pod. For details on priority classes, refer to Pod
Priority and Preemption.

• .spec.imagePullSecrets: the imagePullSecrets for the Pod that runs the restore job.

• .spec.serviceAccount: the name of the ServiceAccount used for restore.

• .spec.useKMS: whether to use AWS-KMS to decrypt the S3 storage key used for the
backup.

331

https://docs.pingcap.com/tidb/stable/dumpling-overview#tidb-gc-settings-when-exporting-a-large-volume-of-data
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/reference/glossary/?all=true#term-taint
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/
https://kubernetes.io/docs/concepts/containers/images/#specifying-imagepullsecrets-on-a-pod

• .spec.storageClassName: the persistent volume (PV) type specified for the restore
operation.

• .spec.storageSize: the PV size specified for the restore operation. This value must
be greater than the size of the backup data.

• .spec.tableFilter: specifies tables that match the table filter rules for BR. This field
can be ignored by default.
When the field is not configured, if you use TiDB Lightning, the default tableFilter
value for TiDB Lightning is as follows:
tableFilter:
- "*.*"
- "!/^(mysql|test|INFORMATION_SCHEMA|PERFORMANCE_SCHEMA|METRICS_SCHEMA|

↪→ INSPECTION_SCHEMA)$/.*"

When the field is not configured, if you use BR, BR restores all the schemas in the
backup file.

Note:
If you want to backup up all table except db.table using the "!db.
↪→ table" rule, you need to first add the *.* rule to include all tables.
For example:
tableFilter:
- "*.*"
- "!db.table"

• .spec.br: BR-related configuration. Refer to BR fields.

• .spec.s3: S3-related configuration. Refer to S3 storage fields.

• .spec.gcs: GCS-related configuration. Refer to GCS fields.

• .spec.azblob：Azure Blob Storage-related configuration. Refer to Azure Blob Storage
fields.

• .spec.local: persistent volume-related configuration. Refer to Local storage fields.

7.4.2.4 BackupSchedule CR fields
The backupSchedule configuration consists of three parts: the configuration of the

snapshot backup backupTemplate, the configuration of the log backup logBackupTemplate,
and the unique configuration of backupSchedule.

332

https://docs.pingcap.com/tidb/stable/table-filter/

• backupTemplate: the configuration of the snapshot backup. Specifies the configuration
related to the cluster and remote storage of the snapshot backup, which is the same as
the spec configuration of the Backup CR.

• logBackupTemplate: the configuration of the log backup. Specifies the configuration
related to the cluster and remote storage of the log backup, which is the same as the
spec configuration of the Backup CR. The log backup is created and deleted along
with backupSchedule and recycled according to .spec.maxReservedTime. The log
backup name is saved in status.logBackup.

• compactBackupTemplate: the configuration template of the log compaction backup.
The fields are the same as those in the spec configuration of the CompactBackup
↪→ CR. The compaction backup is created and deleted along with backupSchedule.
The log backup names are stored in status.logBackup. The storage settings of the
compaction backup should be the same as that of logBackupTemplate in the same
backupSchedule.

Note:
Before you delete the log backup data, you need to stop the log backup
task to avoid resource waste or the inability to restart the log backup
task in the future because the log backup task in TiKV is not stopped.

• The unique configuration items of backupSchedule are as follows:

– .spec.maxBackups: a backup retention policy, which determines the maximum
number of backup files to be retained. When the number of backup files exceeds
this value, the outdated backup file will be deleted. If you set this field to 0, all
backup items are retained.

– .spec.maxReservedTime: a backup retention policy based on time. For example,
if you set the value of this field to 24h, only backup files within the recent 24
hours are retained. All backup files older than this value are deleted. For the
time format, refer to func ParseDuration. If you have set .spec.maxBackups
and .spec.maxReservedTime at the same time, the latter takes effect.

– .spec.schedule: the time scheduling format of Cron. Refer to Cron for details.
– .spec.compactInterval: the time interval used to trigger a new compaction

task.
– .spec.pause: false by default. If this field is set to true, the scheduled schedul-

ing is paused. In this situation, the backup operation will not be performed even
if the scheduling time point is reached. During this pause, the backup garbage
collection runs normally. If you change true to false, the scheduled snapshot
backup process is restarted. Because currently, log backup does not support
pause, this configuration does not take effect for log backup.

333

https://golang.org/pkg/time/#ParseDuration
https://en.wikipedia.org/wiki/Cron

7.4.3 Grant Permissions to Remote Storage

This document describes how to grant permissions to access remote storage for backup
and restore. During the backup process, TiDB cluster data is backed up to the remote
storage. During the restore process, the backup data is restored from the remote storage to
the TiDB cluster.

7.4.3.1 AWS account permissions
Amazon Web Service (AWS) provides different methods to grant permissions for different

types of Kubernetes clusters. This document describes the following three methods.

7.4.3.1.1 Grant permissions by AccessKey and SecretKey
The AWS client can read AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY from the

process environment variables to obtain the associated user or role permissions.
Create the s3-secret secret by running the following command. Use the AWS account’s

AccessKey and SecretKey. The secret stores the credential used for accessing S3-compatible
storage.
kubectl create secret generic s3-secret --from-literal=access_key=xxx --from

↪→ -literal=secret_key=yyy --namespace=test1

7.4.3.1.2 Grant permissions by associating IAM with Pod
If you associate the user’s IAM role with the resources of the running Pods, the processes

running in the Pods can have the permissions of the role. This method is provided by
kube2iam.

Note:

• When you use this method to grant permissions, you can create the
kube2iam environment in the Kubernetes cluster and deploy TiDB Op-
erator and the TiDB cluster.

• This method is not applicable to the hostNetwork mode. Make sure the
value of spec.tikv.hostNetwork is set to false.

1. Create an IAM role.
First, create an IAM User for your account.
Then, Give the required permission to the IAM role you have created. Refer to Adding
and Removing IAM Identity Permissions for details.

334

https://aws.amazon.com/cn/iam/
https://github.com/jtblin/kube2iam
https://github.com/jtblin/kube2iam#usage
https://github.com/jtblin/kube2iam#usage
https://kubernetes.io/docs/concepts/policy/pod-security-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html

Because the Backup CR needs to access the Amazon S3 storage, the IAM role is granted
the AmazonS3FullAccess permission.
When backing up a TiDB cluster using EBS volume snapshots, besides the
AmazonS3FullAccess permission, the following permissions are also required:

{
"Effect": "Allow",
"Action": [

"ec2:AttachVolume",
"ec2:CreateSnapshot",
"ec2:CreateSnapshots",
"ec2:CreateTags",
"ec2:CreateVolume",
"ec2:DeleteSnapshot",
"ec2:DeleteTags",
"ec2:DeleteVolume",
"ec2:DescribeInstances",
"ec2:DescribeSnapshots",
"ec2:DescribeTags",
"ec2:DescribeVolumes",
"ec2:DetachVolume",
"ebs:ListSnapshotBlocks",
"ebs:ListChangedBlocks"

],
"Resource": "*"

}

2. Associate IAM with the TiKV Pod:
When you use BR to back up TiDB data, the TiKV Pod also needs to perform read
and write operations on S3-compatible storage as the BR Pod does. Therefore, you
need to add annotations to the TiKV Pod to associate it with the IAM role.
kubectl patch tc demo1 -n test1 --type merge -p '{"spec":{"tikv":{"

↪→ annotations":{"iam.amazonaws.com/role":"arn:aws:iam
↪→ ::123456789012:role/user"}}}}'

After the TiKV Pod is restarted, check whether the Pod has the annotation.

Note:
arn:aws:iam::123456789012:role/user is the IAM role created in Step 1.

335

7.4.3.1.3 Grant permissions by associating IAM with ServiceAccount
If you associate the user’s IAM role with serviceAccount of Kubernetes, the Pods

using the serviceAccount can have the permissions of the role. This method is provided
by EKS Pod Identity Webhook.

When you use this method to grant permissions, you can create the EKS cluster and
deploy TiDB Operator and the TiDB cluster.

1. Enable the IAM role for the serviceAccount in the cluster:
Refer to AWS documentation.

2. Create the IAM role:
Create an IAM role and grant the AmazonS3FullAccess permissions to the role. Edit
the role’s Trust relationships to grant tidb-backup-manager the access to this IAM
role.
When backing up a TiDB cluster using EBS volume snapshots, besides the
AmazonS3FullAccess permission, the following permissions are also required:

{
"Effect": "Allow",
"Action": [

"ec2:AttachVolume",
"ec2:CreateSnapshot",
"ec2:CreateSnapshots",
"ec2:CreateTags",
"ec2:CreateVolume",
"ec2:DeleteSnapshot",
"ec2:DeleteTags",
"ec2:DeleteVolume",
"ec2:DescribeInstances",
"ec2:DescribeSnapshots",
"ec2:DescribeTags",
"ec2:DescribeVolumes",
"ec2:DetachVolume",
"ebs:ListSnapshotBlocks",
"ebs:ListChangedBlocks"

],
"Resource": "*"

}

At the same time, edit the role’s Trust relationships to grant tidb-controller-
manager the access to this IAM role.

3. Associate the IAM role with the ServiceAccount resources.

336

https://aws.amazon.com/cn/iam/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#serviceaccount
https://github.com/aws/amazon-eks-pod-identity-webhook
https://docs.aws.amazon.com/zh_cn/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/enable-iam-roles-for-service-accounts.html
https://docs.aws.amazon.com/eks/latest/userguide/associate-service-account-role.html

kubectl annotate sa tidb-backup-manager eks.amazonaws.com/role-arn=arn:
↪→ aws:iam::123456789012:role/user --namespace=test1

When backing up or restoring a TiDB cluster using EBS volume snapshots, you need to
associate the IAM role with the ServiceAccount resources of tidb-controller-manager.
shell kubectl annotate sa tidb-controller-manager eks.amazonaws.com/
↪→ role-arn=arn:aws:iam::123456789012:role/user --namespace=tidb-admin
Restart the tidb-controller-manager Pod of TiDB Operator to make the configured
ServiceAccount take effect.

4. Associate the ServiceAccount with the TiKV Pod:
kubectl patch tc demo1 -n test1 --type merge -p '{"spec":{"tikv":{"

↪→ serviceAccount": "tidb-backup-manager"}}}'

Modify the value of spec.tikv.serviceAccount to tidb-backup-manager. After the
TiKV Pod is restarted, check whether the Pod’s serviceAccountName is changed.

5. (Optional) If your cluster includes TiFlash Pods, repeat step 4 to associate the
ServiceAccount with the TiFlash Pod.
kubectl patch tc demo1 -n test1 --type merge -p '{"spec":{"tiflash":{"

↪→ serviceAccount": "tidb-backup-manager"}}}'

Note:
arn:aws:iam::123456789012:role/user is the IAM role created in Step 2.

7.4.3.2 GCS account permissions

7.4.3.2.1 Grant permissions by the service account
Create the gcs-secret secret which stores the credential used to access GCS. The

google-credentials.json file stores the service account key that you have downloaded
from the Google Cloud console. Refer to Google Cloud documentation for details.
kubectl create secret generic gcs-secret --from-file=credentials=./google-

↪→ credentials.json -n test1

7.4.3.3 Azure account permissions
Azure provides different methods to grant permissions for different types of Kubernetes

clusters. This document describes the following two methods.

337

https://cloud.google.com/docs/authentication/getting-started

7.4.3.3.1 Grant permissions by access key
The Azure client can read AZURE_STORAGE_ACCOUNT and AZURE_STORAGE_KEY from the

process environment variables to obtain the associated user or role permissions.
Run the following command to create the azblob-secret secret and use your Azure

account access key to grant permissions. The secret stores the credential used for accessing
Azure Blob Storage.
kubectl create secret generic azblob-secret --from-literal=

↪→ AZURE_STORAGE_ACCOUNT=xxx --from-literal=AZURE_STORAGE_KEY=yyy --
↪→ namespace=test1

7.4.3.3.2 Grant permissions by Azure AD
The Azure client can read AZURE_STORAGE_ACCOUNT, AZURE_CLIENT_ID, AZURE_TENANT_ID

↪→ , and AZURE_CLIENT_SECRET to obtain the associated user or role permissions.

1. Create the azblob-secret-ad secret by running the following command. Use the
Active Directory (AD) of your Azure account. The secret stores the credential used
for accessing Azure Blob Storage.
kubectl create secret generic azblob-secret-ad --from-literal=

↪→ AZURE_STORAGE_ACCOUNT=xxx --from-literal=AZURE_CLIENT_ID=yyy --
↪→ from-literal=AZURE_TENANT_ID=zzz --from-literal=
↪→ AZURE_CLIENT_SECRET=aaa --namespace=test1

2. Associate the secret with the TiKV Pod:
When you use BR to back up TiDB data, the TiKV Pod also needs to perform read
and write operations on Azure Blob Storage as the BR Pod does. Therefore, you need
to associate the TiKV Pod with the secret.
kubectl patch tc demo1 -n test1 --type merge -p '{"spec":{"tikv":{"

↪→ envFrom":[{"secretRef":{"name":"azblob-secret-ad"}}]}}}'

After the TiKV Pod is restarted, check whether the Pod has the environment variables.

7.4.4 Amazon S3 Compatible Storage

7.4.4.1 Back up Data to S3-Compatible Storage Using BR
This document describes how to back up the data of a TiDB cluster on AWS Kubernetes

to AWS storage. There are two backup types:

• Snapshot backup. With snapshot backup, you can restore a TiDB cluster to the
time point of the snapshot backup using full restoration.

338

• Log backup. With snapshot backup and log backup, you can restore a TiDB cluster
to any point in time. This is also known as Point-in-Time Recovery (PITR).

The backup method described in this document is implemented based on CustomRe-
sourceDefinition (CRD) in TiDB Operator. For the underlying implementation, BR is used
to get the backup data of the TiDB cluster, and then send the data to the AWS storage.
BR stands for Backup & Restore, which is a command-line tool for distributed backup and
recovery of the TiDB cluster data.

7.4.4.1.1 Usage scenarios
If you have the following backup needs, you can use BR’s snapshot backup method

to make an ad-hoc backup or scheduled snapshot backup of the TiDB cluster data to S3-
compatible storages.

• To back up a large volume of data (more than 1 TB) at a fast speed
• To get a direct backup of data as SST files (key-value pairs)

If you have the following backup needs, you can use BR log backup to make an ad-hoc
backup of the TiDB cluster data to S3-compatible storages (you can combine log backup
and snapshot backup to restore data more efficiently):

• To restore data of any point in time to a new cluster
• The recovery point object (RPO) is within several minutes.

For other backup needs, refer to Backup and Restore Overview to choose an appropriate
backup method.

Note:

• Snapshot backup is only applicable to TiDB v3.1 or later releases.
• Log backup is only applicable to TiDB v6.3 or later releases.
• Data that is backed up using BR can only be restored to TiDB instead

of other databases.

7.4.4.1.2 Ad-hoc backup
Ad-hoc backup includes snapshot backup and log backup. For log backup, you can start

or stop a log backup task and clean log backup data.
To get an Ad-hoc backup, you need to create a Backup Custom Resource (CR) object to

describe the backup details. Then, TiDB Operator performs the specific backup operation

339

https://docs.pingcap.com/tidb/stable/backup-and-restore-overview

based on this Backup object. If an error occurs during the backup process, TiDB Operator
does not retry, and you need to handle this error manually.

This document provides an example about how to back up the data of the demo1 TiDB
cluster in the test1 Kubernetes namespace to the AWS storage. The following are the
detailed steps.

Prerequisites: Prepare for an ad-hoc backup

1. Create a namespace for managing backup. The following example creates a backup-
↪→ test namespace:
kubectl create namespace backup-test

2. Download backup-rbac.yaml, and execute the following command to create the role-
based access control (RBAC) resources in the backup-test namespace:
kubectl apply -f backup-rbac.yaml -n backup-test

3. Grant permissions to the remote storage for the created backup-test namespace.

• If you are using Amazon S3 to backup your cluster, you can grant permissions in
three methods. For more information, refer to AWS account permissions.

• If you are using other S3-compatible storage (such as Ceph and MinIO) to backup
your cluster, you can grant permissions by using AccessKey and SecretKey.

4. For a TiDB version earlier than v4.0.8, you also need to complete the following prepa-
ration steps. For TiDB v4.0.8 or a later version, skip these preparation steps.

1. Make sure that you have the SELECT and UPDATE privileges on the mysql.tidb
table of the backup database so that the Backup CR can adjust the GC time
before and after the backup.

2. Create the backup-demo1-tidb-secret secret to store the account and password
to access the TiDB cluster:
kubectl create secret generic backup-demo1-tidb-secret --from-

↪→ literal=password=${password} --namespace=test1

Snapshot backup
Depending on which method you choose to grant permissions to the remote storage when

preparing for the ad-hoc backup, export your data to the S3-compatible storage by doing
one of the following:

• Method 1: If you grant permissions by importing AccessKey and SecretKey, create the
Backup CR to back up cluster data as described below:

340

https://github.com/pingcap/tidb-operator/blob/v1.6.1/manifests/backup/backup-rbac.yaml

kubectl apply -f full-backup-s3.yaml

The content of full-backup-s3.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-full-backup-s3
namespace: backup-test

spec:
backupType: full
br:
cluster: demo1
clusterNamespace: test1
logLevel: info
statusAddr: ${status_addr}
concurrency: 4
rateLimit: 0
timeAgo: ${time}
checksum: true
sendCredToTikv: true
options:
- --lastbackupts=420134118382108673

s3:
provider: aws
secretName: s3-secret
region: us-west-1
bucket: my-bucket
prefix: my-full-backup-folder

• Method 2: If you grant permissions by associating IAM with Pod, create the Backup
CR to back up cluster data as described below:
kubectl apply -f full-backup-s3.yaml

The content of full-backup-s3.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-full-backup-s3
namespace: backup-test
annotations:

341

iam.amazonaws.com/role: arn:aws:iam::123456789012:role/user
spec:
backupType: full
br:
cluster: demo1
sendCredToTikv: false
clusterNamespace: test1
logLevel: info
statusAddr: ${status_addr}
concurrency: 4
rateLimit: 0
timeAgo: ${time}
checksum: true
options:
- --lastbackupts=420134118382108673

s3:
provider: aws
region: us-west-1
bucket: my-bucket
prefix: my-full-backup-folder

• Method 3: If you grant permissions by associating IAM with ServiceAccount, create
the Backup CR to back up cluster data as described below:
kubectl apply -f full-backup-s3.yaml

The content of full-backup-s3.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-full-backup-s3
namespace: backup-test

spec:
backupType: full
serviceAccount: tidb-backup-manager
br:
cluster: demo1
sendCredToTikv: false
clusterNamespace: test1
logLevel: info
statusAddr: ${status_addr}
concurrency: 4
rateLimit: 0
timeAgo: ${time}

342

checksum: true
options:
- --lastbackupts=420134118382108673

s3:
provider: aws
region: us-west-1
bucket: my-bucket
prefix: my-full-backup-folder

When configuring full-backup-s3.yaml, note the following:

• Since TiDB Operator v1.1.6, if you want to back up data incrementally, you only need
to specify the last backup timestamp --lastbackupts in spec.br.options. For the
limitations of incremental backup, refer to Use BR to Back up and Restore Data.

• You can ignore the acl, endpoint, storageClass configuration items of Amazon S3.
For more information about S3-compatible storage configuration, refer to S3 storage
fields.

• Some parameters in .spec.br are optional, such as logLevel and statusAddr. For
more information about BR configuration, refer to BR fields.

• For v4.0.8 or a later version, BR can automatically adjust tikv_gc_life_time. You
do not need to configure spec.tikvGCLifeTime and spec.from fields in the Backup
CR.

• For more information about the Backup CR fields, refer to Backup CR fields.

View the snapshot backup status
After you create the Backup CR, TiDB Operator starts the backup automatically. You

can view the backup status by running the following command:
kubectl get backup -n backup-test -o wide

From the output, you can find the following information for the Backup CR named demo1
↪→ -full-backup-s3. The COMMITTS field indicates the time point of the snapshot backup:
NAME TYPE MODE STATUS BACKUPPATH

↪→ COMMITTS ...
demo1-full-backup-s3 full snapshot Complete s3://my-bucket/my-full-backup-

↪→ folder/ 436979621972148225 ...

Log backup
You can use a Backup CR to describe the start and stop of a log backup task and manage

the log backup data. Log backup grants permissions to remote storages in the same way
as snapshot backup. In this section, the example shows log backup operations by taking
a Backup CR named demo1-log-backup-s3 as an example. Note that these operations

343

https://docs.pingcap.com/tidb/stable/br-usage-backup#back-up-incremental-data

assume that permissions to remote storages are granted using accessKey and secretKey. See
the following detailed steps.

Description of the logSubcommand field
In the Backup Custom Resource (CR), you can use the logSubcommand field to control

the state of a log backup task. The logSubcommand field supports the following commands:

• log-start: initiates a new log backup task or resumes a paused task. Use this com-
mand to start the log backup process or resume a task from a paused state.

• log-pause: temporarily pauses the currently running log backup task. After pausing,
you can use the log-start command to resume the task.

• log-stop: permanently stops the log backup task. After executing this command, the
Backup CR enters a stopped state and cannot be restarted.

These commands provide fine-grained control over the lifecycle of log backup tasks,
enabling you to start, pause, resume, and stop tasks effectively to manage log data retention
in Kubernetes environments.

In TiDB Operator v1.5.4, v1.6.0, and earlier versions, you can use the logStop: true
↪→ /false field to stop or start log backup tasks. This field is retained for backward com-
patibility.

However, do not use logStop and logSubcommand fields in the same Backup CR, as this
is not supported. For TiDB Operator v1.5.5, v1.6.1, and later versions, it is recommended
to use the logSubcommand field to ensure clear and consistent configuration.

Start log backup

1. In the backup-test namespace, create a Backup CR named demo1-log-backup-s3.
kubectl apply -f log-backup-s3.yaml

The content of log-backup-s3.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-log-backup-s3
namespace: backup-test

spec:
backupMode: log
logSubcommand: log-start
br:
cluster: demo1
clusterNamespace: test1

344

sendCredToTikv: true
s3:
provider: aws
secretName: s3-secret
region: us-west-1
bucket: my-bucket
prefix: my-log-backup-folder

2. Wait for the start operation to complete:
kubectl get jobs -n backup-test

NAME COMPLETIONS ...
backup-demo1-log-backup-s3-log-start 1/1 ...

3. View the newly created Backup CR:
kubectl get backup -n backup-test

NAME MODE STATUS
demo1-log-backup-s3 log Running

View the log backup status
You can view the log backup status by checking the information of the Backup CR:

kubectl describe backup -n backup-test

From the output, you can find the following information for the Backup CR named demo1
↪→ -log-backup-s3. The Log Checkpoint Ts field indicates the latest point in time that
can be recovered:
Status:
Backup Path: s3://my-bucket/my-log-backup-folder/
Commit Ts: 436568622965194754
Conditions:

Last Transition Time: 2022-10-10T04:45:20Z
Status: True
Type: Scheduled
Last Transition Time: 2022-10-10T04:45:31Z
Status: True
Type: Prepare
Last Transition Time: 2022-10-10T04:45:31Z
Status: True
Type: Running

Log Checkpoint Ts: 436569119308644661

345

Pause log backup
You can pause a log backup task by setting the logSubcommand field of the Backup

Custom Resource (CR) to log-pause. The following example shows how to pause the
demo1-log-backup-s3 CR created in Start log backup.
kubectl edit backup demo1-log-backup-s3 -n backup-test

To pause the log backup task, change the value of logSubcommand from log-start to
log-pause, then save and exit the editor. The modified content is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-log-backup-s3
namespace: backup-test

spec:
backupMode: log
logSubcommand: log-pause
br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

s3:
provider: aws
secretName: s3-secret
region: us-west-1
bucket: my-bucket
prefix: my-log-backup-folder

You can verify that the STATUS of the demo1-log-backup-s3 Backup CR changes from
Running to Pause:
kubectl get backup -n backup-test

NAME MODE STATUS
demo1-log-backup-s3 log Pause

Resume log backup
If a log backup task is paused, you can resume it by setting the logSubcommand field

to log-start. The following example shows how to resume the demo1-log-backup-s3 CR
that was paused in Pause Log Backup.

346

Note:
This operation applies only to tasks in the Pause state. You cannot resume
tasks in the Fail or Stopped state.

kubectl edit backup demo1-log-backup-s3 -n backup-test

To resume the log backup task, change the value of logSubcommand from log-pause to
log-start, then save and exit the editor. The modified content is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-log-backup-s3
namespace: backup-test

spec:
backupMode: log
logSubcommand: log-start
br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

s3:
provider: aws
secretName: s3-secret
region: us-west-1
bucket: my-bucket
prefix: my-log-backup-folder

You can verify that the STATUS of the demo1-log-backup-s3 Backup CR changes from
Pause to Running:
kubectl get backup -n backup-test

NAME MODE STATUS
demo1-log-backup-s3 log Running

Stop log backup
You can stop a log backup task by setting the logSubcommand field of the Backup

Custom Resource (CR) to log-stop. The following example shows how to stop the demo1-
↪→ log-backup-s3 CR created in Start log backup.
kubectl edit backup demo1-log-backup-s3 -n backup-test

347

Change the value of logSubcommand to log-stop, then save and exit the editor. The
modified content is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-log-backup-s3
namespace: backup-test

spec:
backupMode: log
logSubcommand: log-stop
br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

s3:
provider: aws
secretName: s3-secret
region: us-west-1
bucket: my-bucket
prefix: my-log-backup-folder

You can verify that the STATUS of the Backup CR named demo1-log-backup-s3 changes
from Running to Stopped:
kubectl get backup -n backup-test

NAME MODE STATUS
demo1-log-backup-s3 log Stopped

Stopped is the terminal state for log backup. In this state, you cannot change the backup
state again, but you can still clean up the log backup data.

In TiDB Operator v1.5.4, v1.6.0, and earlier versions, you can use the logStop: true
↪→ /false field to stop or start log backup tasks. This field is retained for backward com-
patibility.

Clean log backup data

1. Because you already created a Backup CR named demo1-log-backup-s3 when you
started log backup, you can clean the log data backup by modifying the same Backup
↪→ CR. The following example shows how to clean log backup data generated before
2022-10-10T15:21:00+08:00.
kubectl edit backup demo1-log-backup-s3 -n backup-test

348

In the last line of the CR, append spec.logTruncateUntil: "2022-10-10T15
↪→ :21:00+08:00". Then save and quit the editor. The modified content is as
follows:

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-s3
namespace: backup-test

spec:
backupMode: log
logSubcommand: log-start/log-pause/log-stop
br:
mespace: test1
sendCredToTikv: true

s3:
provider: aws
secretName: s3-secret
region: us-west-1
bucket: my-bucket
prefix: my-log-backup-folder

logTruncateUntil: "2022-10-10T15:21:00+08:00"

2. Wait for the clean operation to complete:
kubectl get jobs -n backup-test

NAME COMPLETIONS ...
...
backup-demo1-log-backup-s3-log-truncate 1/1 ...

3. View the Backup CR information:
kubectl describe backup -n backup-test

...
Log Success Truncate Until: 2022-10-10T15:21:00+08:00
...

You can also view the information by running the following command:
kubectl get backup -n backup-test -o wide

NAME MODE STATUS ... LOGTRUNCATEUNTIL
demo1-log-backup-s3 log Stopped ... 2022-10-10T15:21:00+08:00

349

Compact log backup
For TiDB v9.0.0 and later versions, you can use a CompactBackup CR to compact log

backup data into SST format, accelerating downstream PITR (Point-in-time recovery).
This section explains how to compact log backup based on the log backup example from

previous sections.

1. In the backup-test namespace, create a CompactBackup CR named demo1-compact-
↪→ backup.
kubectl apply -f compact-backup-demo1.yaml

The content of compact-backup-demo1.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: CompactBackup
metadata:
name: demo1-compact-backup
namespace: backup-test

spec:
startTs: "***"
endTs: "***"
concurrency: 8
maxRetryTimes: 2
br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

s3:
provider: aws
secretName: s3-secret
region: us-west-1
bucket: my-bucket
prefix: my-log-backup-folder

The startTs and endTs fields specify the time range for the logs to be compacted
by demo1-compact-backup. Any log that contains at least one write within this time
range will be included in the compaction process. As a result, the final compacted
data might include data written outside this range.
The s3 settings should be the same as the storage settings of the log backup to be com-
pacted. CompactBackup reads log files from the corresponding location and compact
them.

View the status of log backup compaction

350

After creating the CompactBackup CR, TiDB Operator automatically starts compacting
the log backup. You can check the backup status using the following command:
kubectl get cpbk -n backup-test

From the output, you can find the status of the CompactBackup CR named demo1-
↪→ compact-backup. An example output is as follows:
NAME STATUS PROGRESS

↪→ MESSAGE
demo1-compact-backup Complete [READ_META(17/17),COMPACT_WORK(1291/1291)]

If the STATUS field displays Complete, the compact log backup process has finished
successfully.

Backup CR examples
Back up data of all clusters

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-s3
namespace: backup-test

spec:
backupType: full
serviceAccount: tidb-backup-manager
br:
cluster: demo1
sendCredToTikv: false
clusterNamespace: test1

s3:
provider: aws
region: us-west-1
bucket: my-bucket
prefix: my-folder

Back up data of a single database
The following example backs up data of the db1 database.

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-s3
namespace: backup-test

spec:

351

backupType: full
serviceAccount: tidb-backup-manager
tableFilter:
- "db1.*"
br:
cluster: demo1
sendCredToTikv: false
clusterNamespace: test1

s3:
provider: aws
region: us-west-1
bucket: my-bucket
prefix: my-folder

Back up data of a single table
The following example backs up data of the db1.table1 table.

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-s3
namespace: backup-test

spec:
backupType: full
serviceAccount: tidb-backup-manager
tableFilter:
- "db1.table1"
br:
cluster: demo1
sendCredToTikv: false
clusterNamespace: test1

s3:
provider: aws
region: us-west-1
bucket: my-bucket
prefix: my-folder

Back up data of multiple tables using the table filter
The following example backs up data of the db1.table1 table and db1.table2 table.

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:

352

name: demo1-backup-s3
namespace: backup-test

spec:
backupType: full
serviceAccount: tidb-backup-manager
tableFilter:
- "db1.table1"
- "db1.table2"
...
br:
cluster: demo1
sendCredToTikv: false
clusterNamespace: test1

s3:
provider: aws
region: us-west-1
bucket: my-bucket
prefix: my-folder

7.4.4.1.3 Scheduled snapshot backup
You can set a backup policy to perform scheduled backups of the TiDB cluster, and set

a backup retention policy to avoid excessive backup items. A scheduled snapshot backup is
described by a custom BackupSchedule CR object. A snapshot backup is triggered at each
backup time point. Its underlying implementation is the ad-hoc snapshot backup.

Prerequisites: Prepare for a scheduled snapshot backup
The steps to prepare for a scheduled snapshot backup are the same as that of Prepare

for an ad-hoc backup.
Perform a scheduled snapshot backup
Depending on which method you choose to grant permissions to the remote storage,

perform a scheduled snapshot backup by doing one of the following:

• Method 1: If you grant permissions by importing AccessKey and SecretKey, create the
BackupSchedule CR, and back up cluster data as described below:
kubectl apply -f backup-scheduler-aws-s3.yaml

The content of backup-scheduler-aws-s3.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: demo1-backup-schedule-s3

353

namespace: backup-test
spec:
#maxBackups: 5
#pause: true
maxReservedTime: "3h"
schedule: "*/2 * * * *"
backupTemplate:
backupType: full
Clean outdated backup data based on maxBackups or maxReservedTime

↪→ . If not configured, the default policy is Retain
cleanPolicy: Delete
br:
cluster: demo1
clusterNamespace: test1
logLevel: info
statusAddr: ${status_addr}
concurrency: 4
rateLimit: 0
timeAgo: ${time}
checksum: true
sendCredToTikv: true

s3:
provider: aws
secretName: s3-secret
region: us-west-1
bucket: my-bucket
prefix: my-folder

• Method 2: If you grant permissions by associating IAM with the Pod, create the
BackupSchedule CR, and back up cluster data as described below:
kubectl apply -f backup-scheduler-aws-s3.yaml

The content of backup-scheduler-aws-s3.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: demo1-backup-schedule-s3
namespace: backup-test
annotations:
iam.amazonaws.com/role: arn:aws:iam::123456789012:role/user

spec:
#maxBackups: 5
#pause: true

354

maxReservedTime: "3h"
schedule: "*/2 * * * *"
backupTemplate:
backupType: full
Clean outdated backup data based on maxBackups or maxReservedTime

↪→ . If not configured, the default policy is Retain
cleanPolicy: Delete
br:
cluster: demo1
sendCredToTikv: false
clusterNamespace: test1
logLevel: info
statusAddr: ${status_addr}
concurrency: 4
rateLimit: 0
timeAgo: ${time}
checksum: true

s3:
provider: aws
region: us-west-1
bucket: my-bucket
prefix: my-folder

• Method 3: If you grant permissions by associating IAM with ServiceAccount, create
the BackupSchedule CR, and back up cluster data as described below:
kubectl apply -f backup-scheduler-aws-s3.yaml

The content of backup-scheduler-aws-s3.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: demo1-backup-schedule-s3
namespace: backup-test

spec:
#maxBackups: 5
#pause: true
maxReservedTime: "3h"
schedule: "*/2 * * * *"
backupTemplate:
backupType: full
serviceAccount: tidb-backup-manager
Clean outdated backup data based on maxBackups or maxReservedTime

↪→ . If not configured, the default policy is Retain

355

cleanPolicy: Delete
br:
cluster: demo1
sendCredToTikv: false
clusterNamespace: test1
logLevel: info
statusAddr: ${status_addr}
concurrency: 4
rateLimit: 0
timeAgo: ${time}
checksum: true

s3:
provider: aws
region: us-west-1
bucket: my-bucket
prefix: my-folder

In the above example of backup-scheduler-aws-s3.yaml, the backupSchedule config-
uration consists of two parts. One is the unique configuration of backupSchedule, and the
other is backupTemplate.

• For the unique configuration of backupSchedule, refer to BackupSchedule CR fields.
• backupTemplate specifies the configuration related to the cluster and remote storage,

which is the same as the spec configuration of the Backup CR.

After creating the scheduled snapshot backup, use the following command to check the
backup status:
kubectl get bks -n test1 -o wide

During cluster recovery, you need to specify the backup path. You can use the following
command to check all the backup items. The names of these backups are prefixed with the
scheduled snapshot backup name:
kubectl get bk -l tidb.pingcap.com/backup-schedule=demo1-backup-schedule-s3

↪→ -n test1

7.4.4.1.4 Integrated management of scheduled snapshot backup and log
backup

You can use the BackupSchedule CR to integrate the management of scheduled snapshot
backup and log backup for TiDB clusters. By setting the backup retention time, you can
regularly recycle the scheduled snapshot backup and log backup, and ensure that you can

356

perform PITR recovery through the scheduled snapshot backup and log backup within the
retention period.

The following example creates a BackupSchedule CR named integrated-backup-
↪→ schedule-s3. In the example, accessKey and secretKey are used to access the remote
storage. For more information about the authorization method, refer to AWS account
permissions.

Prerequisites: Prepare for a scheduled snapshot backup environment
The steps to prepare for a scheduled snapshot backup are the same as those of Prepare

for an ad-hoc backup.
Create BackupSchedule

1. Create a BackupSchedule CR named integrated-backup-schedule-s3 in the
backup-test namespace.
kubectl apply -f integrated-backup-schedule-s3.yaml

The content of integrated-backup-schedule-s3.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: integrated-backup-schedule-s3
namespace: backup-test

spec:
maxReservedTime: "3h"
schedule: "* */2 * * *"
backupTemplate:
backupType: full
cleanPolicy: Delete
br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

s3:
provider: aws
secretName: s3-secret
region: us-west-1
bucket: my-bucket
prefix: my-folder-snapshot

logBackupTemplate:
backupMode: log
br:
cluster: demo1

357

clusterNamespace: test1
sendCredToTikv: true

s3:
provider: aws
secretName: s3-secret
region: us-west-1
bucket: my-bucket
prefix: my-folder-log

In the above example of integrated-backup-schedule-s3.yaml, the backupSchedule
↪→ configuration consists of three parts: the unique configuration of backupSchedule,
the configuration of the snapshot backup backupTemplate, and the configuration of
the log backup logBackupTemplate.
For the field description of backupSchedule, refer to BackupSchedule CR fields.

2. After creating backupSchedule, use the following command to check the backup status:
kubectl get bks -n backup-test -o wide

A log backup task is created together with backupSchedule. You can check the log
backup name through the status.logBackup field of the backupSchedule CR.
kubectl describe bks integrated-backup-schedule-s3 -n backup-test

3. To perform data restoration for a cluster, you need to specify the backup path. You
can use the following command to check all the backup items under the scheduled
snapshot backup.
kubectl get bk -l tidb.pingcap.com/backup-schedule=integrated-backup-

↪→ schedule-s3 -n backup-test

The MODE field in the output indicates the backup mode. snapshot indicates the
scheduled snapshot backup, and log indicates the log backup.
NAME MODE STATUS
integrated-backup-schedule-s3-2023-03-08t02-45-00 snapshot Complete

↪→
log-integrated-backup-schedule-s3 log Running

7.4.4.1.5 Integrated management of scheduled snapshot backup, log backup,
and compact log backup

To accelerate downstream recovery, you can enable CompactBackup CR in the
BackupSchedule CR. This feature periodically compacts log backup files in remote storage.
You must enable log backup before using log backup compaction. This section extends the
configuration from the previous section.

358

Prerequisites: Prepare for a scheduled snapshot backup
The steps to prepare for a scheduled snapshot backup are the same as that of Prepare

for an ad-hoc backup.
Create BackupSchedule

1. Create a BackupSchedule CR named integrated-backup-schedule-s3 in the
backup-test namespace.
kubectl apply -f integrated-backup-schedule-s3.yaml

The content of integrated-backup-schedule-s3.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: integrated-backup-schedule-s3
namespace: backup-test

spec:
maxReservedTime: "3h"
schedule: "* */2 * * *"
compactInterval: "1h"
backupTemplate:
backupType: full
cleanPolicy: Delete
br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

s3:
provider: aws
secretName: s3-secret
region: us-west-1
bucket: my-bucket
prefix: my-folder-snapshot

logBackupTemplate:
backupMode: log
br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

s3:
provider: aws
secretName: s3-secret
region: us-west-1

359

bucket: my-bucket
prefix: my-folder-log

compactBackupTemplate:
br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

s3:
provider: aws
secretName: s3-secret
region: us-west-1
bucket: my-bucket
prefix: my-folder-log

In the preceding example of integrated-backup-schedule-s3.yaml, the backupSchedule
↪→ configuration is based on the previous section, with the following additions for
compactBackup:

• Added the BackupSchedule.spec.compactInterval field to specify the interval
for log backup compaction. It is recommended not to exceed the interval of
scheduled snapshot backups and to keep it between one-half to one-third of the
scheduled snapshot backup interval.

• Added the BackupSchedule.spec.compactBackupTemplate field. Ensure that
the BackupSchedule.spec.compactBackupTemplate.s3 configuration matches
the BackupSchedule.spec.logBackupTemplate.s3 configuration.

For the field description of backupSchedule, refer to BackupSchedule CR fields.

2. After creating backupSchedule, use the following command to check the backup status:
kubectl get bks -n backup-test -o wide

A compact log backup task is created together with backupSchedule. You can check
the CompactBackup CR using the following command:
kubectl get cpbk -n backup-test

7.4.4.1.6 Delete the backup CR
If you no longer need the backup CR, refer to Delete the Backup CR.

7.4.4.1.7 Troubleshooting
If you encounter any problem during the backup process, refer to Common Deployment

Failures.

360

7.4.4.2 Restore Data from S3-Compatible Storage Using BR
This document describes how to restore the backup data stored in S3-compatible storages

to a TiDB cluster on Kubernetes, including two restoration methods:

• Full restoration. This method takes the backup data of snapshot backup and restores
a TiDB cluster to the time point of the snapshot backup.

• Point-in-time recovery (PITR). This method takes the backup data of both snapshot
backup and log backup and restores a TiDB cluster to any point in time.

The restore method described in this document is implemented based on CustomRe-
sourceDefinition (CRD) in TiDB Operator. For the underlying implementation, BR is used
to restore the data. BR stands for Backup & Restore, which is a command-line tool for
distributed backup and recovery of the TiDB cluster data.

PITR allows you to restore a new TiDB cluster to any point in time of the backup cluster.
To use PITR, you need the backup data of snapshot backup and log backup. During the
restoration, the snapshot backup data is first restored to the TiDB cluster, and then the
log backup data between the snapshot backup time point and the specified point in time is
restored to the TiDB cluster.

Note:

• BR is only applicable to TiDB v3.1 or later releases.
• PITR is only applicable to TiDB v6.3 or later releases.
• Data restored by BR cannot be replicated to a downstream cluster, be-

cause BR directly imports SST and LOG files to TiDB and the down-
stream cluster currently cannot access the upstream SST and LOG files.

7.4.4.2.1 Full restoration
This document provides an example about how to restore the backup data from the

spec.s3.prefix folder of the spec.s3.bucket bucket on Amazon S3 to the demo2 TiDB
cluster in the test2 namespace. The following are the detailed steps.

Prerequisites: Complete the snapshot backup
In this example, the my-full-backup-folder folder in the my-bucket bucket of Amazon

S3 stores the snapshot backup data. For steps of performing snapshot backup, refer to Back
up Data to S3 Using BR.

Step 1: Prepare the restore environment
Before restoring backup data on a S3-compatible storage to TiDB using BR, take the

following steps to prepare the restore environment:

361

https://docs.pingcap.com/tidb/stable/backup-and-restore-overview

1. Create a namespace for managing restoration. The following example creates a
restore-test namespace:
kubectl create namespace restore-test

2. Download backup-rbac.yaml, and execute the following command to create the role-
based access control (RBAC) resources in the restore-test namespace:
kubectl apply -f backup-rbac.yaml -n restore-test

3. Grant permissions to the remote storage for the restore-test namespace.
If the data to be restored is in Amazon S3, you can grant permissions in three methods.
For more information, see AWS account permissions.
If the data to be restored is in other S3-compatible storage (such as Ceph and MinIO),
you can grant permissions by using AccessKey and SecretKey.

4. For a TiDB version earlier than v4.0.8, you also need to complete the following prepa-
ration steps. For TiDB v4.0.8 or a later version, skip these preparation steps.

1. Make sure that you have the SELECT and UPDATE privileges on the mysql.tidb
table of the target database so that the Restore CR can adjust the GC time
before and after the restore.

2. Create the restore-demo2-tidb-secret secret to store the account and pass-
word to access the TiDB cluster:
kubectl create secret generic restore-demo2-tidb-secret --from-

↪→ literal=password=${password} --namespace=test2

Step 2: Restore the backup data to a TiDB cluster
Depending on which method you choose to grant permissions to the remote storage when

preparing the restore environment, you can restore the data by doing one of the following:

• Method 1: If you grant permissions by importing AccessKey and SecretKey, create the
Restore CR to restore cluster data as described below:
kubectl apply -f restore-full-s3.yaml

The content of restore-full-s3.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Restore
metadata:
name: demo2-restore-s3
namespace: restore-test

362

https://github.com/pingcap/tidb-operator/blob/v1.6.1/manifests/backup/backup-rbac.yaml

spec:
br:
cluster: demo2
clusterNamespace: test2
logLevel: info
statusAddr: ${status_addr}
concurrency: 4
rateLimit: 0
timeAgo: ${time}
checksum: true
sendCredToTikv: true

s3:
provider: aws
secretName: s3-secret
region: us-west-1
bucket: my-bucket
prefix: my-full-backup-folder

• Method 2: If you grant permissions by associating IAM with Pod, create the Restore
CR to restore cluster data as described below:
kubectl apply -f restore-full-s3.yaml

The content of restore-full-s3.yaml is as follows:

“‘yaml
apiVersion: pingcap.com/v1alpha1

kind: Restore
metadata:

name: demo2-restore-s3
namespace: restore-test

annotations:
iam.amazonaws.com/role: arn:aws:iam::123456789012:role/user

spec:
br:

cluster: demo2
sendCredToTikv: false

clusterNamespace: test2
logLevel: info

statusAddr: ${status_addr}
concurrency: 4

rateLimit: 0
timeAgo: ${time}

checksum: true
s3:

363

“‘yaml
provider: aws

region: us-west-1
bucket: my-bucket

prefix: my-full-backup-folder
“‘

• Method 3: If you grant permissions by associating IAM with ServiceAccount, create
the Restore CR to restore cluster data as described below:
kubectl apply -f restore-full-s3.yaml

The content of restore-full-s3.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Restore
metadata:
name: demo2-restore-s3
namespace: restore-test

spec:
serviceAccount: tidb-backup-manager
br:
cluster: demo2
sendCredToTikv: false
clusterNamespace: test2
logLevel: info
statusAddr: ${status_addr}
concurrency: 4
rateLimit: 0
timeAgo: ${time}
checksum: true

s3:
provider: aws
region: us-west-1
bucket: my-bucket
prefix: my-full-backup-folder

When configuring restore-full-s3.yaml, note the following:

• For more information about S3-compatible storage configuration, refer to S3 storage
fields.

• Some parameters in .spec.br are optional, such as logLevel, statusAddr,
concurrency, rateLimit, checksum, timeAgo, and sendCredToTikv. For more
information about BR configuration, refer to BR fields.

364

• For v4.0.8 or a later version, BR can automatically adjust tikv_gc_life_time. You
do not need to configure spec.to fields in the Restore CR.

• For more information about the Restore CR fields, refer to Restore CR fields.

After creating the Restore CR, execute the following command to check the restore
status:
kubectl get restore -n restore-test -o wide

NAME STATUS ...
demo2-restore-s3 Complete ...

7.4.4.2.2 Point-in-time recovery
This section provides an example about how to perform point-in-time recovery (PITR)

in a demo3 cluster in the test3 namespace. PITR takes two steps:

1. Restore the cluster to the time point of the snapshot backup using the snapshot backup
data in the spec.pitrFullBackupStorageProvider.s3.prefix folder of the spec.
↪→ pitrFullBackupStorageProvider.s3.bucket bucket.

2. Restore the cluster to any point in time using the log backup data in the spec.s3.
↪→ prefix folder of the spec.s3.bucket bucket.

The detailed steps are as follows.
Prerequisites: Complete data backup
In this example, the my-bucket bucket of Amazon S3 stores the following two types of

backup data:

• The snapshot backup data generated during the log backup, stored in the my-full-
↪→ backup-folder-pitr folder.

• The log backup data, stored in the my-log-backup-folder-pitr folder.

For detailed steps of how to perform data backup, refer to Back up data to Azure Blob
Storage.

Note:
The specified restoration time point must be between the snapshot backup
time point and the log backup checkpoint-ts.

365

Step 1: Prepare the restoration environment
Before restoring backup data on S3-compatible storages to TiDB using BR, take the

following steps to prepare the restoration environment:

1. Create a namespace for managing restoration. The following example creates a
restore-test namespace:
kubectl create namespace restore-test

2. Download backup-rbac.yaml, and execute the following command to create the role-
based access control (RBAC) resources in the restore-test namespace:
kubectl apply -f backup-rbac.yaml -n restore-test

3. Grant permissions to the remote storage for the restore-test namespace.
If the data to be restored is in Amazon S3, you can grant permissions in three methods.
For more information, see AWS account permissions.
If the data to be restored is in other S3-compatible storage (such as Ceph and MinIO),
you can grant permissions by using AccessKey and SecretKey.

Step 2: Restore the backup data to a TiDB cluster
The example in this section restores the snapshot backup data to the cluster. The

specified restoration time point must be between the time point of snapshot backup and the
Log Checkpoint Ts of log backup.

PITR grants permissions to remote storages in the same way as snapshot backup. The
example in this section grants permissions by using AccessKey and SecretKey.

The detailed steps are as follows:

1. Create a Restore CR named demo3-restore-s3 in the restore-test namespace and
specify the restoration time point as 2022-10-10T17:21:00+08:00:
kubectl apply -f restore-point-s3.yaml

The content of restore-point-s3.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Restore
metadata:
name: demo3-restore-s3
namespace: restore-test

spec:
restoreMode: pitr

366

https://github.com/pingcap/tidb-operator/blob/v1.6.1/manifests/backup/backup-rbac.yaml

br:
cluster: demo3
clusterNamespace: test3

s3:
provider: aws
region: us-west-1
bucket: my-bucket
prefix: my-log-backup-folder-pitr

pitrRestoredTs: "2022-10-10T17:21:00+08:00"
pitrFullBackupStorageProvider:
s3:
provider: aws
region: us-west-1
bucket: my-bucket
prefix: my-full-backup-folder-pitr

When you configure restore-point-s3.yaml, note the following:

• spec.restoreMode: when you perform PITR, set this field to pitr. The default
value of this field is snapshot, which means snapshot backup.

2. Wait for the restoration operation to complete:
kubectl get jobs -n restore-test

NAME COMPLETIONS ...
restore-demo3-restore-s3 1/1 ...

You can also check the restoration status by using the following command:
kubectl get restore -n restore-test -o wide

NAME STATUS ...
demo3-restore-s3 Complete ...

7.4.4.2.3 Troubleshooting
If you encounter any problem during the restore process, refer to Common Deployment

Failures.

7.4.4.3 Back Up TiDB Data to Amazon S3-Compatible Storage Using
Dumpling

This document describes how to use Dumpling to back up data from a TiDB cluster
deployed on AWS EKS to Amazon S3-compatible storage. Dumpling is a data export tool
that exports data from TiDB or MySQL in SQL or CSV format for full data backup or
export.

367

https://docs.pingcap.com/tidb/stable/dumpling-overview/

7.4.4.3.1 Prepare the Dumpling node pool
You can run Dumpling in an existing node pool or create a dedicated node pool. The

following is a sample configuration for creating a new node pool. Replace the variables as
needed:

• ${clusterName}: EKS cluster name

eks_dumpling.yaml
apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
metadata:
name: ${clusterName}
region: us-west-2

availabilityZones: ['us-west-2a', 'us-west-2b', 'us-west-2c']

nodeGroups:
- name: dumpling
instanceType: c5.xlarge
desiredCapacity: 1
privateNetworking: true
availabilityZones: ["us-west-2a"]
labels:
dedicated: dumpling

Run the following command to create the node pool:
eksctl create nodegroup -f eks_dumpling.yaml

7.4.4.3.2 Deploy the Dumpling job
This section describes how to configure, deploy, and monitor the Dumpling job.
Configure the Dumpling job
The following is a sample configuration file (dumpling_job.yaml) for the Dumpling job.

Replace the variables with your specific values as needed:

• ${name}: job name
• ${namespace}: Kubernetes namespace
• ${version}: Dumpling image version
• For Dumpling parameters, refer to the Option list of Dumpling.

368

https://docs.pingcap.com/tidb/stable/dumpling-overview/#option-list-of-dumpling

dumpling_job.yaml

apiVersion: batch/v1
kind: Job
metadata:
name: ${name}
namespace: ${namespace}
labels:
app.kubernetes.io/component: dumpling

spec:
template:
spec:
nodeSelector:
dedicated: dumpling

affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:

matchExpressions:
- key: app.kubernetes.io/component
operator: In
values:
- dumpling

topologyKey: kubernetes.io/hostname
containers:
- name: ${name}
image: pingcap/dumpling:${version}
command:
- /bin/sh
- -c
- |
/dumpling \

--host=basic-tidb \
--port=4000 \
--user=root \
--password='' \
--s3.region=${AWS_REGION} \
--threads=16 \
--rows=20000 \
--filesize=256MiB \
--database=test \
--filetype=csv \
--output=s3://bucket-path/

env:

369

- name: AWS_REGION
value: ${AWS_REGION}

- name: AWS_ACCESS_KEY_ID
value: ${AWS_ACCESS_KEY_ID}

- name: AWS_SECRET_ACCESS_KEY
value: ${AWS_SECRET_ACCESS_KEY}

- name: AWS_SESSION_TOKEN
value: ${AWS_SESSION_TOKEN}

restartPolicy: Never
backoffLimit: 0

Create the Dumpling job
Run the following commands to create the Dumpling job:

export name=dumpling
export version=v8.5.1
export namespace=tidb-cluster
export AWS_REGION=us-west-2
export AWS_ACCESS_KEY_ID=<your-access-key-id>
export AWS_SECRET_ACCESS_KEY=<your-secret-access-key>
export AWS_SESSION_TOKEN=<your-session-token> # Optional

envsubst < dumpling_job.yaml | kubectl apply -f -

Check the Dumpling job status
Run the following command to check the Pod status of the Dumpling job:

kubectl -n ${namespace} get pod ${name}

View Dumpling job logs
Run the following command to view the logs of the Dumpling job:

kubectl -n ${namespace} logs pod ${name}

7.4.4.4 Restore Backup Data from Amazon S3-Compatible Storage Using TiDB
Lightning

This document describes how to use TiDB Lightning to restore backup data from Amazon
S3-compatible storage to a TiDB cluster. TiDB Lightning is a tool for fast full data import
into a TiDB cluster. This document uses the physical import mode. For detailed usage and
configuration items of TiDB Lightning, refer to the official documentation.

The following example shows how to restore backup data from Amazon S3-compatible
storage to a TiDB cluster.

370

https://docs.pingcap.com/tidb/stable/tidb-lightning-overview/
https://docs.pingcap.com/tidb/stable/tidb-lightning-physical-import-mode/
https://docs.pingcap.com/tidb/stable/tidb-lightning-overview/

7.4.4.4.1 Prepare a node pool for TiDB Lightning
You can run TiDB Lightning in an existing node pool or create a dedicated node pool.

The following is a sample configuration for creating a new node pool. Replace the variables
with your specific values as needed:

• ${clusterName}: EKS cluster name

eks_lightning.yaml
apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
metadata:
name: ${clusterName}
region: us-west-2

availabilityZones: ['us-west-2a', 'us-west-2b', 'us-west-2c']

nodeGroups:
- name: lightning
instanceType: c5.xlarge
desiredCapacity: 1
privateNetworking: true
availabilityZones: ["us-west-2a"]
labels:
dedicated: lightning

Run the following command to create the node pool:
eksctl create nodegroup -f eks_lightning.yaml

7.4.4.4.2 Deploy the TiDB Lightning job
This section describes how to configure, deploy, and monitor the TiDB Lightning job.
Configure the TiDB Lightning job
The following is a sample configuration file (lightning_job.yaml) for the TiDB Light-

ning job. Replace the variables with your specific values as needed:

• ${name}: Job name
• ${namespace}: Kubernetes namespace
• ${version}: TiDB Lightning image version
• ${storageClassName}: Storage class name
• ${storage}: Storage size
• For TiDB Lightning parameters, refer to TiDB Lightning Configuration.

371

https://docs.pingcap.com/tidb/stable/tidb-lightning-configuration/

lightning_job.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: ${name}-sorted-kv
namespace: ${namespace}

spec:
storageClassName: ${storageClassName}
accessModes:
- ReadWriteOnce

resources:
requests:
storage: ${storage}

apiVersion: v1
kind: ConfigMap
metadata:
name: ${name}
namespace: ${namespace}

data:
config-file: |
[lightning]
level = "info"

[checkpoint]
enable = true

[tidb]
host = "basic-tidb"
port = 4000
user = "root"
password = ""
status-port = 10080
pd-addr = "basic-pd:2379"

apiVersion: batch/v1
kind: Job
metadata:
name: ${name}
namespace: ${namespace}
labels:
app.kubernetes.io/component: lightning

spec:

372

template:
spec:
nodeSelector:
dedicated: lightning

affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:

matchExpressions:
- key: app.kubernetes.io/component
operator: In
values:
- lightning

topologyKey: kubernetes.io/hostname
containers:
- name: tidb-lightning
image: pingcap/tidb-lightning:${version}
command:
- /bin/sh
- -c
- |
/tidb-lightning \

--status-addr=0.0.0.0:8289 \
--backend=local \
--sorted-kv-dir=/var/lib/sorted-kv \
--d=s3://external/testfolder \
--config=/etc/tidb-lightning/tidb-lightning.toml \
--log-file="-"

env:
- name: AWS_REGION
value: ${AWS_REGION}

- name: AWS_ACCESS_KEY_ID
value: ${AWS_ACCESS_KEY_ID}

- name: AWS_SECRET_ACCESS_KEY
value: ${AWS_SECRET_ACCESS_KEY}

- name: AWS_SESSION_TOKEN
value: ${AWS_SESSION_TOKEN}

volumeMounts:
- name: config
mountPath: /etc/tidb-lightning

- name: sorted-kv
mountPath: /var/lib/sorted-kv

volumes:
- name: config
configMap:

373

name: ${name}
items:
- key: config-file
path: tidb-lightning.toml

- name: sorted-kv
persistentVolumeClaim:
claimName: ${name}-sorted-kv

restartPolicy: Never
backoffLimit: 0

Create the TiDB Lightning job
Run the following commands to create the TiDB Lightning job:

export name=lightning
export version=v8.5.1
export namespace=tidb-cluster
export storageClassName=<your-storage-class>
export storage=250G
export AWS_REGION=us-west-2
export AWS_ACCESS_KEY_ID=<your-access-key-id>
export AWS_SECRET_ACCESS_KEY=<your-secret-access-key>
export AWS_SESSION_TOKEN=<your-session-token> # Optional

envsubst < lightning_job.yaml | kubectl apply -f -

Check the TiDB Lightning job status
Run the following command to check the status of the Pod associated with the TiDB

Lightning job:
kubectl -n ${namespace} get pod ${name}

View TiDB Lightning job logs
Run the following command to retrieve and view the logs of the TiDB Lightning job:

kubectl -n ${namespace} logs pod ${name}

7.4.4.5 Back Up Data to S3-Compatible Storage Using Dumpling (Helm)

Warning:
The Helm deployment method described in this document is deprecated. It
is recommended to use the Job method for backup operations.

374

This document describes how to back up the data of the TiDB cluster on Kubernetes
to an S3-compatible storage. “Backup” in this document refers to full backup (ad-hoc full
backup and scheduled full backup).

The backup method described in this document is implemented based on CustomRe-
sourceDefinition (CRD) in TiDB Operator v1.1 or later versions. For the underlying im-
plementation, Dumpling is used to get the logic backup of the TiDB cluster, and then this
backup data is sent to the S3-compatible storage.

Dumpling is a data export tool that exports data stored in TiDB/MySQL as SQL or
CSV files and can be used to make a logical full backup or export.

7.4.4.5.1 Usage scenarios
You can use the backup method described in this document if you want to make an ad-

hoc full backup or scheduled full backup of the TiDB cluster data to S3-compatible storages
with the following needs:

• To export SQL or CSV files
• To limit the memory usage of a single SQL statement
• To export the historical data snapshot of TiDB

7.4.4.5.2 Ad-hoc full backup to S3-compatible storage
Ad-hoc full backup describes the backup by creating a Backup custom resource (CR)

object. TiDB Operator performs the specific backup operation based on this Backup object.
If an error occurs during the backup process, TiDB Operator does not retry and you need
to handle this error manually.

For the current S3-compatible storage types, Ceph and Amazon S3 work normally as
tested. Therefore, this document shows examples in which the data of the demo1 TiDB
cluster in the tidb-cluster Kubernetes namespace is backed up to Ceph and Amazon S3
respectively.

Prerequisites
Before you use Dumpling to back up the TiDB cluster data to the S3-compatible storage,

make sure that you have the following privileges:

• The SELECT and UPDATE privileges of the mysql.tidb table: Before and after the
backup, the Backup CR needs a database account with these privileges to adjust the
GC time.

• The global privileges: SELECT, RELOAD, LOCK TABLES and REPLICATION CLIENT

An example for creating a backup user:

375

https://docs.pingcap.com/tidb/stable/dumpling-overview/

CREATE USER 'backup'@'%' IDENTIFIED BY '...';
GRANT

SELECT, RELOAD, LOCK TABLES, REPLICATION CLIENT
ON *.*
TO 'backup'@'%';

GRANT
UPDATE, SELECT
ON mysql.tidb
TO 'backup'@'%';

Step 1: Prepare for ad-hoc full backup

1. Execute the following command to create the role-based access control (RBAC) re-
sources in the tidb-cluster namespace based on backup-rbac.yaml:
kubectl apply -f https://raw.githubusercontent.com/pingcap/tidb-

↪→ operator/v1.6.1/manifests/backup/backup-rbac.yaml -n tidb-cluster

2. Grant permissions to the remote storage.
To grant permissions to access S3-compatible remote storage, refer to AWS account
permissions.
If you use Ceph as the backend storage for testing, you can grant permissions by using
AccessKey and SecretKey.

3. Create the backup-demo1-tidb-secret secret which stores the root account and pass-
word needed to access the TiDB cluster:
kubectl create secret generic backup-demo1-tidb-secret --from-literal=

↪→ password=${password} --namespace=tidb-cluster

Step 2: Perform ad-hoc backup

Note:
Because of the rclone issue, if the backup data is stored in Amazon S3 and
the AWS-KMS encryption is enabled, you need to add the following spec.s3.
↪→ options configuration to the YAML file in the examples of this section:
spec:
...
s3:
...
options:
- --ignore-checksum

376

https://raw.githubusercontent.com/pingcap/tidb-operator/v1.6.1/manifests/backup/backup-rbac.yaml
https://rclone.org/s3/#key-management-system-kms

This section lists multiple storage access methods. Only follow the method that matches
your situation. The methods are as follows:

• Amazon S3 by importing AccessKey and SecretKey

• Ceph by importing AccessKey and SecretKey

• Amazon S3 by binding IAM with Pod

• Amazon S3 by binding IAM with ServiceAccount

• Method 1: Create the Backup CR, and back up cluster data to Amazon S3 by importing
AccessKey and SecretKey to grant permissions:
kubectl apply -f backup-s3.yaml

The content of backup-s3.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-s3
namespace: tidb-cluster

spec:
from:
host: ${tidb_host}
port: ${tidb_port}
user: ${tidb_user}
secretName: backup-demo1-tidb-secret

s3:
provider: aws
secretName: s3-secret
region: ${region}
bucket: ${bucket}
prefix: ${prefix}
storageClass: STANDARD_IA
acl: private
endpoint:

dumpling:
options:
- --threads=16
- --rows=10000
tableFilter:
- "test.*"
storageClassName: local-storage
storageSize: 10Gi

377

• Method 2: Create the Backup CR, and back up data to Ceph by importing AccessKey
and SecretKey to grant permissions:
kubectl apply -f backup-s3.yaml

The content of backup-s3.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-s3
namespace: tidb-cluster

spec:
from:
host: ${tidb_host}
port: ${tidb_port}
user: ${tidb_user}
secretName: backup-demo1-tidb-secret

s3:
provider: ceph
secretName: s3-secret
endpoint: ${endpoint}
prefix: ${prefix}
bucket: ${bucket}

dumpling:
options:
- --threads=16
- --rows=10000
tableFilter:
- "test.*"
storageClassName: local-storage
storageSize: 10Gi

• Method 3: Create the Backup CR, and back up data to Amazon S3 by binding IAM
with Pod to grant permissions:
kubectl apply -f backup-s3.yaml

The content of backup-s3.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-s3
namespace: tidb-cluster

378

annotations:
iam.amazonaws.com/role: arn:aws:iam::123456789012:role/user

spec:
backupType: full
from:

host: ${tidb_host}
port: ${tidb_port}
user: ${tidb_user}
secretName: backup-demo1-tidb-secret

s3:
provider: aws
region: ${region}
bucket: ${bucket}
prefix: ${prefix}
storageClass: STANDARD_IA
acl: private
endpoint:

dumpling:
options:
- --threads=16
- --rows=10000
tableFilter:
- "test.*"
storageClassName: local-storage
storageSize: 10Gi

• Method 4: Create the Backup CR, and back up data to Amazon S3 by binding IAM
with ServiceAccount to grant permissions:
kubectl apply -f backup-s3.yaml

The content of backup-s3.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-s3
namespace: tidb-cluster
spec:
backupType: full
serviceAccount: tidb-backup-manager
from:

host: ${tidb_host}
port: ${tidb_port}
user: ${tidb_user}

379

secretName: backup-demo1-tidb-secret
s3:

provider: aws
region: ${region}
bucket: ${bucket}
prefix: ${prefix}
storageClass: STANDARD_IA
acl: private
endpoint:

dumpling:
options:
- --threads=16
- --rows=10000
tableFilter:
- "test.*"
storageClassName: local-storage
storageSize: 10Gi

In the examples above, all data of the TiDB cluster is exported and backed up to Amazon
S3 or Ceph. You can ignore the acl, endpoint, and storageClass fields in the Amazon S3
configuration. Other S3-compatible storages can also use a configuration similar to that of
Amazon S3. You can also leave the fields empty if you do not need to configure them, as
shown in the above Ceph configuration. For more information about S3-compatible storage
configuration, refer to S3 storage fields.

spec.dumpling refers to Dumpling-related configuration. You can specify Dumpling’s
operation parameters in the options field. See Dumpling Option list for more information.
These configuration items of Dumpling can be ignored by default. When these items are not
specified, the default values of options fields are as follows:
options:
- --threads=16
- --rows=10000

For more information about the Backup CR fields, refer to Backup CR fields.
After creating the Backup CR, use the following command to check the backup status:

kubectl get bk -n tidb-cluster -owide

To get detailed information on a backup job, use the following command. For
$backup_job_name in the command, use the name from the output of the previous
command.
kubectl describe bk -n tidb-cluster $backup_job_name

To run ad-hoc backup again, you need to delete the backup CR and create it again.

380

https://docs.pingcap.com/tidb/stable/dumpling-overview#option-list-of-dumpling

7.4.4.5.3 Scheduled full backup to S3-compatible storage
You can set a backup policy to perform scheduled backups of the TiDB cluster, and

set a backup retention policy to avoid excessive backup items. A scheduled full backup is
described by a custom BackupSchedule CR object. A full backup is triggered at each backup
time point. Its underlying implementation is the ad-hoc full backup.

Step 1: Prepare for scheduled backup
The prerequisites for the scheduled backup is the same as the prepare for ad-hoc full

backup.
Step 2: Perform scheduled backup

Note:
Because of the rclone issue, if the backup data is stored in Amazon S3
and the AWS-KMS encryption is enabled, you need to add the following spec
↪→ .backupTemplate.s3.options configuration to the YAML file in the ex-
amples of this section:
spec:
...
backupTemplate:
...
s3:
...
options:
- --ignore-checksum

• Method 1: Create the BackupSchedule CR to enable the scheduled full backup to
Amazon S3 by importing AccessKey and SecretKey to grant permissions:
kubectl apply -f backup-schedule-s3.yaml

The content of backup-schedule-s3.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: demo1-backup-schedule-s3
namespace: tidb-cluster

spec:
#maxBackups: 5

381

https://rclone.org/s3/#key-management-system-kms

#pause: true
maxReservedTime: "3h"
schedule: "*/2 * * * *"
backupTemplate:
from:
host: ${tidb_host}
port: ${tidb_port}
user: ${tidb_user}
secretName: backup-demo1-tidb-secret

s3:
provider: aws
secretName: s3-secret
region: ${region}
bucket: ${bucket}
prefix: ${prefix}
storageClass: STANDARD_IA
acl: private
endpoint:

dumpling:
options:
- --threads=16
- --rows=10000
tableFilter:
- "test.*"
storageClassName: local-storage
storageSize: 10Gi

• Method 2: Create the BackupSchedule CR to enable the scheduled full backup to
Ceph by importing AccessKey and SecretKey to grant permissions:
kubectl apply -f backup-schedule-s3.yaml

The content of backup-schedule-s3.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: demo1-backup-schedule-ceph
namespace: tidb-cluster

spec:
#maxBackups: 5
#pause: true
maxReservedTime: "3h"
schedule: "*/2 * * * *"
backupTemplate:

382

from:
host: ${tidb_host}
port: ${tidb_port}
user: ${tidb_user}
secretName: backup-demo1-tidb-secret

s3:
provider: ceph
secretName: s3-secret
endpoint: ${endpoint}
bucket: ${bucket}
prefix: ${prefix}

dumpling:
options:
- --threads=16
- --rows=10000
tableFilter:
- "test.*"
storageClassName: local-storage
storageSize: 10Gi

• Method 3: Create the BackupSchedule CR to enable the scheduled full backup, and
back up the cluster data to Amazon S3 by binding IAM with Pod to grant permissions:
kubectl apply -f backup-schedule-s3.yaml

The content of backup-schedule-s3.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: demo1-backup-schedule-s3
namespace: tidb-cluster
annotations:
iam.amazonaws.com/role: arn:aws:iam::123456789012:role/user

spec:
#maxBackups: 5
#pause: true
maxReservedTime: "3h"
schedule: "*/2 * * * *"
backupTemplate:
from:
host: ${tidb_host}
port: ${tidb_port}
user: ${tidb_user}
secretName: backup-demo1-tidb-secret

383

s3:
provider: aws
region: ${region}
bucket: ${bucket}
prefix: ${prefix}
storageClass: STANDARD_IA
acl: private
endpoint:

dumpling:
options:
- --threads=16
- --rows=10000
tableFilter:
- "test.*"
storageClassName: local-storage
storageSize: 10Gi

• Method 4: Create the BackupSchedule CR to enable the scheduled full backup, and
back up the cluster data to Amazon S3 by binding IAM with ServiceAccount to grant
permissions:
kubectl apply -f backup-schedule-s3.yaml

The content of backup-schedule-s3.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: demo1-backup-schedule-s3
namespace: tidb-cluster

spec:
#maxBackups: 5
#pause: true
maxReservedTime: "3h"
schedule: "*/2 * * * *"
serviceAccount: tidb-backup-manager
backupTemplate:
from:
host: ${tidb_host}
port: ${tidb_port}
user: ${tidb_user}
secretName: backup-demo1-tidb-secret

s3:
provider: aws
region: ${region}

384

bucket: ${bucket}
prefix: ${prefix}
storageClass: STANDARD_IA
acl: private
endpoint:

dumpling:
options:
- --threads=16
- --rows=10000
tableFilter:
- "test.*"
storageClassName: local-storage
storageSize: 10Gi

After creating the scheduled full backup, you can use the following command to check
the backup status:
kubectl get bks -n tidb-cluster -owide

You can use the following command to check all the backup items:
kubectl get bk -l tidb.pingcap.com/backup-schedule=demo1-backup-schedule-s3

↪→ -n tidb-cluster

From the example above, you can see that the backupSchedule configuration con-
sists of two parts. One is the unique configuration of backupSchedule, and the other is
backupTemplate.

backupTemplate specifies the configuration related to the cluster and remote storage,
which is the same as the spec configuration of the Backup CR. For the unique configuration
of backupSchedule, refer to BackupSchedule CR fields.

Note:
TiDB Operator creates a PVC used for both ad-hoc full backup and scheduled
full backup. The backup data is stored in PV first and then uploaded to
remote storage. If you want to delete this PVC after the backup is completed,
you can refer to Delete Resource to delete the backup Pod first, and then
delete the PVC.
If the backup data is successfully uploaded to remote storage, TiDB Operator
automatically deletes the local data. If the upload fails, the local data is
retained.

385

7.4.4.5.4 Delete the backup CR
After the backup, you might need to delete the backup CR. For details, refer to Delete

the Backup CR.

7.4.4.5.5 Troubleshooting
If you encounter any problem during the backup process, refer to Common Deployment

Failures.

7.4.4.6 Restore Data from S3-Compatible Storage Using TiDB Lightning
(Helm)

Warning:
The Helm deployment method described in this document is deprecated. It
is recommended to use the Job method for data restore operations.

This document describes how to restore the TiDB cluster data backed up using TiDB
Operator on Kubernetes.

The restore method described in this document is implemented based on CustomRe-
sourceDefinition (CRD) in TiDB Operator v1.1 or later versions. For the underlying imple-
mentation, TiDB Lightning TiDB-backend is used to perform the restore.

TiDB Lightning is a tool used for fast full import of large amounts of data into a TiDB
cluster. It reads data from local disks, Google Cloud Storage (GCS) or Amazon S3. TiDB
Lightning supports three backends: Importer-backend, Local-backend, and TiDB-backend
↪→ . In this document, TiDB-backend is used. For the differences of these backends and how
to choose backends, see TiDB Lightning Backends. To import data using Importer-backend
or Local-backend, see Import Data.

This document shows an example in which the backup data stored in the specified path
on the S3-compatible storage is restored to the TiDB cluster.

7.4.4.6.1 Usage scenarios
You can use the restore solution introduced in this document if you need to export the

backup data from S3 to a TiDB cluster, with the following requirements:

• To restore data with lower resource usage and lower network bandwidth usage. A
restore speed of 50 GB/h is acceptable.

• To import data into the cluster with ACID compliance.
• The TiDB cluster can still provide services during the restore process.

386

https://docs.pingcap.com/tidb/stable/tidb-lightning-backends#tidb-lightning-tidb-backend
https://docs.pingcap.com/tidb/stable/tidb-lightning-backends

7.4.4.6.2 Prerequisites
Before you perform the data restore, you need to prepare the restore environment and

get the required database account privileges.
Prepare the restore environment

1. Download backup-rbac.yaml and execute the following command to create the role-
based access control (RBAC) resources in the test2 namespace:
kubectl apply -f backup-rbac.yaml -n test2

2. Grant permissions to the remote storage.
To grant permissions to access S3-compatible remote storage, refer to AWS account
permissions.
If you use Ceph as the backend storage for testing, you can grant permissions by using
AccessKey and SecretKey.

3. Create the restore-demo2-tidb-secret secret which stores the root account and
password needed to access the TiDB cluster:
kubectl create secret generic restore-demo2-tidb-secret --from-literal=

↪→ password=${password} --namespace=test2

Get the required database account privileges
Before you use TiDB Lightning to restore the backup data in S3 to the TiDB cluster,

make sure that you have the following database account privileges:

Privileges Scope
SELECT Tables
INSERT Tables
UPDATE Tables
DELETE Tables
CREATE Databases, tables
DROP Databases, tables
ALTER Tables

7.4.4.6.3 Restore process

Note:

387

https://github.com/pingcap/tidb-operator/blob/v1.6.1/manifests/backup/backup-rbac.yaml

Because of the rclone issue, if the backup data is stored in Amazon S3 and
the AWS-KMS encryption is enabled, you need to add the following spec.s3.
↪→ options configuration to the YAML file in the examples of this section:
spec:
...
s3:
...
options:
- --ignore-checksum

This section lists multiple storage access methods. Only follow the method that matches
your situation. The methods are as follows:

• Amazon S3 by importing AccessKey and SecretKey
• Ceph by importing AccessKey and SecretKey
• Amazon S3 by binding IAM with Pod
• Amazon S3 by binding IAM with ServiceAccount

1. Create Restore customer resource (CR) and restore the specified backup data to the
TiDB cluster.

• Method 1: Create the Restore CR, and restore the cluster data from Ceph by
importing AccessKey and SecretKey to grant permissions:
kubectl apply -f restore.yaml

The content of restore.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Restore
metadata:
name: demo2-restore
namespace: test2

spec:
backupType: full
to:
host: ${tidb_host}
port: ${tidb_port}
user: ${tidb_user}
secretName: restore-demo2-tidb-secret

s3:

388

https://rclone.org/s3/#key-management-system-kms

provider: ceph
endpoint: ${endpoint}
secretName: s3-secret
path: s3://${backup_path}

storageClassName: local-storage
storageSize: 1Gi

• Method 2: Create the Restore CR, and restore the cluster data from Amazon S3
by importing AccessKey and SecretKey to grant permissions:
kubectl apply -f restore.yaml

The restore.yaml file has the following content:

apiVersion: pingcap.com/v1alpha1
kind: Restore
metadata:
name: demo2-restore
namespace: test2

spec:
backupType: full
to:
host: ${tidb_host}
port: ${tidb_port}
user: ${tidb_user}
secretName: restore-demo2-tidb-secret

s3:
provider: aws
region: ${region}
secretName: s3-secret
path: s3://${backup_path}

storageClassName: local-storage
storageSize: 1Gi

• Method 3: Create the Restore CR, and restore the cluster data from Amazon S3
by binding IAM with Pod to grant permissions:
kubectl apply -f restore.yaml

The content of restore.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Restore
metadata:
name: demo2-restore

389

namespace: test2
annotations:
iam.amazonaws.com/role: arn:aws:iam::123456789012:role/user

spec:
backupType: full
to:
host: ${tidb_host}
port: ${tidb_port}
user: ${tidb_user}
secretName: restore-demo2-tidb-secret

s3:
provider: aws
region: ${region}
path: s3://${backup_path}

storageClassName: local-storage
storageSize: 1Gi

• Method 4: Create the Restore CR, and restore the cluster data from Amazon S3
by binding IAM with ServiceAccount to grant permissions:
kubectl apply -f restore.yaml

The content of restore.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Restore
metadata:
name: demo2-restore
namespace: test2

spec:
backupType: full
serviceAccount: tidb-backup-manager
to:
host: ${tidb_host}
port: ${tidb_port}
user: ${tidb_user}
secretName: restore-demo2-tidb-secret

s3:
provider: aws
region: ${region}
path: s3://${backup_path}

storageClassName: local-storage
storageSize: 1Gi

2. After creating the Restore CR, execute the following command to check the restore

390

status:
kubectl get rt -n test2 -owide

The example above restores data from the spec.s3.path path on S3-compatible storage
to the spec.to.host TiDB cluster. For more information about S3-compatible storage
configuration, refer to S3 storage fields.

For more information about the Restore CR fields, refer to Restore CR fields.

Note:
TiDB Operator creates a PVC for data recovery. The backup data is down-
loaded from the remote storage to the PV first, and then restored. If you
want to delete this PVC after the recovery is completed, you can refer to
Delete Resource to delete the recovery Pod first, and then delete the PVC.

7.4.4.6.4 Troubleshooting
If you encounter any problem during the restore process, refer to Common Deployment

Failures.

7.4.5 Google Cloud Storage

7.4.5.1 Back up Data to GCS Using BR
This document describes how to back up the data of a TiDB cluster on Kubernetes to

Google Cloud Storage (GCS). There are two backup types:

• Snapshot backup. With snapshot backup, you can restore a TiDB cluster to the
time point of the snapshot backup using full restoration.

• Log backup. With snapshot backup and log backup, you can restore a TiDB cluster
to any point in time. This is also known as Point-in-Time Recovery (PITR).

The backup method described in this document is implemented based on CustomRe-
sourceDefinition (CRD) in TiDB Operator. For the underlying implementation, BR is used
to get the backup data of the TiDB cluster, and then send the data to the AWS storage.
BR stands for Backup & Restore, which is a command-line tool for distributed backup and
recovery of the TiDB cluster data.

391

https://cloud.google.com/storage/docs/
https://docs.pingcap.com/tidb/stable/backup-and-restore-overview

7.4.5.1.1 Usage scenarios
If you have the following backup needs, you can use BR’s snapshot backup method to

make an ad-hoc backup or scheduled snapshot backup of the TiDB cluster data to GCS.

• To back up a large volume of data (more than 1 TB) at a fast speed
• To get a direct backup of data as SST files (key-value pairs)

If you have the following backup needs, you can use BR log backup to make an ad-hoc
backup of the TiDB cluster data to GCS (you can combine log backup and snapshot backup
to restore data more efficiently):

• To restore data of any point in time to a new cluster
• The recovery point object (RPO) is within several minutes.

For other backup needs, refer to Backup and Restore Overview to choose an appropriate
backup method.

Note:

• Snapshot backup is only applicable to TiDB v3.1 or later releases.
• Log backup is only applicable to TiDB v6.3 or later releases.
• Data that is backed up using BR can only be restored to TiDB instead

of other databases.

7.4.5.1.2 Ad-hoc backup
Ad-hoc backup includes snapshot backup and log backup. For log backup, you can start

or stop a log backup task and clean log backup data.
To get an Ad-hoc backup, you need to create a Backup Custom Resource (CR) object to

describe the backup details. Then, TiDB Operator performs the specific backup operation
based on this Backup object. If an error occurs during the backup process, TiDB Operator
does not retry, and you need to handle this error manually.

This document provides an example about how to back up the data of the demo1 TiDB
cluster in the test1 Kubernetes namespace to GCS. The following are the detailed steps.

Prerequisites: Prepare for an ad-hoc backup

1. Create a namespace for managing backup. The following example creates a backup-
↪→ test namespace:
kubectl create namespace backup-test

392

2. Download backup-rbac.yaml, and execute the following command to create the role-
based access control (RBAC) resources in the test1 namespace:
kubectl apply -f backup-rbac.yaml -n backup-test

3. Grant permissions to the remote storage for the created backup-test namespace.
Refer to GCS account permissions.

4. For a TiDB version earlier than v4.0.8, you also need to complete the following prepa-
ration steps. For TiDB v4.0.8 or a later version, skip these preparation steps.

1. Make sure that you have the SELECT and UPDATE privileges on the mysql.tidb
table of the backup database so that the Backup CR can adjust the GC time
before and after the backup.

2. Create the backup-demo1-tidb-secret secret to store the root account and pass-
word to access the TiDB cluster:
kubectl create secret generic backup-demo1-tidb-secret --from-

↪→ literal=password=<password> --namespace=test1

Perform an ad-hoc backup

1. Create the Backup CR to back up cluster data to GCS as described below:
kubectl apply -f full-backup-gcs.yaml

The content of full-backup-gcs.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-full-backup-gcs
namespace: backup-test

spec:
backupType: full
br:
cluster: demo1
clusterNamespace: test1
logLevel: info
statusAddr: ${status-addr}
concurrency: 4
rateLimit: 0
checksum: true
sendCredToTikv: true

393

https://github.com/pingcap/tidb-operator/blob/v1.6.1/manifests/backup/backup-rbac.yaml

options:
- --lastbackupts=420134118382108673

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket
prefix: my-full-backup-folder
location: us-east1
storageClass: STANDARD_IA
objectAcl: private

When configuring the full-backup-gcs.yaml, note the following:

• Since TiDB Operator v1.1.6, if you want to back up data incrementally, you only
need to specify the last backup timestamp --lastbackupts in spec.br.options
↪→ . For the limitations of incremental backup, refer to Use BR to Back up and
Restore Data.

• Some parameters in spec.br are optional, such as logLevel and statusAddr.
For more information about BR configuration, refer to BR fields.

• Some parameters in spec.gcs are optional, such as location, objectAcl, and
storageClass. For more information about GCS configuration, refer to GCS
fields.

• For v4.0.8 or a later version, BR can automatically adjust tikv_gc_life_time.
You do not need to configure spec.tikvGCLifeTime and spec.from fields in the
Backup CR.

• For more information about the Backup CR fields, refer to Backup CR fields.

2. After you create the Backup CR, TiDB Operator starts the backup automatically. You
can view the backup status by running the following command:
kubectl get bk -n test1 -owide

View the snapshot backup status
After you create the Backup CR, TiDB Operator starts the backup automatically. You

can view the backup status by running the following command:
kubectl get backup -n backup-test -o wide

From the output, you can find the following information for the Backup CR named demo1
↪→ -full-backup-gcs. The COMMITTS field indicates the time point of the snapshot backup:
NAME TYPE MODE STATUS BACKUPPATH

↪→ COMMITTS ...
demo1-full-backup-gcs full snapshot Complete gcs://my-bucket/my-full-

↪→ backup-folder/ 436979621972148225 ...

394

https://docs.pingcap.com/tidb/stable/br-usage-backup#back-up-incremental-data
https://docs.pingcap.com/tidb/stable/br-usage-backup#back-up-incremental-data

Log backup
You can use a Backup CR to describe the start and stop of a log backup task and manage

the log backup data. Log backup grants permissions to remote storages in the same way
as snapshot backup. In this section, the example shows how to create a Backup CR named
demo1-log-backup-gcs. See the following detailed steps.

Description of the logSubcommand field
In the Backup Custom Resource (CR), you can use the logSubcommand field to control

the state of a log backup task. The logSubcommand field supports the following commands:

• log-start: initiates a new log backup task or resumes a paused task. Use this com-
mand to start the log backup process or resume a task from a paused state.

• log-pause: temporarily pauses the currently running log backup task. After pausing,
you can use the log-start command to resume the task.

• log-stop: permanently stops the log backup task. After executing this command, the
Backup CR enters a stopped state and cannot be restarted.

These commands provide fine-grained control over the lifecycle of log backup tasks,
enabling you to start, pause, resume, and stop tasks effectively to manage log data retention
in Kubernetes environments.

In TiDB Operator v1.5.4, v1.6.0, and earlier versions, you can use the logStop: true
↪→ /false field to stop or start log backup tasks. This field is retained for backward com-
patibility.

However, do not use logStop and logSubcommand fields in the same Backup CR, as this
is not supported. For TiDB Operator v1.5.5, v1.6.1, and later versions, it is recommended
to use the logSubcommand field to ensure clear and consistent configuration.

Start log backup

1. In the backup-test namespace, create a Backup CR named demo1-log-backup-gcs.
kubectl apply -f log-backup-gcs.yaml

The content of log-backup-gcs.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-log-backup-gcs
namespace: backup-test

spec:
backupMode: log

395

logSubcommand: log-start
br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket
prefix: my-log-backup-folder

2. Wait for the start operation to complete:
kubectl get jobs -n backup-test

NAME COMPLETIONS ...
backup-demo1-log-backup-gcs-log-start 1/1 ...

3. View the newly created Backup CR:
kubectl get backup -n backup-test

NAME MODE STATUS
demo1-log-backup-gcs log Running

View the log backup status
You can view the log backup status by checking the information of the Backup CR:

kubectl describe backup -n backup-test

From the output, you can find the following information for the Backup CR named demo1
↪→ -log-backup-gcs. The Log Checkpoint Ts field indicates the latest point in time that
can be recovered:
Status:
Backup Path: gcs://my-bucket/my-log-backup-folder/
Commit Ts: 436568622965194754
Conditions:

Last Transition Time: 2022-10-10T04:45:20Z
Status: True
Type: Scheduled
Last Transition Time: 2022-10-10T04:45:31Z
Status: True
Type: Prepare
Last Transition Time: 2022-10-10T04:45:31Z

396

Status: True
Type: Running

Log Checkpoint Ts: 436569119308644661

Pause log backup
You can pause a log backup task by setting the logSubcommand field of the Backup

Custom Resource (CR) to log-pause. The following example shows how to pause the
demo1-log-backup-gcs CR created in Start log backup.
kubectl edit backup demo1-log-backup-gcs -n backup-test

To pause the log backup task, change the value of logSubcommand from log-start to
log-pause, then save and exit the editor. The modified content is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-log-backup-gcs
namespace: backup-test

spec:
backupMode: log
logSubcommand: log-pause
br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket
prefix: my-log-backup-folder

You can verify that the STATUS of the demo1-log-backup-gcs Backup CR changes from
Running to Pause:
kubectl get backup -n backup-test

NAME MODE STATUS
demo1-log-backup-gcs log Pause

Resume log backup
If a log backup task is paused, you can resume it by setting the logSubcommand field to

log-start. The following example shows how to resume the demo1-log-backup-gcs CR
that was paused in Pause Log Backup.

397

Note:
This operation applies only to tasks in the Pause state. You cannot resume
tasks in the Fail or Stopped state.

kubectl edit backup demo1-log-backup-gcs -n backup-test

To resume the log backup task, change the value of logSubcommand from log-pause to
log-start, then save and exit the editor. The modified content is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-log-backup-gcs
namespace: backup-test

spec:
backupMode: log
logSubcommand: log-start
br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket
prefix: my-log-backup-folder

You can verify that the STATUS of the demo1-log-backup-gcs Backup CR changes from
Pause to Running:
kubectl get backup -n backup-test

NAME MODE STATUS
demo1-log-backup-gcs log Running

Stop log backup
You can stop a log backup task by setting the logSubcommand field of the Backup

Custom Resource (CR) to log-stop. The following example shows how to stop the demo1-
↪→ log-backup-gcs CR created in Start log backup.
kubectl edit backup demo1-log-backup-gcs -n backup-test

398

Change the value of logSubcommand to log-stop, then save and exit the editor. The
modified content is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-log-backup-gcs
namespace: backup-test

spec:
backupMode: log
logSubcommand: log-stop
br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket
prefix: my-log-backup-folder

You can verify that the STATUS of the Backup CR named demo1-log-backup-gcs
changes from Running to Stopped:
kubectl get backup -n backup-test

NAME MODE STATUS
demo1-log-backup-gcs log Stopped

Stopped is the terminal state for log backup. In this state, you cannot change the backup
state again, but you can still clean up the log backup data.

In TiDB Operator v1.5.4, v1.6.0, and earlier versions, you can use the logStop: true
↪→ /false field to stop or start log backup tasks. This field is retained for backward com-
patibility.

Clean log backup data

1. Because you already created a Backup CR named demo1-log-backup-gcs when you
started log backup, you can clean the log data backup by modifying the same Backup
↪→ CR. The following example shows how to clean log backup data generated before
2022-10-10T15:21:00+08:00.
kubectl edit backup demo1-log-backup-gcs -n backup-test

In the last line of the CR, append spec.logTruncateUntil: "2022-10-10T15
↪→ :21:00+08:00". Then save and quit the editor. The modified content is as
follows:

399

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-gcs
namespace: backup-test

spec:
backupMode: log
logSubcommand: log-start/log-pause/log-stop
br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket
prefix: my-log-backup-folder

logTruncateUntil: "2022-10-10T15:21:00+08:00"

2. Wait for the clean operation to complete:
kubectl get jobs -n backup-test

NAME COMPLETIONS ...
...
backup-demo1-log-backup-gcs-log-truncate 1/1 ...

3. View the Backup CR information:
kubectl describe backup -n backup-test

...
Log Success Truncate Until: 2022-10-10T15:21:00+08:00
...

You can also view the information by running the following command:
kubectl get backup -n backup-test -o wide

NAME MODE STATUS ... LOGTRUNCATEUNTIL
demo1-log-backup-gcs log Stopped ... 2022-10-10T15:21:00+08:00

400

Compact log backup
For TiDB v9.0.0 and later versions, you can use a CompactBackup CR to compact log

backup data into SST format, accelerating downstream PITR (Point-in-time recovery).
This section explains how to compact log backup based on the log backup example from

previous sections.

1. In the backup-test namespace, create a CompactBackup CR named demo1-compact-
↪→ backup.
kubectl apply -f compact-backup-demo1.yaml

The content of compact-backup-demo1.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: CompactBackup
metadata:
name: demo1-compact-backup
namespace: backup-test

spec:
startTs: "***"
endTs: "***"
concurrency: 8
maxRetryTimes: 2
br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket
prefix: my-log-backup-folder

The startTs and endTs fields specify the time range for the logs to be compacted
by demo1-compact-backup. Any log that contains at least one write within this time
range will be included in the compaction process. As a result, the final compacted
data might include data written outside this range.
The gcs settings should be the same as the storage settings of the log backup to
be compacted. CompactBackup reads log files from the corresponding location and
compact them.

View the status of log backup compaction
After creating the CompactBackup CR, TiDB Operator automatically starts compacting

the log backup. You can check the backup status using the following command:

401

kubectl get cpbk -n backup-test

From the output, you can find the status of the CompactBackup CR named demo1-
↪→ compact-backup. An example output is as follows:
NAME STATUS PROGRESS

↪→ MESSAGE
demo1-compact-backup Complete [READ_META(17/17),COMPACT_WORK(1291/1291)]

If the STATUS field displays Complete, the compact log backup process has finished
successfully.

Backup CR examples
Back up data of all clusters

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-gcs
namespace: backup-test

spec:
backupType: full
br:
cluster: demo1
clusterNamespace: test1

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: ${bucket}
prefix: ${prefix}
location: us-east1
storageClass: STANDARD_IA
objectAcl: private

Back up data of a single database
The following example backs up data of the db1 database.

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-gcs
namespace: backup-test

spec:

402

backupType: full
tableFilter:
- "db1.*"
br:
cluster: demo1
clusterNamespace: test1

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: ${bucket}
prefix: ${prefix}
location: us-east1
storageClass: STANDARD_IA
objectAcl: private

Back up data of a single table
The following example backs up data of the db1.table1 table.

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-gcs
namespace: backup-test

spec:
backupType: full
tableFilter:
- "db1.table1"
br:
cluster: demo1
clusterNamespace: test1

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: ${bucket}
prefix: ${prefix}
location: us-east1
storageClass: STANDARD_IA
objectAcl: private

Back up data of multiple tables using the table filter
The following example backs up data of the db1.table1 table and db1.table2 table.

apiVersion: pingcap.com/v1alpha1

403

kind: Backup
metadata:
name: demo1-backup-gcs
namespace: backup-test

spec:
backupType: full
tableFilter:
- "db1.table1"
- "db1.table2"
br:
cluster: demo1
clusterNamespace: test1

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: ${bucket}
prefix: ${prefix}
location: us-east1
storageClass: STANDARD_IA
objectAcl: private

7.4.5.1.3 Scheduled snapshot backup
You can set a backup policy to perform scheduled backups of the TiDB cluster, and set

a backup retention policy to avoid excessive backup items. A scheduled snapshot backup is
described by a custom BackupSchedule CR object. A snapshot backup is triggered at each
backup time point. Its underlying implementation is the ad-hoc snapshot backup.

Prerequisites: Prepare for a scheduled snapshot backup
The steps to prepare for a scheduled snapshot backup are the same as that of Prepare

for an ad-hoc backup.
Perform a scheduled snapshot backup

1. Create a BackupSchedule CR to back up cluster data as described below:
kubectl apply -f backup-schedule-gcs.yaml

The content of backup-schedule-gcs.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: demo1-backup-schedule-gcs
namespace: backup-test

404

spec:
#maxBackups: 5
#pause: true
maxReservedTime: "3h"
schedule: "*/2 * * * *"
backupTemplate:
Clean outdated backup data based on maxBackups or maxReservedTime

↪→ . If not configured, the default policy is Retain
cleanPolicy: Delete
br:
cluster: demo1
clusterNamespace: test1
logLevel: info
statusAddr: ${status-addr}
concurrency: 4
rateLimit: 0
checksum: true
sendCredToTikv: true

gcs:
secretName: gcs-secret
projectId: ${project_id}
bucket: ${bucket}
prefix: ${prefix}
location: us-east1
storageClass: STANDARD_IA
objectAcl: private

From the above in backup-schedule-gcs.yaml, you can see that the backupSchedule
configuration consists of two parts. One is the unique configuration of backupSchedule
↪→ , and the other is backupTemplate.

• For the unique configuration of backupSchedule, refer to BackupSchedule CR
fields.

• backupTemplate specifies the configuration related to the cluster and remote
storage, which is the same as the spec configuration of the Backup CR.

2. After creating the scheduled snapshot backup, use the following command to check the
backup status:
kubectl get bks -n backup-test -owide

Use the following command to check all the backup items:
kubectl get bk -l tidb.pingcap.com/backup-schedule=demo1-backup-

↪→ schedule-gcs -n backup-test

405

7.4.5.1.4 Integrated management of scheduled snapshot backup and log
backup

You can use the BackupSchedule CR to integrate the management of scheduled snapshot
backup and log backup for TiDB clusters. By setting the backup retention time, you can
regularly recycle the scheduled snapshot backup and log backup, and ensure that you can
perform PITR recovery through the scheduled snapshot backup and log backup within the
retention period.

The following example creates a BackupSchedule CR named integrated-backup-
↪→ schedule-gcs. For more information about the authorization method, refer to GCS
account permissions.

Prerequisites: Prepare for a scheduled snapshot backup environment
The steps to prepare for a scheduled snapshot backup are the same as those of Prepare

for an ad-hoc backup.
Create BackupSchedule

1. Create a BackupSchedule CR named integrated-backup-schedule-gcs in the
backup-test namespace.
kubectl apply -f integrated-backup-scheduler-gcs.yaml

The content of integrated-backup-schedule-gcs.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: integrated-backup-schedule-gcs
namespace: backup-test

spec:
maxReservedTime: "3h"
schedule: "* */2 * * *"
backupTemplate:
backupType: full
cleanPolicy: Delete
br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket
prefix: schedule-backup-folder-snapshot

logBackupTemplate:

406

backupMode: log
br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket
prefix: schedule-backup-folder-log

In the above example of integrated-backup-scheduler-gcs.yaml, the backupSchedule
↪→ configuration consists of three parts: the unique configuration of backupSchedule,
the configuration of the snapshot backup backupTemplate, and the configuration of
the log backup logBackupTemplate.
For the field description of backupSchedule, refer to BackupSchedule CR fields.

2. After creating backupSchedule, use the following command to check the backup status:
kubectl get bks -n backup-test -o wide

A log backup task is created together with backupSchedule. You can check the log
backup name through the status.logBackup field of the backupSchedule CR.
kubectl describe bks integrated-backup-schedule-gcs -n backup-test

3. To perform data restoration for a cluster, you need to specify the backup path. You
can use the following command to check all the backup items under the scheduled
snapshot backup.
kubectl get bk -l tidb.pingcap.com/backup-schedule=integrated-backup-

↪→ schedule-gcs -n backup-test

The MODE field in the output indicates the backup mode. snapshot indicates the
scheduled snapshot backup, and log indicates the log backup.
NAME MODE STATUS

↪→
integrated-backup-schedule-gcs-2023-03-08t02-50-00 snapshot Complete

↪→
log-integrated-backup-schedule-gcs log Running

↪→

7.4.5.1.5 Integrated management of scheduled snapshot backup, log backup,
and compact log backup

407

To accelerate downstream recovery, you can enable CompactBackup CR in the
BackupSchedule CR. This feature periodically compacts log backup files in remote storage.
You must enable log backup before using log backup compaction. This section extends the
configuration from the previous section.

Prerequisites: Prepare for a scheduled snapshot backup
The steps to prepare for a scheduled snapshot backup are the same as that of Prepare

for an ad-hoc backup.
Create BackupSchedule

1. Create a BackupSchedule CR named integrated-backup-schedule-gcs in the
backup-test namespace.
kubectl apply -f integrated-backup-schedule-s3.yaml

The content of integrated-backup-schedule-gcs.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: integrated-backup-schedule-gcs
namespace: backup-test

spec:
maxReservedTime: "3h"
schedule: "* */2 * * *"
backupTemplate:
backupType: full
cleanPolicy: Delete
br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket
prefix: schedule-backup-folder-snapshot

logBackupTemplate:
backupMode: log
br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

gcs:
projectId: ${project_id}

408

secretName: gcs-secret
bucket: my-bucket
prefix: schedule-backup-folder-log

compactBackupTemplate:
br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket
prefix: schedule-backup-folder-log

In the preceding example of integrated-backup-schedule-gcs.yaml, the backupSchedule
↪→ configuration is based on the previous section, with the following additions for
compactBackup:

• Added the BackupSchedule.spec.compactInterval field to specify the time in-
terval for log backup compaction. It is recommended not to exceed the interval
of scheduled snapshot backups and to keep it between one-half to one-third of the
scheduled snapshot backup interval.

• Added the BackupSchedule.spec.compactBackupTemplate field. Ensure that
the BackupSchedule.spec.compactBackupTemplate.gcs configuration matches
the BackupSchedule.spec.logBackupTemplate.gcs configuration.

For the field description of backupSchedule, refer to BackupSchedule CR fields.

2. After creating backupSchedule, use the following command to check the backup status:
kubectl get bks -n backup-test -o wide

A compact log backup task is created together with backupSchedule. You can check
the CompactBackup CR using the following command:
kubectl get cpbk -n backup-test

7.4.5.1.6 Delete the backup CR
If you no longer need the backup CR, refer to Delete the Backup CR.

7.4.5.1.7 Troubleshooting
If you encounter any problem during the backup process, refer to Common Deployment

Failures.

409

7.4.5.2 Restore Data from GCS Using BR
This document describes how to restore the backup data stored in Google Cloud Storage

(GCS) to a TiDB cluster on Kubernetes, including two restoration methods:

• Full restoration. This method takes the backup data of snapshot backup and restores
a TiDB cluster to the time point of the snapshot backup.

• Point-in-time recovery (PITR). This method takes the backup data of both snapshot
backup and log backup and restores a TiDB cluster to any point in time.

The restore method described in this document is implemented based on CustomRe-
sourceDefinition (CRD) in TiDB Operator. For the underlying implementation, BR is used
to restore the data. BR stands for Backup & Restore, which is a command-line tool for
distributed backup and recovery of the TiDB cluster data.

PITR allows you to restore a new TiDB cluster to any point in time of the backup cluster.
To use PITR, you need the backup data of snapshot backup and log backup. During the
restoration, the snapshot backup data is first restored to the TiDB cluster, and then the
log backup data between the snapshot backup time point and the specified point in time is
restored to the TiDB cluster.

Note:

• BR is only applicable to TiDB v3.1 or later releases.
• PITR is only applicable to TiDB v6.3 or later releases.
• Data restored by BR cannot be replicated to a downstream cluster, be-

cause BR directly imports SST and LOG files to TiDB and the down-
stream cluster currently cannot access the upstream SST and LOG files.

This document provides an example about how to restore the backup data from the spec
↪→ .gcs.prefix folder of the spec.gcs.bucket bucket on GCS to the demo2 TiDB cluster
in the test2 namespace. The following are the detailed steps.

7.4.5.2.1 Full restoration
This section provides an example about how to restore the backup data from the spec.

↪→ gcs.prefix folder of the spec.gcs.bucket bucket on GCS to the demo2 TiDB cluster
in the test2 namespace. The following are the detailed steps.

Prerequisites: Complete the snapshot backup
In this example, the my-full-backup-folder folder in the my-bucket bucket of GCS

stores the snapshot backup data. For steps of performing snapshot backup, refer to Back up
Data to GCS Using BR.

410

https://cloud.google.com/storage/docs/
https://cloud.google.com/storage/docs/
https://docs.pingcap.com/tidb/stable/backup-and-restore-overview

Step 1: Prepare the restore environment
Before restoring backup data on GCS to TiDB using BR, take the following steps to

prepare the restore environment:

1. Create a namespace for managing restoration. The following example creates a
restore-test namespace:
kubectl create namespace restore-test

2. Download backup-rbac.yaml, and execute the following command to create the role-
based access control (RBAC) resources in the restore-test namespace:
kubectl apply -f backup-rbac.yaml -n restore-test

3. Grant permissions to the remote storage for the restore-test namespace.
Refer to GCS account permissions.

4. For a TiDB version earlier than v4.0.8, you also need to complete the following prepa-
ration steps. For TiDB v4.0.8 or a later version, skip these preparation steps.

1. Make sure that you have the SELECT and UPDATE privileges on the mysql.tidb
table of the target database so that the Restore CR can adjust the GC time
before and after the restore.

2. Create the restore-demo2-tidb-secret secret to store the root account and
password to access the TiDB cluster:
kubectl create secret generic restore-demo2-tidb-secret --from-

↪→ literal=user=root --from-literal=password=<password> --
↪→ namespace=test2

Step 2: Restore the backup data to a TiDB cluster

1. Create the Restore custom resource (CR) to restore the specified data to your cluster:
kubectl apply -f restore-full-gcs.yaml

The content of restore-full-gcs.yaml file is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Restore
metadata:
name: demo2-restore-gcs
namespace: restore-test

spec:

411

https://github.com/pingcap/tidb-operator/blob/v1.6.1/manifests/backup/backup-rbac.yaml

backupType: full
br:
cluster: demo2
clusterNamespace: test2
logLevel: info
statusAddr: ${status-addr}
concurrency: 4
rateLimit: 0
checksum: true
sendCredToTikv: true

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket
prefix: my-full-backup-folder
location: us-east1
storageClass: STANDARD_IA
objectAcl: private

When configuring restore-full-gcs.yaml, note the following:

• For more information about GCS configuration, refer to GCS fields.
• Some parameters in .spec.br are optional, such as logLevel, statusAddr,

concurrency, rateLimit, checksum, timeAgo, and sendCredToTikv. For more
information about BR configuration, refer to BR fields.

• For v4.0.8 or a later version, BR can automatically adjust tikv_gc_life_time.
You do not need to configure spec.to fields in the Restore CR.

• For more information about the Restore CR fields, refer to Restore CR fields.

2. After creating the Restore CR, execute the following command to check the restore
status:
kubectl get restore -n restore-test -owide

NAME STATUS ... demo2-restore-gcs Complete ...

7.4.5.2.2 Point-in-time recovery
This section provides an example about how to perform point-in-time recovery (PITR)

in a demo3 cluster in the test3 namespace. PITR takes two steps:

1. Restore the cluster to the time point of the snapshot backup using the snapshot backup
data in the spec.pitrFullBackupStorageProvider.gcs.prefix folder of the spec.
↪→ pitrFullBackupStorageProvider.gcs.bucket bucket.

2. Restore the cluster to any point in time using the log backup data in the spec.gcs.
↪→ prefix folder of the spec.gcs.bucket bucket.

412

The detailed steps are as follows.
Prerequisites: Complete data backup
In this example, the my-bucket bucket of GCS stores the following two types of backup

data:

• The snapshot backup data generated during the log backup, stored in the my-full-
↪→ backup-folder-pitr folder.

• The log backup data, stored in the my-log-backup-folder-pitr folder.

For detailed steps of how to perform data backup, refer to Back up data to GCS Using
BR.

Note:
The specified restoration time point must be between the snapshot backup
time point and the log backup checkpoint-ts.

Step 1: Prepare the restoration environment
Before restoring backup data on GCS to TiDB using BR, take the following steps to

prepare the restoration environment:

1. Create a namespace for managing restoration. The following example creates a
restore-test namespace:
kubectl create namespace restore-test

2. Download backup-rbac.yaml, and execute the following command to create the role-
based access control (RBAC) resources in the restore-test namespace:
kubectl apply -f backup-rbac.yaml -n restore-test

3. Grant permissions to the remote storage for the restore-test namespace.
Refer to GCS account permissions.

Step 2: Restore the backup data to a TiDB cluster
The example in this section restores the snapshot backup data to the cluster. The

specified restoration time point must be between the time point of snapshot backup and the
Log Checkpoint Ts of log backup.

The detailed steps are as follows:

413

https://github.com/pingcap/tidb-operator/blob/v1.6.1/manifests/backup/backup-rbac.yaml

1. Create a Restore CR named demo3-restore-gcs in the restore-test namespace
and specify the restoration time point as 2022-10-10T17:21:00+08:00:
kubectl apply -f restore-point-gcs.yaml

The content of restore-point-gcs.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Restore
metadata:
name: demo3-restore-gcs
namespace: restore-test

spec:
restoreMode: pitr
br:
cluster: demo3
clusterNamespace: test3

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket
prefix: my-log-backup-folder-pitr

pitrRestoredTs: "2022-10-10T17:21:00+08:00"
pitrFullBackupStorageProvider:
gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket
prefix: my-full-backup-folder-pitr

When you configure restore-point-gcs.yaml, note the following:

• spec.restoreMode: when you perform PITR, set this field to pitr. The default
value of this field is snapshot, which means snapshot backup.

2. Wait for the restoration operation to complete:
kubectl get jobs -n restore-test

NAME COMPLETIONS ...
restore-demo3-restore-gcs 1/1 ...

You can also check the restoration status by using the following command:
kubectl get restore -n restore-test -o wide

414

NAME STATUS ...
demo3-restore-gcs Complete ...

7.4.5.2.3 Troubleshooting
If you encounter any problem during the restore process, refer to Common Deployment

Failures.

7.4.5.3 Back Up TiDB Data to Google Cloud Storage (GCS) Using Dumpling

This document describes how to use Dumpling to back up data from a TiDB cluster
deployed on Google GKE to Google Cloud Storage (GCS). Dumpling is a data export tool
that can export data from TiDB or MySQL in SQL or CSV format for full data backup or
export.

7.4.5.3.1 Prepare the Dumpling node pool
You can run Dumpling in an existing node pool or create a dedicated node pool. The

following example shows how to create a new node pool. Replace the variables as needed:

• ${clusterName}: GKE cluster name

gcloud container node-pools create dumpling \
--cluster ${clusterName} \
--machine-type n2-standard-4 \
--num-nodes=1 \
--node-labels=dedicated=dumpling

7.4.5.3.2 Deploy the Dumpling job
Create a credential ConfigMap
Save the service account key file downloaded from the Google Cloud Console as

google-credentials.json, and then create a ConfigMap with the following command:
kubectl -n ${namespace} create configmap google-credentials --from-file=

↪→ google-credentials.json

Configure the Dumpling job
The following is a sample configuration file (dumpling_job.yaml) for the Dumpling job.

Replace the variables as needed:

• ${name}: job name

415

https://docs.pingcap.com/tidb/stable/dumpling-overview/
https://cloud.google.com/storage/docs

• ${namespace}: Kubernetes namespace
• ${version}: Dumpling image version
• For Dumpling parameters, refer to the Option list of Dumpling.

dumpling_job.yaml

apiVersion: batch/v1
kind: Job
metadata:
name: ${name}
namespace: ${namespace}
labels:
app.kubernetes.io/component: dumpling

spec:
template:
spec:
nodeSelector:
dedicated: dumpling

affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:

matchExpressions:
- key: app.kubernetes.io/component
operator: In
values:
- dumpling

topologyKey: kubernetes.io/hostname
containers:
- name: ${name}
image: pingcap/dumpling:${version}
command:
- /bin/sh
- -c
- |
/dumpling \

--host=basic-tidb \
--port=4000 \
--user=root \
--password='' \
--threads=16 \
--rows=20000 \
--filesize=256MiB \
--database=test \
--filetype=csv \

416

https://docs.pingcap.com/tidb/stable/dumpling-overview/#option-list-of-dumpling

--output=gcs://external/testfolder?credentials-file=/etc/
↪→ config/google-credentials.json

volumeMounts:
- name: google-credentials
mountPath: /etc/config

volumes:
- name: google-credentials
configMap:
name: google-credentials

restartPolicy: Never
backoffLimit: 0

Create the Dumpling job
Run the following commands to create the Dumpling job:

export name=dumpling
export version=v8.5.1
export namespace=tidb-cluster

envsubst < dumpling_job.yaml | kubectl apply -f -

Check the Dumpling job status
Run the following command to check the Pod status of the Dumpling job:

kubectl -n ${namespace} get pod ${name}

View Dumpling job logs
Run the following command to view the logs of the Dumpling job:

kubectl -n ${namespace} logs pod ${name}

7.4.5.4 Restore Backup Data from Google Cloud Storage (GCS) Using TiDB
Lightning

This document describes how to use TiDB Lightning to restore backup data from Google
Cloud Storage (GCS) to a TiDB cluster. TiDB Lightning is a tool for fast full data import
into a TiDB cluster. This document uses the physical import mode. For detailed usage and
configuration items of TiDB Lightning, refer to the official documentation.

The following example shows how to restore backup data from GCS to a TiDB cluster.

7.4.5.4.1 Prepare a node pool for TiDB Lightning
You can run TiDB Lightning in an existing node pool or create a dedicated node pool.

The following example shows how to create a new node pool. Replace the variables as needed:

417

https://docs.pingcap.com/tidb/stable/tidb-lightning-overview/
https://cloud.google.com/storage/docs/
https://cloud.google.com/storage/docs/
https://docs.pingcap.com/tidb/stable/tidb-lightning-physical-import-mode/
https://docs.pingcap.com/tidb/stable/tidb-lightning-overview/

• ${clusterName}: GKE cluster name

gcloud container node-pools create lightning \
--cluster ${clusterName} \
--machine-type n2-standard-4 \
--num-nodes=1 \
--node-labels=dedicated=lightning

7.4.5.4.2 Deploy the TiDB Lightning job
Create a credential ConfigMap
Save the service account key file downloaded from the Google Cloud Console as

google-credentials.json, and then create a ConfigMap with the following command:
kubectl -n ${namespace} create configmap google-credentials --from-file=

↪→ google-credentials.json

Configure the TiDB Lightning job
The following is a sample configuration file (lightning_job.yaml) for the TiDB Light-

ning job. This file defines the necessary resources and configurations for the job. Replace
the variables with your specific values as needed:

• ${name}: Job name
• ${namespace}: Kubernetes namespace
• ${version}: TiDB Lightning image version
• ${storageClassName}: Storage class name
• ${storage}: Storage size
• For TiDB Lightning parameters, refer to TiDB Lightning Configuration.

lightning_job.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: ${name}-sorted-kv
namespace: ${namespace}

spec:
storageClassName: ${storageClassName}
accessModes:
- ReadWriteOnce

resources:
requests:
storage: ${storage}

418

https://docs.pingcap.com/tidb/stable/tidb-lightning-configuration/

apiVersion: v1
kind: ConfigMap
metadata:
name: ${name}
namespace: ${namespace}

data:
config-file: |
[lightning]
level = "info"

[checkpoint]
enable = true

[tidb]
host = "basic-tidb"
port = 4000
user = "root"
password = ""
status-port = 10080
pd-addr = "basic-pd:2379"

apiVersion: batch/v1
kind: Job
metadata:
name: ${name}
namespace: ${namespace}
labels:
app.kubernetes.io/component: lightning

spec:
template:
spec:
nodeSelector:
dedicated: lightning

affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:

matchExpressions:
- key: app.kubernetes.io/component
operator: In
values:
- lightning

topologyKey: kubernetes.io/hostname
containers:

419

- name: tidb-lightning
image: pingcap/tidb-lightning:${version}
command:
- /bin/sh
- -c
- |
/tidb-lightning \

--status-addr=0.0.0.0:8289 \
--backend=local \
--sorted-kv-dir=/var/lib/sorted-kv \
--d=gcs://external/testfolder?credentials-file=/etc/config/

↪→ google-credentials.json \
--config=/etc/tidb-lightning/tidb-lightning.toml \
--log-file="-"

volumeMounts:
- name: config
mountPath: /etc/tidb-lightning

- name: sorted-kv
mountPath: /var/lib/sorted-kv

- name: google-credentials
mountPath: /etc/config

volumes:
- name: config
configMap:
name: ${name}
items:
- key: config-file
path: tidb-lightning.toml

- name: sorted-kv
persistentVolumeClaim:
claimName: ${name}-sorted-kv

- name: google-credentials
configMap:
name: google-credentials

restartPolicy: Never
backoffLimit: 0

Create the TiDB Lightning job
Run the following commands to create the TiDB Lightning job:

export name=lightning
export version=v8.5.1
export namespace=tidb-cluster
export storageClassName=<your-storage-class>
export storage=250G

420

envsubst < lightning_job.yaml | kubectl apply -f -

Check the TiDB Lightning job status
Run the following command to check the Pod status of the TiDB Lightning job:

kubectl -n ${namespace} get pod ${name}

View TiDB Lightning job logs
Run the following command to view the logs of the TiDB Lightning job:

kubectl -n ${namespace} logs pod ${name}

7.4.5.5 Back Up Data to GCS Using Dumpling (Helm)

Warning:
The Helm deployment method described in this document is deprecated. It
is recommended to use the Job method for backup operations.

This document describes how to back up the data of the TiDB cluster on Kubernetes to
Google Cloud Storage (GCS). “Backup” in this document refers to full backup (ad-hoc full
backup and scheduled full backup).

The backup method described in this document is implemented using CustomRe-
sourceDefinition (CRD) in TiDB Operator v1.1 or later versions. Dumpling is used to get
the logic backup of the TiDB cluster, and then this backup data is sent to the remote GCS.

Dumpling is a data export tool that exports data stored in TiDB/MySQL as SQL or
CSV files and can be used to make a logical full backup or export.

7.4.5.5.1 Usage scenarios
You can use the backup method described in this document if you want to make an ad-

hoc full backup or scheduled full backup of the TiDB cluster data to GCS with the following
needs:

• To export SQL or CSV files
• To limit the memory usage of a single SQL statement
• To export the historical data snapshot of TiDB

421

https://cloud.google.com/storage/docs/
https://docs.pingcap.com/tidb/stable/dumpling-overview/

7.4.5.5.2 Prerequisites
Before you use Dumpling to back up the TiDB cluster data to GCS, make sure that you

have the following privileges:

• The SELECT and UPDATE privileges of the mysql.tidb table: Before and after the
backup, the Backup CR needs a database account with these privileges to adjust the
GC time.

• SELECT
• RELOAD
• LOCK TABLES
• REPLICATION CLIENT

7.4.5.5.3 Ad-hoc full backup to GCS
Ad-hoc full backup describes a backup operation by creating a Backup custom resource

(CR) object. TiDB Operator performs the specific backup operation based on this Backup
object. If an error occurs during the backup process, TiDB Operator does not retry and you
need to handle this error manually.

To better explain how to perform the backup operation, this document shows an ex-
ample in which the data of the demo1 TiDB cluster is backed up to the test1 Kubernetes
namespace.

Step 1: Prepare for ad-hoc full backup

1. Download backup-rbac.yaml and execute the following command to create the role-
based access control (RBAC) resources in the test1 namespace:
kubectl apply -f backup-rbac.yaml -n test1

2. Grant permissions to the remote storage.
Refer to GCS account permissions.

3. Create the backup-demo1-tidb-secret secret which stores the root account and pass-
word needed to access the TiDB cluster:
kubectl create secret generic backup-demo1-tidb-secret --from-literal=

↪→ password=${password} --namespace=test1

Step 2: Perform ad-hoc backup

1. Create the Backup CR and back up data to GCS:
kubectl apply -f backup-gcs.yaml

The content of backup-gcs.yaml is as follows:

422

https://github.com/pingcap/tidb-operator/blob/v1.6.1/manifests/backup/backup-rbac.yaml

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-gcs
namespace: test1

spec:
from:
host: ${tidb_host}
port: ${tidb_port}
user: ${tidb_user}
secretName: backup-demo1-tidb-secret

gcs:
secretName: gcs-secret
projectId: ${project_id}
bucket: ${bucket}
prefix: ${prefix}
location: us-east1
storageClass: STANDARD_IA
objectAcl: private
bucketAcl: private

dumpling:
options:
- --threads=16
- --rows=10000
tableFilter:
- "test.*"
storageClassName: local-storage
storageSize: 10Gi

The example above backs up all data in the TiDB cluster to GCS. Some param-
eters in spec.gcs can be ignored, such as location, objectAcl, bucketAcl, and
storageClass. For more information about GCS configuration, refer to GCS fields.
spec.dumpling refers to Dumpling-related configuration. You can specify Dumpling’s
operation parameters in the options field. See Dumpling Option list for more informa-
tion. These configuration items of Dumpling can be ignored by default. When these
items are not specified, the default values of options fields are as follows:
options:
- --threads=16
- --rows=10000

For more information about the Backup CR fields, refer to Backup CR fields.

2. After creating the Backup CR, use the following command to check the backup status:

423

https://docs.pingcap.com/tidb/stable/dumpling-overview#option-list-of-dumpling

kubectl get bk -n test1 -owide

7.4.5.5.4 Scheduled full backup to GCS
You can set a backup policy to perform scheduled backups of the TiDB cluster, and

set a backup retention policy to avoid excessive backup items. A scheduled full backup is
described by a custom BackupSchedule CR object. A full backup is triggered at each backup
time point. Its underlying implementation is the ad-hoc full backup.

Step 1: Prepare for scheduled backup
The preparation for the scheduled backup is the same as the prepare for ad-hoc full

backup.
Step 2: Perform scheduled backup

1. Create the BackupSchedule CR, and back up cluster data as described below:
kubectl apply -f backup-schedule-gcs.yaml

The content of backup-schedule-gcs.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: demo1-backup-schedule-gcs
namespace: test1

spec:
#maxBackups: 5
#pause: true
maxReservedTime: "3h"
schedule: "*/2 * * * *"
backupTemplate:
from:
host: ${tidb_host}
port: ${tidb_port}
user: ${tidb_user}
secretName: backup-demo1-tidb-secret

gcs:
secretName: gcs-secret
projectId: ${project_id}
bucket: ${bucket}
prefix: ${prefix}
location: us-east1
storageClass: STANDARD_IA

424

objectAcl: private
bucketAcl: private

dumpling:
options:
- --threads=16
- --rows=10000
tableFilter:
- "test.*"
storageClassName: local-storage
storageSize: 10Gi

2. After creating the scheduled full backup, use the following command to check the
backup status:
kubectl get bks -n test1 -owide

Use the following command to check all the backup items:
kubectl get bk -l tidb.pingcap.com/backup-schedule=demo1-backup-

↪→ schedule-gcs -n test1

From the example above, you can see that the backupSchedule configuration con-
sists of two parts. One is the unique configuration of backupSchedule, and the other is
backupTemplate.

backupTemplate specifies the configuration related to the cluster and remote storage,
which is the same as the spec configuration of the Backup CR. For the unique configuration
of backupSchedule, refer to BackupSchedule CR fields.

Note:
TiDB Operator creates a PVC used for both ad-hoc full backup and scheduled
full backup. The backup data is stored in PV first and then uploaded to
remote storage. If you want to delete this PVC after the backup is completed,
you can refer to Delete Resource to delete the backup Pod first, and then
delete the PVC.
If the backup data is successfully uploaded to remote storage, TiDB Operator
automatically deletes the local data. If the upload fails, the local data is
retained.

7.4.5.5.5 Delete the backup CR
After the backup, you might need to delete the backup CR. For details, refer to Delete

the Backup CR.

425

7.4.5.5.6 Troubleshooting
If you encounter any problem during the backup process, refer to Common Deployment

Failures.

7.4.5.6 Restore Data from GCS (Helm)

Warning:
The Helm deployment method described in this document is deprecated. It
is recommended to use the Job method for data restore operations.

This document describes how to restore the TiDB cluster data backed up using TiDB
Operator on Kubernetes.

The restore method described in this document is implemented based on CustomRe-
sourceDefinition (CRD) in TiDB Operator v1.1 or later versions. For the underlying imple-
mentation, TiDB Lightning TiDB-backend is used to perform the restore.

TiDB Lightning is a tool used for fast full import of large amounts of data into a TiDB
cluster. It reads data from local disks, Google Cloud Storage (GCS) or Amazon S3. TiDB
Lightning supports three backends: Importer-backend, Local-backend, and TiDB-backend
↪→ . In this document, TiDB-backend is used. For the differences of these backends and how
to choose backends, see TiDB Lightning Backends. To import data using Importer-backend
or Local-backend, see Import Data.

This document shows an example in which the backup data stored in the specified path
on GCS is restored to the TiDB cluster.

7.4.5.6.1 Usage scenarios
You can use the restore solution introduced in this document if you need to export the

backup data from GCS to a TiDB cluster, with the following requirements:

• To restore data with lower resource usage and lower network bandwidth usage. A
restore speed of 50 GB/h is acceptable.

• To import data into the cluster with ACID compliance.
• The TiDB cluster can still provide services during the restore process.

7.4.5.6.2 Prerequisites
Before you perform the data restore, you need to prepare the restore environment and

get the required database account privileges.
Prepare the restore environment

426

https://docs.pingcap.com/tidb/stable/tidb-lightning-backends#tidb-lightning-tidb-backend
https://docs.pingcap.com/tidb/stable/tidb-lightning-backends
https://cloud.google.com/storage/docs/

1. Download backup-rbac.yaml and execute the following command to create the role-
based access control (RBAC) resources in the test2 namespace:
kubectl apply -f backup-rbac.yaml -n test2

2. Grant permissions to the remote storage.
Refer to GCS account permissions.

3. Create the restore-demo2-tidb-secret secret which stores the root account and
password needed to access the TiDB cluster:
kubectl create secret generic restore-demo2-tidb-secret --from-literal=

↪→ user=root --from-literal=password=${password} --namespace=test2

Get the required database account privileges
Before you use TiDB Lightning to restore the backup data in GCS to the TiDB cluster,

make sure that you have the following database account privileges:

Privileges Scope
SELECT Tables
INSERT Tables
UPDATE Tables
DELETE Tables
CREATE Databases, tables
DROP Databases, tables
ALTER Tables

7.4.5.6.3 Restore process

1. Create the restore custom resource (CR) and restore the backup data to the TiDB
cluster:
kubectl apply -f restore.yaml

The restore.yaml file has the following content:

apiVersion: pingcap.com/v1alpha1
kind: Restore
metadata:
name: demo2-restore
namespace: test2

spec:
to:

427

https://github.com/pingcap/tidb-operator/blob/v1.6.1/manifests/backup/backup-rbac.yaml

host: ${tidb_host}
port: ${tidb_port}
user: ${tidb_user}
secretName: restore-demo2-tidb-secret

gcs:
projectId: ${project_id}
secretName: gcs-secret
path: gcs://${backup_path}

storageClassName: local-storage
storageSize: 1Gi

The example above restores data from the spec.gcs.path path on GCS to the spec
↪→ .to.host TiDB cluster. For more information about GCS configuration, refer to
GCS fields.
For more information about the Restore CR fields, refer to Restore CR fields.

2. After creating the Restore CR, execute the following command to check the restore
status:
shell kubectl get rt -n test2 -owide

Note:
TiDB Operator creates a PVC for data recovery. The backup data is down-
loaded from the remote storage to the PV first, and then restored. If you
want to delete this PVC after the recovery is completed, you can refer to
Delete Resource to delete the recovery Pod first, and then delete the PVC.

7.4.5.6.4 Troubleshooting
If you encounter any problem during the restore process, refer to Common Deployment

Failures.

7.4.6 Azure Blob Storage

7.4.6.1 Back up Data to Azure Blob Storage Using BR
This document describes how to back up the data of a TiDB cluster on Kubernetes to

Azure Blob Storage. There are two backup types:

• Snapshot backup. With snapshot backup, you can restore a TiDB cluster to the
time point of the snapshot backup using full restoration.

428

• Log backup. With snapshot backup and log backup, you can restore a TiDB cluster
to any point in time. This is also known as Point-in-Time Recovery (PITR).

The backup method described in this document is implemented based on CustomRe-
sourceDefinition (CRD) in TiDB Operator. For the underlying implementation, BR is used
to get the backup data of the TiDB cluster, and then send the data to Azure Blob Storage.
BR stands for Backup & Restore, which is a command-line tool for distributed backup and
recovery of the TiDB cluster data.

7.4.6.1.1 Usage scenarios
If you have the following backup needs, you can use BR to make an ad-hoc backup or

scheduled snapshot backup of the TiDB cluster data to Azure Blob Storage.

• To back up a large volume of data (more than 1 TB) at a fast speed.
• To get a direct backup of data as SST files (key-value pairs).

If you have the following backup needs, you can use BR log backup to make an ad-hoc
backup of the TiDB cluster data to Azure Blob Storage (you can combine log backup and
snapshot backup to restore data more efficiently):

• To restore data of any point in time to a new cluster
• The recovery point object (RPO) is within several minutes.

For other backup needs, refer to Backup and Restore Overview to choose an appropriate
backup method.

Note:

• Snapshot backup is only applicable to TiDB v3.1 or later releases.
• Log backup is only applicable to TiDB v6.3 or later releases.
• Data that is backed up using BR can only be restored to TiDB instead

of other databases.

7.4.6.1.2 Ad-hoc backup
Ad-hoc backup includes snapshot backup and log backup. For log backup, you can start

or stop a log backup task and clean log backup data.
To get an ad-hoc backup, you need to create a Backup Custom Resource (CR) object to

describe the backup details. Then, TiDB Operator performs the specific backup operation

429

https://docs.pingcap.com/tidb/stable/backup-and-restore-overview

based on this Backup object. If an error occurs during the backup process, TiDB Operator
does not retry, and you need to handle this error manually.

This document provides an example about how to back up the data of the demo1 TiDB
cluster in the test1 Kubernetes namespace to Azure Blob Storage. The following are the
detailed steps.

Prerequisites: Prepare an ad-hoc backup environment

1. Create a namespace for managing backup. The following example creates a backup-
↪→ test namespace:
kubectl create namespace backup-test

2. Download backup-rbac.yaml, and execute the following command to create the role-
based access control (RBAC) resources in the backup-test namespace:
kubectl apply -f backup-rbac.yaml -n backup-test

3. Grant permissions to the remote storage for the backup-test namespace. You can
grant permissions to Azure Blob Storage by two methods. For details, refer to Azure
account permissions. After you grant the permissions, the backup-test namespace
has a secret object named azblob-secret or azblob-secret-ad.

Note:
The role owned by the account must have the permission to modify blob
at least (for example, a contributor).
When you create a secret object, you can use a customized name for the
object. In this document, the name is azblob-secret.

4. For a TiDB version earlier than v4.0.8, you also need to complete the following prepa-
ration steps. For TiDB v4.0.8 or a later version, skip these preparation steps.

1. Make sure that you have the SELECT and UPDATE privileges on the mysql.tidb
table of the backup database so that the Backup CR can adjust the GC time
before and after the backup.

2. Create backup-demo1-tidb-secret to store the account and password to access
the TiDB cluster:
kubectl create secret generic backup-demo1-tidb-secret --from-

↪→ literal=password=${password} --namespace=test1

430

https://github.com/pingcap/tidb-operator/blob/v1.6.1/manifests/backup/backup-rbac.yaml
https://learn.microsoft.com/en-us/azure/role-based-access-control/built-in-roles#contributor

Snapshot backup
To perform a snapshot backup, take the following steps:
Create the Backup CR named demo1-full-backup-azblob in the backup-test names-

pace:
kubectl apply -f full-backup-azblob.yaml

The content of full-backup-azblob.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-full-backup-azblob
namespace: backup-test

spec:
backupType: full
br:
cluster: demo1
clusterNamespace: test1
logLevel: info
statusAddr: ${status_addr}
concurrency: 4
rateLimit: 0
timeAgo: ${time}
checksum: true
sendCredToTikv: true
options:
- --lastbackupts=420134118382108673

azblob:
secretName: azblob-secret
container: my-container
prefix: my-full-backup-folder
#accessTier: Hot

When you configure backup-azblob.yaml, note the following:

• Since TiDB Operator v1.1.6, if you want to back up data incrementally, you only need
to specify the last backup timestamp --lastbackupts in spec.br.options. For the
limitations of incremental backup, refer to Use BR to Back up and Restore Data.

• For more information about Azure Blob Storage configuration, refer to Azure Blob
Storage fields.

• Some parameters in spec.br are optional, such as logLevel and statusAddr. For
more information about BR configuration, refer to BR fields.

431

https://docs.pingcap.com/tidb/stable/br-usage-backup#back-up-incremental-data

• spec.azblob.secretName: fill in the name of the secret object, such as azblob-secret
↪→ .

• For v4.0.8 or a later version, BR can automatically adjust tikv_gc_life_time. You do
not need to configure the spec.tikvGCLifeTime and spec.from fields in the Backup
CR.

• For more information about the Backup CR fields, refer to Backup CR fields.

View the snapshot backup status
After you create the Backup CR, TiDB Operator starts the backup automatically. You

can view the backup status by running the following command:
kubectl get backup -n backup-test -o wide

From the output, you can find the following information for the Backup CR named
demo1-full-backup-azblob. The COMMITTS field indicates the time point of the snapshot
backup:
NAME TYPE MODE STATUS BACKUPPATH

↪→ COMMITTS ...
demo1-full-backup-azblob full snapshot Complete azure://my-container/my-

↪→ full-backup-folder/ 436979621972148225 ...

Log backup
You can use a Backup CR to describe the start and stop of a log backup task and manage

the log backup data. In this section, the example shows how to create a Backup CR named
demo1-log-backup-azblob. See the following detailed steps.

Description of the logSubcommand field
In the Backup Custom Resource (CR), you can use the logSubcommand field to control

the state of a log backup task. The logSubcommand field supports the following commands:

• log-start: initiates a new log backup task or resumes a paused task. Use this com-
mand to start the log backup process or resume a task from a paused state.

• log-pause: temporarily pauses the currently running log backup task. After pausing,
you can use the log-start command to resume the task.

• log-stop: permanently stops the log backup task. After executing this command, the
Backup CR enters a stopped state and cannot be restarted.

These commands provide fine-grained control over the lifecycle of log backup tasks,
enabling you to start, pause, resume, and stop tasks effectively to manage log data retention
in Kubernetes environments.

In TiDB Operator v1.5.4, v1.6.0, and earlier versions, you can use the logStop: true
↪→ /false field to stop or start log backup tasks. This field is retained for backward com-
patibility.

432

However, do not use logStop and logSubcommand fields in the same Backup CR, as this
is not supported. For TiDB Operator v1.5.5, v1.6.1, and later versions, it is recommended
to use the logSubcommand field to ensure clear and consistent configuration.

Start log backup

1. In the backup-test namespace, create a Backup CR named demo1-log-backup-
↪→ azblob.
kubectl apply -f log-backup-azblob.yaml

The content of log-backup-azblob.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-log-backup-azblob
namespace: backup-test

spec:
backupMode: log
logSubcommand: log-start
br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

azblob:
secretName: azblob-secret
container: my-container
prefix: my-log-backup-folder
#accessTier: Hot

2. Wait for the start operation to complete:
kubectl get jobs -n backup-test

NAME COMPLETIONS ...
backup-demo1-log-backup-azblob-log-start 1/1 ...

3. View the newly created Backup CR:
kubectl get backup -n backup-test

NAME MODE STATUS
demo1-log-backup-azblob log Running

433

View the log backup status
You can view the log backup status by checking the information of the Backup CR:

kubectl describe backup -n backup-test

From the output, you can find the following information for the Backup CR named demo1
↪→ -log-backup-azblob. The Log Checkpoint Ts field indicates the latest point in time
that can be recovered:
Status:
Backup Path: azure://my-container/my-log-backup-folder/
Commit Ts: 436568622965194754
Conditions:

Last Transition Time: 2022-10-10T04:45:20Z
Status: True
Type: Scheduled
Last Transition Time: 2022-10-10T04:45:31Z
Status: True
Type: Prepare
Last Transition Time: 2022-10-10T04:45:31Z
Status: True
Type: Running

Log Checkpoint Ts: 436569119308644661

Pause log backup
You can pause a log backup task by setting the logSubcommand field of the Backup

Custom Resource (CR) to log-pause. The following example shows how to pause the
demo1-log-backup-azblob CR created in Start log backup.
kubectl edit backup demo1-log-backup-azblob -n backup-test

To pause the log backup task, change the value of logSubcommand from log-start to
log-pause, then save and exit the editor.
kubectl apply -f log-backup-azblob.yaml

The modified content is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-log-backup-azblob
namespace: backup-test

spec:
backupMode: log
logSubcommand: log-pause

434

br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

azblob:
secretName: azblob-secret
container: my-container
prefix: my-log-backup-folder

You can verify that the STATUS of the demo1-log-backup-azblob Backup CR changes
from Running to Pause:
kubectl get backup -n backup-test

NAME MODE STATUS
demo1-log-backup-azblob log Pause

Resume log backup
If a log backup task is paused, you can resume it by setting the logSubcommand field

to log-start. The following example shows how to resume the demo1-log-backup-azblob
CR that was paused in Pause Log Backup.

Note:
This operation applies only to tasks in the Pause state. You cannot resume
tasks in the Fail or Stopped state.

kubectl edit backup demo1-log-backup-azblob -n backup-test

To resume the log backup task, change the value of logSubcommand from log-pause to
log-start, then save and exit the editor. The modified content is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-log-backup-azblob
namespace: backup-test

spec:
backupMode: log
logSubcommand: log-start
br:

435

cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

azblob:
secretName: azblob-secret
container: my-container
prefix: my-log-backup-folder
#accessTier: Hot

You can verify that the STATUS of the demo1-log-backup-azblob Backup CR changes
from Pause to Running:
kubectl get backup -n backup-test

NAME MODE STATUS
demo1-log-backup-azblob log Running

Stop log backup
You can stop a log backup task by setting the logSubcommand field of the Backup

Custom Resource (CR) to log-stop. The following example shows how to stop the demo1-
↪→ log-backup-azblob CR created in Start log backup.
kubectl edit backup demo1-log-backup-azblob -n backup-test

Change the value of logSubcommand to log-stop, then save and exit the editor. The
modified content is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-log-backup-azblob
namespace: backup-test

spec:
backupMode: log
logSubcommand: log-stop
br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

azblob:
secretName: azblob-secret
container: my-container
prefix: my-log-backup-folder
#accessTier: Hot

436

You can verify that the STATUS of the Backup CR named demo1-log-backup-azblob
changes from Running to Stopped:
kubectl get backup -n backup-test

NAME MODE STATUS
demo1-log-backup-azblob log Stopped

Stopped is the terminal state for log backup. In this state, you cannot change the backup
state again, but you can still clean up the log backup data.

In TiDB Operator v1.5.4, v1.6.0, and earlier versions, you can use the logStop: true
↪→ /false field to stop or start log backup tasks. This field is retained for backward com-
patibility.

Clean log backup data

1. Because you already created a Backup CR named demo1-log-backup-azblob when
you started log backup, you can clean the log data backup by modifying the same
Backup CR. The following example shows how to clean log backup data generated
before 2022-10-10T15:21:00+08:00.
kubectl edit backup demo1-log-backup-azblob -n backup-test

In the last line of the CR, append spec.logTruncateUntil: "2022-10-10T15
↪→ :21:00+08:00". Then save and quit the editor. The modified content is as
follows:

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-azblob
namespace: backup-test

spec:
backupMode: log
logSubcommand: log-start/log-pause/log-stop
br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

azblob:
secretName: azblob-secret
container: my-container
prefix: my-log-backup-folder
#accessTier: Hot

logTruncateUntil: "2022-10-10T15:21:00+08:00"

437

2. Wait for the clean operation to complete:
kubectl get jobs -n backup-test

NAME COMPLETIONS ...
...
backup-demo1-log-backup-azblob-log-truncate 1/1 ...

3. View the Backup CR information:
kubectl describe backup -n backup-test

...
Log Success Truncate Until: 2022-10-10T15:21:00+08:00
...

You can also view the information by running the following command:
kubectl get backup -n backup-test -o wide

NAME MODE STATUS ... LOGTRUNCATEUNTIL
demo1-log-backup log Complete ... 2022-10-10T15:21:00+08:00

Compact log backup
For TiDB v9.0.0 and later versions, you can use a CompactBackup CR to compact log

backup data into SST format, accelerating downstream PITR (Point-in-time recovery).
This section explains how to compact log backup based on the log backup example from

previous sections.

1. In the backup-test namespace, create a CompactBackup CR named demo1-compact-
↪→ backup.
kubectl apply -f compact-backup-demo1.yaml

The content of compact-backup-demo1.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: CompactBackup
metadata:
name: demo1-compact-backup
namespace: backup-test

spec:
startTs: "***"
endTs: "***"

438

concurrency: 8
maxRetryTimes: 2
br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

azblob:
secretName: azblob-secret
container: my-container
prefix: my-log-backup-folder

The startTs and endTs fields specify the time range for the logs to be compacted
by demo1-compact-backup. Any log that contains at least one write within this time
range will be included in the compaction process. As a result, the final compacted
data might include data written outside this range.
The azblob settings should be the same as the storage settings of the log backup to
be compacted. CompactBackup reads log files from the corresponding location and
compact them.

View the status of log backup compaction
After creating the CompactBackup CR, TiDB Operator automatically starts compacting

the log backup. You can check the backup status using the following command:
kubectl get cpbk -n backup-test

From the output, you can find the status of the CompactBackup CR named demo1-
↪→ compact-backup. An example output is as follows:
NAME STATUS PROGRESS

↪→ MESSAGE
demo1-compact-backup Complete [READ_META(17/17),COMPACT_WORK(1291/1291)]

If the STATUS field displays Complete, the compact log backup process has finished
successfully.

Backup CR examples
Back up data of all clusters

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-azblob
namespace: backup-test

spec:
backupType: full

439

serviceAccount: tidb-backup-manager
br:
cluster: demo1
sendCredToTikv: false
clusterNamespace: test1

azblob:
secretName: azblob-secret-ad
container: my-container
prefix: my-folder

Back up data of a single database
The following example backs up data of the db1 database.

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-azblob
namespace: backup-test

spec:
backupType: full
serviceAccount: tidb-backup-manager
tableFilter:
- "db1.*"
br:
cluster: demo1
sendCredToTikv: false
clusterNamespace: test1

azblob:
secretName: azblob-secret-ad
container: my-container
prefix: my-folder

Back up data of a single table
The following example backs up data of the db1.table1 table.

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-azblob
namespace: backup-test

spec:
backupType: full
serviceAccount: tidb-backup-manager

440

tableFilter:
- "db1.table1"
br:
cluster: demo1
sendCredToTikv: false
clusterNamespace: test1

azblob:
secretName: azblob-secret-ad
container: my-container
prefix: my-folder

Back up data of multiple tables using the table filter
The following example backs up data of the db1.table1 table and db1.table2 table.

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-azblob
namespace: backup-test

spec:
backupType: full
serviceAccount: tidb-backup-manager
tableFilter:
- "db1.table1"
- "db1.table2"
...
br:
cluster: demo1
sendCredToTikv: false
clusterNamespace: test1

azblob:
secretName: azblob-secret-ad
container: my-container
bucket: my-bucket
prefix: my-folder

7.4.6.1.3 Scheduled snapshot backup
You can set a backup policy to perform scheduled backups of the TiDB cluster, and set

a backup retention policy to avoid excessive backup items. A scheduled snapshot backup is
described by a custom BackupSchedule CR object. A snapshot backup is triggered at each
backup time point. Its underlying implementation is the ad-hoc snapshot backup.

Prerequisites: Prepare a scheduled backup environment

441

Refer to Prepare an ad-hoc backup environment.
Perform a scheduled snapshot backup
Depending on which method you choose to grant permissions to the remote storage,

perform a scheduled snapshot backup by doing one of the following:

• Method 1: If you grant permissions by access key, create the BackupSchedule CR,
and back up cluster data as described below:
kubectl apply -f backup-scheduler-azblob.yaml

The content of backup-scheduler-azblob.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: demo1-backup-schedule-azblob
namespace: backup-test

spec:
#maxBackups: 5
#pause: true
maxReservedTime: "3h"
schedule: "*/2 * * * *"
backupTemplate:
backupType: full
br:
cluster: demo1
clusterNamespace: test1
logLevel: info
statusAddr: ${status_addr}
concurrency: 4
rateLimit: 0
timeAgo: ${time}
checksum: true
sendCredToTikv: true

azblob:
secretName: azblob-secret-ad
container: my-container
prefix: my-folder

• Method 2: If you grant permissions by Azure AD, create the BackupSchedule CR,
and back up cluster data as described below:
kubectl apply -f backup-scheduler-azblob.yaml

442

The content of backup-scheduler-azblob.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: demo1-backup-schedule-azblob
namespace: backup-test

spec:
#maxBackups: 5
#pause: true
maxReservedTime: "3h"
schedule: "*/2 * * * *"
backupTemplate:
backupType: full
br:
cluster: demo1
sendCredToTikv: false
clusterNamespace: test1
logLevel: info
statusAddr: ${status_addr}
concurrency: 4
rateLimit: 0
timeAgo: ${time}
checksum: true

azblob:
secretName: azblob-secret-ad
container: my-container
prefix: my-folder

From the preceding content in backup-scheduler-azblob.yaml, you can see that the
backupSchedule configuration consists of two parts. One is the unique configuration of
backupSchedule, and the other is backupTemplate.

• For the unique configuration of backupSchedule, refer to BackupSchedule CR fields.
• backupTemplate specifies the configuration related to the cluster and remote storage,

which is the same as the spec configuration of the Backup CR.

After creating the scheduled snapshot backup, you can run the following command to
check the backup status:
kubectl get bks -n backup-test -o wide

You can run the following command to check all the backup items:

443

kubectl get backup -l tidb.pingcap.com/backup-schedule=demo1-backup-schedule
↪→ -azblob -n backup-test

7.4.6.1.4 Integrated management of scheduled snapshot backup and log
backup

You can use the BackupSchedule CR to integrate the management of scheduled snapshot
backup and log backup for TiDB clusters. By setting the backup retention time, you can
regularly recycle the scheduled snapshot backup and log backup, and ensure that you can
perform PITR recovery through the scheduled snapshot backup and log backup within the
retention period.

The following example creates a BackupSchedule CR named integrated-backup-
↪→ schedule-azblob. For more information about the authorization method, refer to
Azure account permissions.

Prerequisites: Prepare a scheduled snapshot backup environment
The steps to prepare for a scheduled snapshot backup are the same as those of Prepare

for an ad-hoc backup.
Create BackupSchedule

1. Create a BackupSchedule CR named integrated-backup-schedule-azblob in the
backup-test namespace.
kubectl apply -f integrated-backup-scheduler-azblob.yaml

The content of integrated-backup-scheduler-azblob.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: integrated-backup-schedule-azblob
namespace: backup-test

spec:
maxReservedTime: "3h"
schedule: "* */2 * * *"
backupTemplate:
backupType: full
cleanPolicy: Delete
br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

azblob:

444

secretName: azblob-secret
container: my-container
prefix: schedule-backup-folder-snapshot
#accessTier: Hot

logBackupTemplate:
backupMode: log
br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

azblob:
secretName: azblob-secret
container: my-container
prefix: schedule-backup-folder-log
#accessTier: Hot

In the above example of integrated-backup-scheduler-azblob.yaml, the
backupSchedule configuration consists of three parts: the unique configuration
of backupSchedule, the configuration of the snapshot backup backupTemplate, and
the configuration of the log backup logBackupTemplate.
For the field description of backupSchedule, refer to BackupSchedule CR fields.

2. After creating backupSchedule, use the following command to check the backup status:
kubectl get bks -n backup-test -o wide

A log backup task is created together with backupSchedule. You can check the log
backup name through the status.logBackup field of the backupSchedule CR.
kubectl describe bks integrated-backup-schedule-azblob -n backup-test

3. To perform data restoration for a cluster, you need to specify the backup path. You
can use the following command to check all the backup items under the scheduled
snapshot backup.
kubectl get bk -l tidb.pingcap.com/backup-schedule=integrated-backup-

↪→ schedule-azblob -n backup-test

The MODE field in the output indicates the backup mode. snapshot indicates the
scheduled snapshot backup, and log indicates the log backup.
NAME MODE STATUS

↪→
integrated-backup-schedule-azblob-2023-03-08t02-48-00 snapshot Complete

↪→
log-integrated-backup-schedule-azblob log Running

↪→

445

7.4.6.1.5 Integrated management of scheduled snapshot backup, log backup,
and compact log backup

To accelerate downstream recovery, you can enable CompactBackup CR in the
BackupSchedule CR. This feature periodically compacts log backup files in remote storage.
You must enable log backup before using log backup compaction. This section extends the
configuration from the previous section.

Prerequisites: Prepare for a scheduled snapshot backup
The steps to prepare for a scheduled snapshot backup are the same as that of Prepare

for an ad-hoc backup.
Create BackupSchedule

1. Create a BackupSchedule CR named integrated-backup-schedule-azblob in the
backup-test namespace.
kubectl apply -f integrated-backup-schedule-azblob.yaml

The content of integrated-backup-schedule-azblob.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: integrated-backup-schedule-azblob
namespace: backup-test

spec:
maxReservedTime: "3h"
schedule: "* */2 * * *"
backupTemplate:
backupType: full
cleanPolicy: Delete
br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

azblob:
secretName: azblob-secret
container: my-container
prefix: schedule-backup-folder-snapshot
#accessTier: Hot

logBackupTemplate:
backupMode: log
br:
cluster: demo1
clusterNamespace: test1

446

sendCredToTikv: true
azblob:
secretName: azblob-secret
container: my-container
prefix: schedule-backup-folder-log
#accessTier: Hot

compactBackupTemplate:
br:
cluster: demo1
clusterNamespace: test1
sendCredToTikv: true

azblob:
secretName: azblob-secret
container: my-container
prefix: schedule-backup-folder-log
#accessTier: Hot

In the preceding example of integrated-backup-schedule-azblob.yaml, the
backupSchedule configuration is based on the previous section, with the following
additions for compactBackup:

• Added the BackupSchedule.spec.compactInterval field to specify the time in-
terval for log backup compaction. It is recommended not to exceed the interval
of scheduled snapshot backups and to keep it between one-half to one-third of the
scheduled snapshot backup interval.

• Added the BackupSchedule.spec.compactBackupTemplate field. Ensure that
the BackupSchedule.spec.compactBackupTemplate.azblob configuration
matches the BackupSchedule.spec.logBackupTemplate.azblob configuration.

For the field description of backupSchedule, refer to BackupSchedule CR fields.

2. After creating backupSchedule, use the following command to check the backup status:
kubectl get bks -n backup-test -o wide

A compact log backup task is created together with backupSchedule. You can check
the CompactBackup CR using the following command:
kubectl get cpbk -n backup-test

7.4.6.1.6 Delete the backup CR
If you no longer need the backup CR, you can delete it by referring to Delete the Backup

CR.

447

7.4.6.1.7 Troubleshooting
If you encounter any problem during the backup process, refer to Common Deployment

Failures.

7.4.6.2 Restore Data from Azure Blob Storage Using BR
This document describes how to restore the backup data stored in Azure Blob Storage

to a TiDB cluster on Kubernetes, including two restoration methods:

• Full restoration. This method takes the backup data of snapshot backup and restores
a TiDB cluster to the time point of the snapshot backup.

• Point-in-time recovery (PITR). This method takes the backup data of both snapshot
backup and log backup and restores a TiDB cluster to any point in time.

The restore method described in this document is implemented based on CustomRe-
sourceDefinition (CRD) in TiDB Operator. For the underlying implementation, BR is used
to restore the data. BR stands for Backup & Restore, which is a command-line tool for
distributed backup and recovery of the TiDB cluster data.

PITR allows you to restore a new TiDB cluster to any point in time of the backup cluster.
To use PITR, you need the backup data of snapshot backup and log backup. During the
restoration, the snapshot backup data is first restored to the TiDB cluster, and then the
log backup data between the snapshot backup time point and the specified point in time is
restored to the TiDB cluster.

Note:

• BR is only applicable to TiDB v3.1 or later releases.
• PITR is only applicable to TiDB v6.3 or later releases.
• Data restored by BR cannot be replicated to a downstream cluster, be-

cause BR directly imports SST and LOG files to TiDB and the down-
stream cluster currently cannot access the upstream SST and LOG files.

7.4.6.2.1 Full restoration
This section provides an example about how to restore the backup data from the spec.

↪→ azblob.prefix folder of the spec.azblob.container bucket on Azure Blob Storage to
the demo2 TiDB cluster in the test2 namespace. The following are the detailed steps.

Prerequisites: Complete the snapshot backup
In this example, the my-full-backup-folder folder in the my-container bucket of

Azure Blob Storage stores the snapshot backup data. For steps of performing snapshot
backup, refer to Back up Data to Azure Blob Storage Using BR.

448

https://docs.pingcap.com/tidb/stable/backup-and-restore-overview

Step 1: Prepare the restoration environment
Before restoring backup data on Azure Blob Storage to TiDB using BR, take the following

steps to prepare the restore environment:

1. Create a namespace for managing restoration. The following example creates a
restore-test namespace:
kubectl create namespace restore-test

2. Download backup-rbac.yaml, and execute the following command to create the role-
based access control (RBAC) resources in the restore-test namespace:
kubectl apply -f backup-rbac.yaml -n restore-test

3. Grant permissions to the remote storage for the restore-test namespace. You can
grant permissions to Azure Blob Storage by two methods. For details, refer to Azure
account permissions. After you grant the permissions, the restore-test namespace
has a secret object named azblob-secret or azblob-secret-ad.

Note:
The role owned by the account must have the permission to modify blob
at least (for example, a contributor).
When you create a secret object, you can use a customized name for the
object. In this document, the name is azblob-secret.

4. For a TiDB version earlier than v4.0.8, you also need to complete the following prepa-
ration steps. For TiDB v4.0.8 or a later version, skip these preparation steps.

1. Make sure that you have the SELECT and UPDATE privileges on the mysql.tidb
table of the target database so that the Restore CR can adjust the GC time
before and after the restore.

2. Create the restore-demo2-tidb-secret secret to store the account and pass-
word to access the TiDB cluster:
kubectl create secret generic restore-demo2-tidb-secret --from-

↪→ literal=password=${password} --namespace=test2

Step 2: Restore the backup data to a TiDB cluster
Create a Restore CR named demo2-restore-azblob in the restore-test namespace

to restore cluster data as described below:
kubectl apply -f restore-full-azblob.yaml

449

https://github.com/pingcap/tidb-operator/blob/v1.6.1/manifests/backup/backup-rbac.yaml
https://learn.microsoft.com/en-us/azure/role-based-access-control/built-in-roles#contributor

The content of restore-full-azblob.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Restore
metadata:
name: demo2-restore-azblob
namespace: test2

spec:
br:
cluster: demo2
clusterNamespace: test2
logLevel: info
statusAddr: ${status_addr}
concurrency: 4
rateLimit: 0
timeAgo: ${time}
checksum: true
sendCredToTikv: true

azblob:
secretName: azblob-secret
container: my-container
prefix: my-folder

When configuring restore-azblob.yaml, note the following:

• For more information about Azure Blob Storage configuration, refer to Azure Blob
Storage fields.

• Some parameters in .spec.br are optional, such as logLevel, statusAddr,
concurrency, rateLimit, checksum, timeAgo, and sendCredToTikv. For more
information about BR configuration, refer to BR fields.

• spec.azblob.secretName: fill in the name of the secret object, such as azblob-secret
↪→ .

• For v4.0.8 or a later version, BR can automatically adjust tikv_gc_life_time. You
do not need to configure the spec.to fields in the Restore CR.

• For more information about the Restore CR fields, refer to Restore CR fields.

After creating the Restore CR, execute the following command to check the restore
status:
kubectl get restore -n restore-test -o wide

NAME STATUS ...
demo2-restore-azblob Complete ...

450

7.4.6.2.2 Point-in-time recovery
This section provides an example about how to perform point-in-time recovery (PITR)

in a demo3 cluster in the test3 namespace. PITR takes two steps:

1. Restore the cluster to the time point of the snapshot backup using the snapshot
backup data in the spec.pitrFullBackupStorageProvider.azblob.prefix folder of
the spec.pitrFullBackupStorageProvider.azblob.container bucket.

2. Restore the cluster to any point in time using the log backup data in the spec.azblob
↪→ .prefix folder of the spec.azblob.container bucket.

The detailed steps are as follows.
Prerequisites: Complete data backup
In this example, the my-container bucket of Azure Blob Storage stores the following

two types of backup data:

• The snapshot backup data generated during the log backup, stored in the my-full-
↪→ backup-folder-pitr folder.

• The log backup data, stored in the my-log-backup-folder-pitr folder.

For detailed steps of how to perform data backup, refer to Back up data to Azure Blob
Storage.

Note:
The specified restoration time point must be between the snapshot backup
time point and the log backup checkpoint-ts.

Step 1: Prepare the restoration environment
Before restoring backup data on Azure Blob Storage to TiDB using BR, take the following

steps to prepare the restoration environment:

1. Create a namespace for managing restoration. The following example creates a
restore-test namespace:
kubectl create namespace restore-test

2. Download backup-rbac.yaml, and execute the following command to create the role-
based access control (RBAC) resources in the restore-test namespace:
kubectl apply -f backup-rbac.yaml -n restore-test

451

https://github.com/pingcap/tidb-operator/blob/v1.6.1/manifests/backup/backup-rbac.yaml

3. Grant permissions to the remote storage for the restore-test namespace. You can
grant permissions to Azure Blob Storage by two methods. For details, refer to Azure
account permissions. After you grant the permissions, the restore-test namespace
has a secret object named azblob-secret or azblob-secret-ad.

Note:
The role owned by the account must have the permission to access blob
at least (for example, a reader).
When you create a secret object, you can use a customized name for the
object. In this document, the name is azblob-secret.

Step 2: Restore the backup data to a TiDB cluster
The example in this section restores the snapshot backup data to the cluster. The

specified restoration time point must be between the time point of snapshot backup and the
Log Checkpoint Ts of log backup.

The detailed steps are as follows:

1. Create a Restore CR named demo3-restore-azblob in the restore-test namespace
and specify the restoration time point as 2022-10-10T17:21:00+08:00:
kubectl apply -f restore-point-azblob.yaml

The content of restore-point-azblob.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Restore
metadata:
name: demo3-restore-azblob
namespace: restore-test

spec:
restoreMode: pitr
br:
cluster: demo3
clusterNamespace: test3

azblob:
secretName: azblob-secret
container: my-container
prefix: my-log-backup-folder-pitr

pitrRestoredTs: "2022-10-10T17:21:00+08:00"
pitrFullBackupStorageProvider:
azblob:
secretName: azblob-secret

452

https://learn.microsoft.com/en-us/azure/role-based-access-control/built-in-roles#reader

container: my-container
prefix: my-full-backup-folder-pitr

When you configure restore-point-azblob.yaml, note the following:

• spec.restoreMode: when you perform PITR, set this field to pitr. The default
value of this field is snapshot, which means snapshot backup.

2. Wait for the restoration operation to complete:
kubectl get jobs -n restore-test

NAME COMPLETIONS ...
restore-demo3-restore-azblob 1/1 ...

You can also check the restoration status by using the following command:
kubectl get restore -n restore-test -o wide

NAME STATUS ...
demo3-restore-azblob Complete ...

7.4.6.2.3 Troubleshooting
If you encounter any problem during the restoration process, refer to Common Deploy-

ment Failures.

7.4.6.3 Back Up TiDB Data to Azure Blob Storage Using Dumpling
This document describes how to use Dumpling to back up data from a TiDB cluster

deployed on Azure AKS to Azure Blob Storage. Dumpling is a data export tool that exports
data from TiDB or MySQL in SQL or CSV format for full data backup or export.

7.4.6.3.1 Prepare the Dumpling node pool
You can run Dumpling in an existing node pool or create a dedicated node pool. The

following example shows how to create a new node pool. Replace the variables as needed:

• ${clusterName}: AKS cluster name
• ${resourceGroup}: Resource group name

az aks nodepool add --name dumpling \
--cluster-name ${clusterName} \
--resource-group ${resourceGroup} \
--zones 1 2 3 \
--node-count 1 \
--labels dedicated=dumpling

453

https://docs.pingcap.com/tidb/stable/dumpling-overview/

7.4.6.3.2 Deploy the Dumpling job
This section describes how to configure, deploy, and monitor Dumpling jobs.
Configure the Dumpling job
The following is a sample configuration for the Dumpling job. Replace the variables with

your specific values as needed:

• ${name}: Job name
• ${namespace}: Kubernetes namespace
• ${version}: Dumpling image version
• For Dumpling parameters, refer to the Option list of Dumpling.

dumpling_job.yaml

apiVersion: batch/v1
kind: Job
metadata:
name: ${name}
namespace: ${namespace}
labels:
app.kubernetes.io/component: dumpling

spec:
template:
spec:
nodeSelector:
dedicated: dumpling

affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:

matchExpressions:
- key: app.kubernetes.io/component
operator: In
values:
- dumpling

topologyKey: kubernetes.io/hostname
containers:
- name: ${name}
image: pingcap/dumpling:${version}
command:
- /bin/sh
- -c
- |
/dumpling \

454

https://docs.pingcap.com/tidb/stable/dumpling-overview/#option-list-of-dumpling

--host=basic-tidb \
--port=4000 \
--user=root \
--password='' \
--s3.region=us-west-2 \
--threads=16 \
--rows=20000 \
--filesize=256MiB \
--database=test \
--filetype=csv \
--output=azure://external/testfolder?account-name=${

↪→ accountname}&account-key=${accountkey}
restartPolicy: Never

backoffLimit: 0

Create the Dumpling job
Run the following commands to create the Dumpling job. Replace the variables with

your specific values as needed:
export name=dumpling
export version=v8.5.1
export namespace=tidb-cluster
export accountname=<your-account-name>
export accountkey=<your-account-key>

envsubst < dumpling_job.yaml | kubectl apply -f -

Check the Dumpling job status
Run the following command to check the Pod status of the Dumpling job. Replace the

variables with your specific values as needed:
kubectl -n ${namespace} get pod ${name}

View Dumpling job logs
Run the following command to view the logs of the Dumpling job. Replace the variables

with your specific values as needed:
kubectl -n ${namespace} logs pod ${name}

7.4.6.4 Restore Backup Data from Azure Blob Storage Using TiDB Lightning

This document describes how to use TiDB Lightning to restore backup data from Azure
Blob Storage to a TiDB cluster. TiDB Lightning is a tool for fast full data import into a
TiDB cluster. This document uses the physical import mode. The following example shows
how to restore backup data from Azure Blob Storage to a TiDB cluster.

455

https://docs.pingcap.com/tidb/stable/tidb-lightning-overview/
https://docs.pingcap.com/tidb/stable/tidb-lightning-physical-import-mode/

7.4.6.4.1 Prepare a node pool for TiDB Lightning
You can run TiDB Lightning in an existing node pool or create a dedicated node pool.

The following example shows how to create a new node pool. Replace the variables as needed:

• ${clusterName}: AKS cluster name
• ${resourceGroup}: Resource group name

az aks nodepool add --name lightning \
--cluster-name ${clusterName} \
--resource-group ${resourceGroup} \
--zones 1 2 3 \
--node-count 1 \
--labels dedicated=lightning

7.4.6.4.2 Deploy the TiDB Lightning job
This section describes how to configure, deploy, and monitor the TiDB Lightning job.
Configure the TiDB Lightning job
The following is a sample configuration file (lightning_job.yaml) for the TiDB Light-

ning job. Replace the variables as needed:

• ${name}: Job name
• ${namespace}: Kubernetes namespace
• ${version}: TiDB Lightning image version
• ${storageClassName}: Storage class name
• ${storage}: Storage size
• For TiDB Lightning parameters, refer to TiDB Lightning Configuration.

lightning_job.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: ${name}-sorted-kv
namespace: ${namespace}

spec:
storageClassName: ${storageClassName}
accessModes:
- ReadWriteOnce

resources:
requests:
storage: ${storage}

456

https://docs.pingcap.com/tidb/stable/tidb-lightning-configuration/

apiVersion: v1
kind: ConfigMap
metadata:
name: ${name}
namespace: ${namespace}

data:
config-file: |
[lightning]
level = "info"

[checkpoint]
enable = true

[tidb]
host = "basic-tidb"
port = 4000
user = "root"
password = ""
status-port = 10080
pd-addr = "basic-pd:2379"

apiVersion: batch/v1
kind: Job
metadata:
name: ${name}
namespace: ${namespace}
labels:
app.kubernetes.io/component: lightning

spec:
template:
spec:
nodeSelector:
dedicated: lightning

affinity:
podAntiAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
- labelSelector:

matchExpressions:
- key: app.kubernetes.io/component
operator: In
values:
- lightning

topologyKey: kubernetes.io/hostname
containers:

457

- name: tidb-lightning
image: pingcap/tidb-lightning:${version}
command:
- /bin/sh
- -c
- |
/tidb-lightning \

--status-addr=0.0.0.0:8289 \
--backend=local \
--sorted-kv-dir=/var/lib/sorted-kv \
--d=azure://external/testfolder?account-name=${accountname}&

↪→ account-key=${accountkey} \
--config=/etc/tidb-lightning/tidb-lightning.toml \
--log-file="-"

volumeMounts:
- name: config
mountPath: /etc/tidb-lightning

- name: sorted-kv
mountPath: /var/lib/sorted-kv

volumes:
- name: config
configMap:
name: ${name}
items:
- key: config-file
path: tidb-lightning.toml

- name: sorted-kv
persistentVolumeClaim:
claimName: ${name}-sorted-kv

restartPolicy: Never
backoffLimit: 0

Create the TiDB Lightning job
Run the following commands to create the TiDB Lightning job:

export name=lightning
export version=v8.5.1
export namespace=tidb-cluster
export storageClassName=<your-storage-class>
export storage=250G
export accountname=<your-account-name>
export accountkey=<your-account-key>

envsubst < lightning_job.yaml | kubectl apply -f -

458

Check the TiDB Lightning job status
Run the following command to check the Pod status of the TiDB Lightning job:

kubectl -n ${namespace} get pod ${name}

View TiDB Lightning job logs
Run the following command to view the logs of the TiDB Lightning job:

kubectl -n ${namespace} logs pod ${name}

7.4.7 Persistent Volumes

7.4.7.1 Back up Data to PV
This document describes how to back up the data of a TiDB cluster on Kubernetes to

Persistent Volumes (PVs). PVs in this documentation can be any Kubernetes supported PV
types. This document uses NFS as an example PV type.

The backup method described in this document is implemented based on CustomRe-
sourceDefinition (CRD) in TiDB Operator. For the underlying implementation, BR is used
to get the backup data of the TiDB cluster, and then send the data to PVs. BR stands for
Backup & Restore, which is a command-line tool for distributed backup and recovery of the
TiDB cluster data.

7.4.7.1.1 Usage scenarios
If you have the following backup needs, you can use BR to make an ad-hoc backup or

scheduled snapshot backup of the TiDB cluster data to PVs:

• To back up a large volume of data at a fast speed
• To get a direct backup of data as SST files (key-value pairs)

For other backup needs, refer to Backup and Restore Overview to choose an appropriate
backup method.

Note:

• BR is only applicable to TiDB v3.1 or later releases.
• Data that is backed up using BR can only be restored to TiDB instead

of other databases.

459

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://docs.pingcap.com/tidb/stable/backup-and-restore-overview

7.4.7.1.2 Ad-hoc backup
Ad-hoc backup supports both snapshot backup and incremental backup.
To get an Ad-hoc backup, you need to create a Backup Custom Resource (CR) object to

describe the backup details. Then, TiDB Operator performs the specific backup operation
based on this Backup object. If an error occurs during the backup process, TiDB Operator
does not retry, and you need to handle this error manually.

This document provides an example about how to back up the data of the demo1 TiDB
cluster in the test1 Kubernetes namespace to NFS. The following are the detailed steps.

Step 1: Prepare for an ad-hoc backup

1. Download backup-rbac.yaml to the server that runs the backup task.

2. Execute the following command to create the role-based access control (RBAC) re-
sources in the test1 namespace:
kubectl apply -f backup-rbac.yaml -n test1

3. Make sure that the NFS server is accessible from your Kubernetes cluster, and you
have configured TiKV to mount the same NFS server directory to the same local path
as in backup jobs. To mount NFS for TiKV, refer to the configuration below:
spec:
tikv:
additionalVolumes:
Specify volume types that are supported by Kubernetes, Ref: https

↪→ ://kubernetes.io/docs/concepts/storage/persistent-volumes/#
↪→ types-of-persistent-volumes

- name: nfs
nfs:
server: 192.168.0.2
path: /nfs

additionalVolumeMounts:
This must match `name` in `additionalVolumes`
- name: nfs
mountPath: /nfs

4. For a TiDB version earlier than v4.0.8, you also need to complete the following prepa-
ration steps. For TiDB v4.0.8 or a later version, skip these preparation steps.

1. Make sure that you have the SELECT and UPDATE privileges on the mysql.tidb
table of the backup database so that the Backup CR can adjust the GC time
before and after the backup.

2. Create the backup-demo1-tidb-secret secret to store the account and password
to access the TiDB cluster:

460

https://github.com/pingcap/tidb-operator/blob/v1.6.1/manifests/backup/backup-rbac.yaml

kubectl create secret generic backup-demo1-tidb-secret --from-
↪→ literal=password=${password} --namespace=test1

Step 2: Perform an ad-hoc backup

1. Create the Backup CR, and back up cluster data to NFS as described below:
kubectl apply -f backup-nfs.yaml

The content of backup-nfs.yaml is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-nfs
namespace: test1

spec:
backupType: full
br:
cluster: demo1
clusterNamespace: test1
logLevel: info
statusAddr: ${status-addr}
concurrency: 4
rateLimit: 0
checksum: true
options:
- --lastbackupts=420134118382108673

local:
prefix: backup-nfs
volume:
name: nfs
nfs:
server: ${nfs_server_ip}
path: /nfs

volumeMount:
name: nfs
mountPath: /nfs

When configuring backup-nfs.yaml, note the following:

• If you want to back up data incrementally, you only need to specify the last
backup timestamp --lastbackupts in spec.br.options. For the limitations of
incremental backup, refer to Use BR to Back up and Restore Data.

461

https://docs.pingcap.com/tidb/stable/br-usage-backup#back-up-incremental-data

• spec.local refers to the configuration related to PVs. For more information
about PV configuration, refer to Local storage fields.

• Some parameters in spec.br are optional, such as logLevel, statusAddr,
concurrency, rateLimit, checksum, and timeAgo. For more information about
spec.br fields, refer to BR fields.

• For v4.0.8 or a later version, BR can automatically adjust tikv_gc_life_time.
You do not need to configure spec.tikvGCLifeTime and spec.from fields in the
Backup CR.

• For more information about the Backup CR fields, refer to Backup CR fields.

2. After creating the Backup CR, TiDB Operator automatically starts the backup task.
You can use the following command to check the backup status:
kubectl get bk -n test1 -owide

Backup CR examples
Back up data of all clusters

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-nfs
namespace: test1

spec:
backupType: full
br:
cluster: demo1
clusterNamespace: test1

local:
prefix: backup-nfs
volume:
name: nfs
nfs:
server: ${nfs_server_ip}
path: /nfs

volumeMount:
name: nfs
mountPath: /nfs

Back up data of a single database
The following example backs up data of the db1 database.

462

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-nfs
namespace: test1

spec:
backupType: full
tableFilter:
- "db1.*"
br:
cluster: demo1
clusterNamespace: test1

local:
prefix: backup-nfs
volume:
name: nfs
nfs:
server: ${nfs_server_ip}
path: /nfs

volumeMount:
name: nfs
mountPath: /nfs

Back up data of a single table
The following example backs up data of the db1.table1 table.

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-nfs
namespace: test1

spec:
backupType: full
tableFilter:
- "db1.table1"
br:
cluster: demo1
clusterNamespace: test1

local:
prefix: backup-nfs
volume:
name: nfs

463

nfs:
server: ${nfs_server_ip}
path: /nfs

volumeMount:
name: nfs
mountPath: /nfs

Back up data of multiple tables using the table filter
The following example backs up data of the db1.table1 table and db1.table2 table.

apiVersion: pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-nfs
namespace: test1

spec:
backupType: full
tableFilter:
- "db1.table1"
- "db1.table2"
br:
cluster: demo1
clusterNamespace: test1

local:
prefix: backup-nfs
volume:
name: nfs
nfs:
server: ${nfs_server_ip}
path: /nfs

volumeMount:
name: nfs
mountPath: /nfs

7.4.7.1.3 Scheduled snapshot backup
You can set a backup policy to perform scheduled backups of the TiDB cluster, and set

a backup retention policy to avoid excessive backup items. A scheduled snapshot backup is
described by a custom BackupSchedule CR object. A snapshot backup is triggered at each
backup time point. Its underlying implementation is the ad-hoc snapshot backup.

Step 1: Prepare for a scheduled snapshot backup
The steps to prepare for a scheduled snapshot backup are the same as that of Prepare

for an ad-hoc backup.

464

Step 2: Perform a scheduled snapshot backup

1. Create the BackupSchedule CR, and back up cluster data as described below:
kubectl apply -f backup-schedule-nfs.yaml

The content of backup-schedule-nfs.yaml is as follows:

yaml --- apiVersion: pingcap.com/v1alpha1 kind: BackupSchedule
↪→ metadata: name: demo1-backup-schedule-nfs namespace: test1 spec:
↪→ #maxBackups: 5 #pause: true maxReservedTime: "3h" schedule:
↪→ "*/2 * * * *" backupTemplate: br: cluster: demo1 clusterNamespace
↪→ : test1 # logLevel: info # statusAddr: ${status-addr} #
↪→ concurrency: 4 # rateLimit: 0 # checksum: true local:
↪→ prefix: backup-nfs volume: name: nfs nfs
↪→ : server: ${nfs_server_ip} path: /nfs volumeMount
↪→ : name: nfs mountPath: /nfs
From the `backup-schedule-nfs.yaml` example above, you can see that the `

↪→ backupSchedule` configuration consists of two parts. One is the
↪→ unique configuration of `backupSchedule`, and the other is `
↪→ backupTemplate`.

- For the unique configuration of `backupSchedule`, refer to [BackupSchedule
↪→ CR fields](#backupschedule-cr-fields).

- `backupTemplate` specifies the configuration related to the cluster and
↪→ remote storage, which is the same as the `spec` configuration of [the
↪→ `Backup` CR](#backup-cr-fields).

2. After creating the scheduled snapshot backup, use the following command to check the
backup status:
kubectl get bks -n test1 -owide

Use the following command to check all the backup items:
kubectl get bk -l tidb.pingcap.com/backup-schedule=demo1-backup-

↪→ schedule-nfs -n test1

7.4.7.1.4 Delete the backup CR
If you no longer need the backup CR, refer to Delete the Backup CR.

7.4.7.1.5 Troubleshooting
If you encounter any problem during the backup process, refer to Common Deployment

Failures.

465

7.4.7.2 Restore Data from PV
This document describes how to restore the TiDB cluster data backed up using TiDB

Operator on Kubernetes. PVs in this documentation can be any Kubernetes supported PV
types. This document shows how to restore data from NFS to TiDB.

The restore method described in this document is implemented based on CustomRe-
sourceDefinition (CRD) in TiDB Operator. For the underlying implementation, BR is used
to restore the data. BR stands for Backup & Restore, which is a command-line tool for
distributed backup and recovery of the TiDB cluster data.

7.4.7.2.1 Usage scenarios
After backing up TiDB cluster data to PVs using BR, if you need to recover the backup

SST (key-value pairs) files from PVs to a TiDB cluster, you can follow steps in this document
to restore the data using BR.

Note:

• BR is only applicable to TiDB v3.1 or later releases.
• Data restored by BR cannot be replicated to a downstream cluster, be-

cause BR directly imports SST files to TiDB and the downstream cluster
currently cannot access the upstream SST files.

7.4.7.2.2 Step 1: Prepare the restore environment
Before restoring backup data on PVs to TiDB using BR, take the following steps to

prepare the restore environment:

1. Download backup-rbac.yaml.

2. Execute the following command to create the role-based access control (RBAC) re-
sources in the test2 namespace:
kubectl apply -f backup-rbac.yaml -n test2

3. Make sure that the NFS server is accessible from your Kubernetes cluster.

4. For a TiDB version earlier than v4.0.8, you also need to complete the following prepa-
ration steps. For TiDB v4.0.8 or a later version, skip these preparation steps.

1. Make sure that you have the SELECT and UPDATE privileges on the mysql.tidb
table of the target database so that the Restore CR can adjust the GC time
before and after the restore.

466

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://docs.pingcap.com/tidb/stable/backup-and-restore-overview
https://github.com/pingcap/tidb-operator/blob/v1.6.1/manifests/backup/backup-rbac.yaml

2. Create the restore-demo2-tidb-secret secret to store the account and pass-
word to access the TiDB cluster:
kubectl create secret generic restore-demo2-tidb-secret --from-

↪→ literal=user=root --from-literal=password=<password> --
↪→ namespace=test2

7.4.7.2.3 Step 2: Restore the backup data to a TiDB cluster

1. Create the Restore custom resource (CR), and restore the specified data to your
cluster:
kubectl apply -f restore.yaml

The content of the restore.yaml file is as follows:

apiVersion: pingcap.com/v1alpha1
kind: Restore
metadata:
name: demo2-restore-nfs
namespace: test2

spec:
backupType: full
br:
cluster: demo2
clusterNamespace: test2
logLevel: info
statusAddr: ${status-addr}
concurrency: 4
rateLimit: 0
checksum: true

local:
prefix: backup-nfs
volume:
name: nfs
nfs:
server: ${nfs_server_if}
path: /nfs

volumeMount:
name: nfs
mountPath: /nfs

When configuring restore.yaml, note the following:

467

• The example above restores data from the local://${.spec.local.volume.nfs
↪→ .path}/${.spec.local.prefix}/ directory on NFS to the demo2 TiDB clus-
ter in the test2 namespace. For more information about PV configuration, refer
to Local storage fields.

• Some parameters in spec.br are optional, such as logLevel, statusAddr,
concurrency, rateLimit, checksum, timeAgo, and sendCredToTikv. For more
information about .spec.br, refer to BR fields.

• For v4.0.8 or a later version, BR can automatically adjust tikv_gc_life_time.
You do not need to configure the spec.to field in the Restore CR.

• For more information about the Restore CR fields, refer to Restore CR fields.

2. After creating the Restore CR, execute the following command to check the restore
status:
kubectl get rt -n test2 -owide

7.4.7.2.4 Troubleshooting
If you encounter any problem during the restore process, refer to Common Deployment

Failures.

7.4.8 Snapshot Backup and Restore across Multiple Kubernetes

7.4.8.1 BR Federation Architecture and Processes
BR Federation is a system designed to back up and restore TiDB clusters deployed across

multiple Kubernetes using EBS snapshots.
Normally, TiDB Operator can only access the Kubernetes cluster where it is deployed.

This means a TiDB Operator can only back up TiKV volumes’ snapshots within its own
Kubernetes cluster. However, to perform EBS snapshot backup and restore across multiple
Kubernetes clusters, a coordinator role is required. This is where the BR Federation comes
in.

This document outlines the architecture of the BR Federation and the processes involved
in backup and restoration.

7.4.8.1.1 BR Federation architecture
BR Federation operates as the control plane, interacting with the data plane, which

includes each Kubernetes cluster where TiDB components are deployed. The interaction is
facilitated through the Kubernetes API Server.

BR Federation coordinates Backup and Restore Custom Resources (CRs) in the data
plane to accomplish backup and restoration across multiple Kubernetes clusters.

468

Figure 5: BR Federation architecture

7.4.8.1.2 Backup process
Backup process in data plane
The backup process in the data plane consists of three phases:

1. Phase One: TiDB Operator schedules a backup pod to request PD to pause region
scheduling and Garbage Collection (GC). As each TiKV instance might take snap-
shots at different times, pausing scheduling and GC can avoid data inconsistencies
between TiKV instances during snapshot taking. Since the TiDB components are
interconnected across multiple Kubernetes clusters, executing this operation in one
Kubernetes cluster affects the entire TiDB cluster.

2. Phase Two: TiDB Operator collects meta information such as TidbCluster CR and
EBS volumes, and then schedules another backup pod to request AWS API to create
EBS snapshots. This phase must be executed in each Kubernetes cluster.

3. Phase Three: After EBS snapshots are completed, TiDB Operator deletes the first
backup pod to resume region scheduling and GC for the TiDB cluster. This operation
is required only in the Kubernetes cluster where Phase One was executed.

469

Figure 6: backup process in data plane

Backup orchestration process
The orchestration process of Backup from the control plane to the data plane is as follows:

470

Figure 7: backup orchestration process

7.4.8.1.3 Restore process
Restore process in data plane
The restore process in the data plane consists of three phases:

1. Phase One: TiDB Operator schedules a restore pod to request the AWS API to
restore the EBS volumes using EBS snapshots based on the backup information. The

471

volumes are then mounted onto the TiKV nodes, and TiKV instances are started in
recovery mode. This phase must be executed in each Kubernetes cluster.

2. Phase Two: TiDB Operator schedules another restore pod to restore all raft logs and
KV data in TiKV instances to a consistent state, and then instructs TiKV instances to
exit recovery mode. As TiKV instances are interconnected across multiple Kubernetes
clusters, this operation can restore all TiKV data and only needs to be executed in one
Kubernetes cluster.

3. Phase Three: TiDB Operator restarts all TiKV instances to run in normal mode,
and start TiDB finally. This phase must be executed in each Kubernetes cluster.

472

Figure 8: restore process in data plane

Restore orchestration process
The orchestration process of Restore from the control plane to the data plane is as

follows:

473

Figure 9: restore orchestration process

7.4.8.2 Deploy BR Federation on Kubernetes
This document describes how to deploy BR Federation across multiple Kubernetes clus-

ters.

474

7.4.8.2.1 Prerequisites
Before deploy BR Federation on Kubernetes cluster, make sure you have met the follow-

ing prerequisites:

• Kubernetes version must be >= v1.24.
• You must have multiple Kubernetes clusters.
• You have deployed TiDB Operator for all the Kubernetes clusters that serve as data

planes.

7.4.8.2.2 Step 1: Generate a kubeconfig file in data planes
The BR Federation manages Kubernetes clusters of data planes by accessing their API

servers. To authenticate and authorize itself in the API servers, BR Federation requires a
kubeconfig file. The users or service accounts in the kubeconfig file need to have at least all
the permissions of backups.pingcap.com and restores.pingcap.com CRD.

You can get the kubeconfig file from the Kubernetes cluster administrator. However, if
you have permission to access all the data planes, you can generate the kubeconfig file on
your own.

Step 1.1: Create RBAC resources in data planes
To enable the BR Federation to manipulate Backup and Restore CR, you need to create

the following resources in every data plane.
apiVersion: v1
kind: ServiceAccount
metadata:
name: br-federation-member
namespace: tidb-admin

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: br-federation-manager:br-federation-member

rules:
- apiGroups:
- pingcap.com
resources:
- backups
- restores
verbs:
- '*'

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:

475

name: br-federation-manager:br-federation-member
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: br-federation-manager:br-federation-member

subjects:
- kind: ServiceAccount
name: br-federation-member
namespace: tidb-admin

For Kubernetes >= v1.24, to let external applications access the Kubernetes API server,
you need to manually create a service account secret as follows:
apiVersion: v1
kind: Secret
type: kubernetes.io/service-account-token
metadata:
name: br-federation-member-secret
namespace: tidb-admin
annotations:
kubernetes.io/service-account.name: "br-federation-member"

Step 1.2: Generate kubeconfig files
Execute the following script for every data plane.

for Kubernetes < 1.24
export TOKEN_SECRET_NAME=$(kubectl -n tidb-admin get serviceaccount br-

↪→ federation-member -o=jsonpath='{.secrets[0].name}')
for Kubernetes >= 1.24, the service account secret should be created

↪→ manually as above, so you should use its name as value of
↪→ TOKEN_SECRET_NAME

export TOKEN_SECRET_NAME=br-federation-member-secret
export USER_TOKEN_VALUE=$(kubectl -n tidb-admin get secret/${

↪→ TOKEN_SECRET_NAME} -o=go-template='{{.data.token}}' | base64 --decode
↪→)

export CURRENT_CONTEXT=$(kubectl config current-context)
export CURRENT_CLUSTER=$(kubectl config view --raw -o=go-template='{{range .

↪→ contexts}}{{if eq .name "'''${CURRENT_CONTEXT}'''"}}{{ index .context
↪→ "cluster" }}{{end}}{{end}}')

export CLUSTER_CA=$(kubectl config view --raw -o=go-template='{{range .
↪→ clusters}}{{if eq .name "'''${CURRENT_CLUSTER}'''"}}"{{with index .
↪→ cluster "certificate-authority-data" }}{{.}}{{end}}"{{ end }}{{ end
↪→ }}')

export CLUSTER_SERVER=$(kubectl config view --raw -o=go-template='{{range .
↪→ clusters}}{{if eq .name "'''${CURRENT_CLUSTER}'''"}}{{ .cluster.
↪→ server }}{{end}}{{ end }}')

476

you should modify this value in different data plane
export DATA_PLANE_SYMBOL="a"

cat << EOF > {k8s-name}-kubeconfig
apiVersion: v1
kind: Config
current-context: ${DATA_PLANE_SYMBOL}
contexts:
- name: ${DATA_PLANE_SYMBOL}
context:
cluster: ${CURRENT_CLUSTER}
user: br-federation-member-${DATA_PLANE_SYMBOL}
namespace: kube-system

clusters:
- name: ${CURRENT_CLUSTER}
cluster:
certificate-authority-data: ${CLUSTER_CA}
server: ${CLUSTER_SERVER}

users:
- name: br-federation-member-${DATA_PLANE_SYMBOL}
user:
token: ${USER_TOKEN_VALUE}

EOF

The environment variable $DATA_PLANE_SYMBOL represents the name of the data plane
cluster. Make sure that you provide a brief and unique name. In the preceding script, you
use this variable as the context name for kubeconfig. The context name will be used as
k8sClusterName in both the VolumeBackup and VolumeRestore CR.

Step 1.3: Merge multiple kubeconfig files into one
After following the previous steps to generate kubeconfig, you now have multiple kube-

config files. You need to merge them into a single kubeconfig file.
Assume that you have 3 kubeconfig files with file paths: kubeconfig-path1, kubeconfig

↪→ -path2, kubeconfig-path3. To merge these files into one kubeconfig file with file path
data-planes-kubeconfig, execute the following command:
KUBECONFIG=${kubeconfig-path1}:${kubeconfig-path2}:${kubeconfig-path3}

↪→ kubectl config view --flatten > ${data-planes-kubeconfig}

7.4.8.2.3 Step 2: Deploy BR Federation in the control plane
To deploy the BR Federation, you need to select one Kubernetes cluster as the control

plane. The following steps must be executed on the control plane.
Step 2.1: Create CRD

477

The BR Federation uses Custom Resource Definition (CRD) to extend Kubernetes. Be-
fore using the BR Federation, you must create the CRD in your Kubernetes cluster. After
using the BR Federation Manager, you only need to perform the operation once.
kubectl create -f https://raw.githubusercontent.com/pingcap/tidb-operator/v1

↪→ .6.1/manifests/federation-crd.yaml

Step 2.2: Prepare the kubeconfig secret
Now that you already have a kubeconfig file of data planes, you need to encode the

kubeconfig file into a secret. Take the following steps:

1. Encode the kubeconfig file:
base64 -i ${kubeconfig-path}

2. Store the output from the previous step in a secret object.
Note that the name of the secret and the data key of the kubeconfig field must match
the following example:
apiVersion: v1
kind: Secret
metadata:
name: br-federation-kubeconfig

type: Opaque
data:
kubeconfig: ${encoded-kubeconfig}

Step 2.3: Install BR Federation
This section describes how to install the BR Federation using Helm 3.

• If you prefer to use the default configuration, follow the Quick deployment steps.
• If you prefer to use a custom configuration, follow the Custom deployment steps.

1. To create resources related to the BR Federation, create a namespace:
kubectl create ns br-fed-admin

2. In the specified namespace, create a secret that contains all the encoded kubeconfig
files:
kubectl create -f ${secret-path} -n br-fed-admin

3. Add the PingCAP repository:

478

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://helm.sh/docs/intro/install/

helm repo add pingcap https://charts.pingcap.org/

4. Install the BR Federation:
helm install --namespace br-fed-admin br-federation pingcap/br-

↪→ federation --version v1.6.1

1. To create resources related to the BR Federation, create a namespace:
kubectl create ns br-fed-admin

2. In the specified namespace, create a secret that contains all the encoded kubeconfig
files:
kubectl create -f ${secret-path} -n br-fed-admin

3. Add the PingCAP repository:
helm repo add pingcap https://charts.pingcap.org/

4. Get the values.yaml file of the desired br-federation chart for deployment.
mkdir -p ${HOME}/br-federation && \
helm inspect values pingcap/br-federation --version=v1.6.1 > ${HOME}/br

↪→ -federation/values.yaml

5. Configure the BR Federation by modifying fields such as image, limits, requests,
and replicas according to your needs.

6. Deploy the BR Federation.
helm install --namespace br-fed-admin br-federation pingcap/br-

↪→ federation --version v1.6.1 -f ${HOME}/br-federation/values.yaml
↪→ && \

kubectl get po -n br-fed-admin -l app.kubernetes.io/instance=br-
↪→ federation

7.4.8.2.4 What’s next
After deploying BR Federation, you can now perform the following tasks:

• Back Up a TiDB Cluster across Multiple Kubernetes Using EBS Volume Snapshots
• Restore a TiDB Cluster across Multiple Kubernetes from EBS Volume Snapshots

479

7.4.8.3 Back Up a TiDB Cluster across Multiple Kubernetes Using EBS Volume
Snapshots

This document describes how to back up the data of a TiDB cluster deployed across
multiple AWS Kubernetes clusters to AWS storage using EBS volume snapshots.

The backup method described in this document is implemented based on CustomRe-
sourceDefinition (CRD) in BR Federation and TiDB Operator. BR (Backup & Restore) is
a command-line tool for distributed backup and recovery of the TiDB cluster data. For the
underlying implementation, BR gets the backup data of the TiDB cluster, and then sends
the data to the AWS storage.

Note
Before you back up data, make sure that you have deployed BR Federation.

7.4.8.3.1 Usage scenarios
If you have the following requirements when backing up TiDB cluster data, you can use

TiDB Operator to back up the data using volume snapshots and metadata to Amazon S3:

• Minimize the impact of backup, such as keeping the impact on QPS and transaction
latency less than 5%, and not utilizing cluster CPU and memory.

• Back up and restore data in a short period of time. For example, completing a backup
within 1 hour and restore it within 2 hours.

If you have any other requirements, refer to Backup and Restore Overview and select an
appropriate backup method.

7.4.8.3.2 Prerequisites
Storage blocks on volumes that were created from snapshots must be initialized (pulled

down from Amazon S3 and written to the volume) before you can access the block. This
preliminary action takes time and can cause a significant increase in the latency of an I/O
operation the first time each block is accessed. Volume performance is achieved after all
blocks have been downloaded and written to the volume.

According to AWS documentation, the EBS volume restored from snapshots might have
high latency before it is initialized. This can impact the performance of a restored TiDB
cluster. See details in Create a volume from a snapshot.

To initialize the restored volume more efficiently, it is recommended to separate WAL
and raft log into a dedicated small volume apart from TiKV data. By fully
initializing the volume of WAL and raft log separately, we can enhance write performance
for a restored TiDB cluster.

480

https://docs.pingcap.com/tidb/stable/backup-and-restore-overview
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-creating-volume.html#ebs-create-volume-from-snapshot

7.4.8.3.3 Limitations

• Snapshot backup is applicable to TiDB Operator v1.5.1 or later versions, and TiDB
v6.5.4 or later versions.

• For TiKV configuration, do not set resolved-ts.enable to false, and do not set
raftstore.report-min-resolved-ts-interval to "0s". Otherwise, it can lead to
backup failure.

• For PD configuration, do not set pd-server.min-resolved-ts-persistence-
↪→ interval to "0s". Otherwise, it can lead to backup failure.

• To use this backup method, the TiDB cluster must be deployed on AWS EC2 and use
AWS EBS volumes.

• This backup method is currently not supported for TiFlash, TiCDC, DM, and TiDB
Binlog nodes.

Note:

• To perform volume snapshot restore, ensure that the TiKV configuration
during restore is consistent with the configuration used during backup.

– To check consistency, download the backupmeta file from the
backup file stored in Amazon S3, and check the kubernetes.
↪→ crd_tidb_cluster.spec field.

– If this field is inconsistent, you can modify the TiKV configuration
by referring to Configure a TiDB Cluster on Kubernetes.

• If Encryption at Rest is enabled for TiKV KMS, ensure that the master
key is enabled for AWS KMS during restore.

7.4.8.3.4 Ad-hoc backup
You can either fully or incrementally back up snapshots based on AWS EBS volumes.

The initial backup of a node is full backup, while subsequent backups are incremental backup.
Snapshot backup is defined in a customized VolumeBackup custom resource (CR) object.

The BR Federation completes the backup task according to the specifications in this object.
Step 1. Set up the environment for EBS volume snapshot backup in every data plane
You must execute the following steps in every data plane.

1. Download the backup-rbac.yaml file to the backup server.

2. If you have deployed the TiDB cluster in ${namespace}, create the RBAC-related
resources required for the backup in this namespace by running the following command:

481

https://docs.pingcap.com/tidb/stable/encryption-at-rest
https://github.com/pingcap/tidb-operator/blob/v1.6.1/manifests/backup/backup-rbac.yaml

kubectl apply -f backup-rbac.yaml -n ${namespace}

3. Grant permissions to access remote storage.
To back up cluster data and save snapshot metadata to Amazon S3, you need to grant
permissions to remote storage. Refer to AWS account authorization for the three
available methods.

Step 2. Back up data to S3 storage
You must execute the following steps in the control plane.
Depending on the authorization method you choose in the previous step for granting

remote storage access, you can back up data by EBS snapshots using any of the following
methods accordingly:

If you grant permissions by accessKey and secretKey, you can create the VolumeBackup
CR as follows:
kubectl apply -f backup-fed.yaml

The backup-fed.yaml file has the following content:

apiVersion: federation.pingcap.com/v1alpha1
kind: VolumeBackup
metadata:
name: ${backup-name}

spec:
clusters:
- k8sClusterName: ${k8s-name1}
tcName: ${tc-name1}
tcNamespace: ${tc-namespace1}

- k8sClusterName: ${k8s-name2}
tcName: ${tc-name2}
tcNamespace: ${tc-namespace2}

- ... # other clusters
template:
br:
sendCredToTikv: true

s3:
provider: aws
secretName: s3-secret
region: ${region-name}
bucket: ${bucket-name}
prefix: ${backup-path}

toolImage: ${br-image}

482

cleanPolicy: Delete
calcSizeLevel: {snapshot-size-calculation-level}

If you grant permissions by associating Pod with IAM, you can create the VolumeBackup
CR as follows:
kubectl apply -f backup-fed.yaml

The backup-fed.yaml file has the following content:

apiVersion: federation.pingcap.com/v1alpha1
kind: VolumeBackup
metadata:
name: ${backup-name}
annotations:
iam.amazonaws.com/role: arn:aws:iam::123456789012:role/role-name

spec:
clusters:
- k8sClusterName: ${k8s-name1}
tcName: ${tc-name1}
tcNamespace: ${tc-namespace1}

- k8sClusterName: ${k8s-name2}
tcName: ${tc-name2}
tcNamespace: ${tc-namespace2}

- ... # other clusters
template:
br:
sendCredToTikv: false

s3:
provider: aws
region: ${region-name}
bucket: ${bucket-name}
prefix: ${backup-path}

toolImage: ${br-image}
cleanPolicy: Delete
calcSizeLevel: {snapshot-size-calculation-level}

If you grant permissions by associating ServiceAccount with IAM, you can create the
VolumeBackup CR as follows:
kubectl apply -f backup-fed.yaml

The backup-fed.yaml file has the following content:

apiVersion: federation.pingcap.com/v1alpha1

483

kind: VolumeBackup
metadata:
name: ${backup-name}

spec:
clusters:
- k8sClusterName: ${k8s-name1}
tcName: ${tc-name1}
tcNamespace: ${tc-namespace1}

- k8sClusterName: ${k8s-name2}
tcName: ${tc-name2}
tcNamespace: ${tc-namespace2}

- ... # other clusters
template:
br:
sendCredToTikv: false

s3:
provider: aws
region: ${region-name}
bucket: ${bucket-name}
prefix: ${backup-path}

toolImage: ${br-image}
serviceAccount: tidb-backup-manager
cleanPolicy: Delete
calcSizeLevel: {snapshot-size-calculation-level}

Note:
The value of spec.clusters.k8sClusterName field in VolumeBackup CR
must be the same as the context name of the kubeconfig used by the br-
federation-manager.

Step 3. View the backup status
After creating the VolumeBackup CR, the BR Federation automatically starts the backup

process in each data plane.
To check the volume backup status, use the following command:

kubectl get vbk -n ${namespace} -o wide

Once the volume backup is complete, you can get the information of all the data planes
in the status.backups field. This information can be used for volume restore.

To obtain the information, use the following command:

484

kubectl get vbk ${backup-name} -n ${namespace} -o yaml

The information is as follows:
status:
backups:
- backupName: fed-{backup-name}-{k8s-name1}
backupPath: s3://{bucket-name}/{backup-path}-{k8s-name1}
commitTs: "ts1"
k8sClusterName: {k8s-name1}
tcName: {tc-name1}
tcNamespace: {tc-namespace1}

- backupName: fed-{backup-name}-{k8s-name2}
backupPath: s3://{bucket-name}/{backup-path}-{k8s-name2}
commitTs: "ts2"
k8sClusterName: {k8s-name2}
tcName: {tc-name2}
tcNamespace: {tc-namespace2}

- ... # other backups

Delete the VolumeBackup CR
If you set spec.template.cleanPolicy to Delete, when you delete the VolumeBackup

CR, the BR Federation will clean up the backup file and the volume snapshots on AWS.
To delete the VolumeBackup CR, run the following commands:

kubectl delete backup ${backup-name} -n ${namespace}

7.4.8.3.5 Scheduled volume backup
To ensure regular backups of the TiDB cluster and prevent an excessive number of

backup items, you can set a backup policy and retention policy.
This can be done by creating a VolumeBackupSchedule CR object that describes the

scheduled snapshot backup. Each backup time point triggers a volume backup. The under-
lying implementation is the ad-hoc volume backup.

Perform a scheduled volume backup
You must execute the following steps in the control plane.
Depending on the authorization method you choose in the previous step for granting

remote storage access, perform a scheduled volume backup by doing one of the following:
If you grant permissions by accessKey and secretKey, Create the VolumeBackupSchedule

CR, and back up cluster data as described below:
kubectl apply -f volume-backup-scheduler.yaml

485

The content of volume-backup-scheduler.yaml is as follows:

apiVersion: federation.pingcap.com/v1alpha1
kind: VolumeBackupSchedule
metadata:
name: {scheduler-name}
namespace: {namespace-name}

spec:
#maxBackups: {number}
#pause: {bool}
maxReservedTime: {duration}
schedule: {cron-expression}
backupTemplate:
clusters:
- k8sClusterName: {k8s-name1}
tcName: {tc-name1}
tcNamespace: {tc-namespace1}

- k8sClusterName: {k8s-name2}
tcName: {tc-name2}
tcNamespace: {tc-namespace2}

- ... # other clusters
template:
br:
sendCredToTikv: true

s3:
provider: aws
secretName: s3-secret
region: {region-name}
bucket: {bucket-name}
prefix: {backup-path}

toolImage: {br-image}
cleanPolicy: Delete
calcSizeLevel: {snapshot-size-calculation-level}

If you grant permissions by associating Pod with IAM, Create the VolumeBackupSchedule
↪→ CR, and back up cluster data as described below:
kubectl apply -f volume-backup-scheduler.yaml

The content of volume-backup-scheduler.yaml is as follows:

apiVersion: federation.pingcap.com/v1alpha1
kind: VolumeBackupSchedule
metadata:

486

name: {scheduler-name}
namespace: {namespace-name}
annotations:

iam.amazonaws.com/role: arn:aws:iam::123456789012:role/role-name
spec:
#maxBackups: {number}
#pause: {bool}
maxReservedTime: {duration}
schedule: {cron-expression}
backupTemplate:
clusters:
- k8sClusterName: {k8s-name1}
tcName: {tc-name1}
tcNamespace: {tc-namespace1}

- k8sClusterName: {k8s-name2}
tcName: {tc-name2}
tcNamespace: {tc-namespace2}

- ... # other clusters
template:
br:
sendCredToTikv: false

s3:
provider: aws
region: {region-name}
bucket: {bucket-name}
prefix: {backup-path}

toolImage: {br-image}
cleanPolicy: Delete
calcSizeLevel: {snapshot-size-calculation-level}

If you grant permissions by associating ServiceAccount with IAM, Create the
VolumeBackupSchedule CR, and back up cluster data as described below:
kubectl apply -f volume-backup-scheduler.yaml

The content of volume-backup-scheduler.yaml is as follows:

apiVersion: federation.pingcap.com/v1alpha1
kind: VolumeBackupSchedule
metadata:
name: {scheduler-name}
namespace: {namespace-name}

spec:
#maxBackups: {number}
#pause: {bool}

487

maxReservedTime: {duration}
schedule: {cron-expression}
backupTemplate:
clusters:
- k8sClusterName: {k8s-name1}
tcName: {tc-name1}
tcNamespace: {tc-namespace1}

- k8sClusterName: {k8s-name2}
tcName: {tc-name2}
tcNamespace: {tc-namespace2}

- ... # other clusters
template:
br:
sendCredToTikv: false

s3:
provider: aws
region: {region-name}
bucket: {bucket-name}
prefix: {backup-path}

serviceAccount: tidb-backup-manager
toolImage: {br-image}
cleanPolicy: Delete
calcSizeLevel: {snapshot-size-calculation-level}

7.4.8.4 Restore a TiDB Cluster across Multiple Kubernetes from EBS Volume
Snapshots

This document describes how to restore backup data in AWS EBS snapshots to a TiDB
cluster across multiple Kubernetes clusters.

The restore method described in this document is implemented based on CustomRe-
sourceDefinition (CRD) in BR Federation and TiDB Operator. BR (Backup & Restore) is
a command-line tool for distributed backup and recovery of the TiDB cluster data. For the
underlying implementation, BR restores the data.

Note
Before you restore data, make sure that you have deployed BR Federation.

7.4.8.4.1 Limitations

• Snapshot restore is applicable to TiDB Operator v1.5.1 or later versions and TiDB
v6.5.4 or later versions.

488

https://docs.pingcap.com/tidb/stable/backup-and-restore-overview

• You can use snapshot restore only to restore data to a cluster with the same number
of TiKV nodes and volumes configuration. That is, the number of TiKV nodes and
volume configurations of TiKV nodes are identical between the restore cluster and
backup cluster.

• Snapshot restore is currently not supported for TiFlash, TiCDC, DM, and TiDB Binlog
nodes.

7.4.8.4.2 Prerequisites
Before restoring a TiDB cluster across multiple Kubernetes clusters from EBS volume

snapshots, you need to complete the following preparations.

• Complete the volume backup
For detailed steps, refer to Back Up a TiDB Cluster across Multiple Kubernetes Using
EBS Volume Snapshots.

• Prepare the restore cluster

– Deploy a TiDB cluster across multiple Kubernetes clusters that you want to re-
store data to. For detailed steps, refer to Deploy a TiDB Cluster across Multiple
Kubernetes Clusters.

– When deploying the TiDB cluster, add the recoveryMode: true field to the spec
of TidbCluster.

Note:
The EBS volume restored from snapshots might have high latency before it
is initialized. This can impact the performance of a restored TiDB cluster.
See details in Create a volume from a snapshot.
It is recommended that you configure spec.template.warmup: sync to ini-
tialize TiKV volumes automatically during the restoration process.

7.4.8.4.3 Restore process
Step 1. Set up the environment for EBS volume snapshot restore in every data plane
You must execute the following steps in every data plane.

1. Download the backup-rbac.yaml file to the restore server.

2. Create the RBAC-related resources required for the restore by running the follow-
ing command. Note that the RBAC-related resources must be put in the same ${
↪→ namespace} as the TiDB cluster.

489

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-creating-volume.html#ebs-create-volume-from-snapshot
https://github.com/pingcap/tidb-operator/blob/v1.6.1/manifests/backup/backup-rbac.yaml

kubectl apply -f backup-rbac.yaml -n ${namespace}

3. Grant permissions to access remote storage.
To restore data from EBS snapshots, you need to grant permissions to remote storage.
Three ways are available. Refer to AWS account authorization for the three available
methods.

Step 2. Restore data to the TiDB cluster
You must execute the following steps in the control plane.
Depending on the authorization method you choose in the previous step for granting

remote storage access, you can restore data to TiDB using any of the following methods
accordingly:

Note:
Snapshot restore creates volumes with the default configuration (3000
IOPS/125 MB/s) of GP3. To perform restore using other configurations,
you can specify the volume type or configuration, such as --volume-type=
↪→ gp3, --volume-iops=7000, or --volume-throughput=400, and they are
shown in the following examples.

If you grant permissions by accessKey and secretKey, you can create the VolumeRestore
CR as follows:
kubectl apply -f restore-fed.yaml

The restore-fed.yaml file has the following content:

apiVersion: federation.pingcap.com/v1alpha1
kind: VolumeRestore
metadata:
name: ${restore-name}

spec:
clusters:
- k8sClusterName: ${k8s-name1}
tcName: ${tc-name1}
tcNamespace: ${tc-namespace1}
backup:
s3:
provider: aws

490

secretName: s3-secret
region: ${region-name}
bucket: ${bucket-name}
prefix: ${backup-path1}

- k8sClusterName: ${k8s-name2}
tcName: ${tc-name2}
tcNamespace: ${tc-namespace2}
backup:
s3:
provider: aws
secretName: s3-secret
region: ${region-name}
bucket: ${bucket-name}
prefix: ${backup-path2}

- ... # other clusters
template:
br:
sendCredToTikv: true
options:
- --volume-type=gp3
- --volume-iops=7000
- --volume-throughput=400

toolImage: ${br-image}
warmup: sync
warmupImage: ${wamrup-image}

If you grant permissions by associating Pod with IAM, you can create the VolumeRestore
CR as follows:
kubectl apply -f restore-fed.yaml

The restore-fed.yaml file has the following content:

apiVersion: federation.pingcap.com/v1alpha1
kind: VolumeRestore
metadata:
name: ${restore-name}
annotations:
iam.amazonaws.com/role: arn:aws:iam::123456789012:role/role-name

spec:
clusters:
- k8sClusterName: ${k8s-name1}
tcName: ${tc-name1}
tcNamespace: ${tc-namespace1}
backup:

491

s3:
provider: aws
region: ${region-name}
bucket: ${bucket-name}
prefix: ${backup-path1}

- k8sClusterName: ${k8s-name2}
tcName: ${tc-name2}
tcNamespace: ${tc-namespace2}
backup:
s3:
provider: aws
region: ${region-name}
bucket: ${bucket-name}
prefix: ${backup-path2}

- ... # other clusters
template:
br:
sendCredToTikv: false
options:
- --volume-type=gp3
- --volume-iops=7000
- --volume-throughput=400

toolImage: ${br-image}
warmup: sync
warmupImage: ${wamrup-image}

If you grant permissions by associating ServiceAccount with IAM, you can create the
VolumeRestore CR as follows:
kubectl apply -f restore-fed.yaml

The restore-fed.yaml file has the following content:

apiVersion: federation.pingcap.com/v1alpha1
kind: VolumeRestore
metadata:
name: ${restore-name}

spec:
clusters:
- k8sClusterName: ${k8s-name1}
tcName: ${tc-name1}
tcNamespace: ${tc-namespace1}
backup:
s3:
provider: aws

492

region: ${region-name}
bucket: ${bucket-name}
prefix: ${backup-path1}

- k8sClusterName: ${k8s-name2}
tcName: ${tc-name2}
tcNamespace: ${tc-namespace2}
backup:
s3:
provider: aws
region: ${region-name}
bucket: ${bucket-name}
prefix: ${backup-path2}

- ... # other clusters
template:
br:
sendCredToTikv: false
options:
- --volume-type=gp3
- --volume-iops=7000
- --volume-throughput=400

toolImage: ${br-image}
serviceAccount: tidb-backup-manager
warmup: sync
warmupImage: ${warmup-image}

Step 3. View the restore status
After creating the VolumeRestore CR, the restore process automatically start.
To check the restore status, use the following command:

kubectl get vrt -n ${namespace} -o wide

7.4.8.5 FAQs on EBS Snapshot Backup and Restore across Multiple Kubernetes

This document addresses common questions and solutions related to EBS snapshot
backup and restore across multiple Kubernetes environments.

7.4.8.5.1 New tags on snapshots and restored volumes
Symptom: Some tags are automatically added to generated snapshots and restored

EBS volumes
Explanation: The new tags are added for traceability. Snapshots inherit all tags from

the individual source EBS volumes, while restored EBS volumes inherit tags from the source

493

snapshots but prefix keys with snapshot\. Additionally, new tags such as <TiDBCluster-
↪→ BR: true>, <snapshot/createdFromSnapshotId, {source-snapshot-id}> are added
to restored EBS volumes.

7.4.8.5.2 Backup Initialize Failed
Symptom: You get the error that contains GC safepoint 443455494791364608

↪→ exceed TS 0 when the backup is initializing.
Solution: This issue might occur if you have disabled the feature of “resolved ts” in

TiKV or PD. Check the configuration of TiKV and PD:

• For TiKV, confirm if you set resolved-ts.enable = false or raftstore.report-
↪→ min-resolved-ts-interval = "0s". If so, remove these configurations.

• For PD, confirm if you set pd-server.min-resolved-ts-persistence-interval =
↪→ "0s". If so, remove this configuration.

7.4.8.5.3 Backup failed due to execution twice
Issue: #5143
Symptom: You get the error that contains backup meta file exists, and the backup

pod is scheduled twice.
Solution: This issue might occur if the first backup pod is evicted by Kubernetes due

to node resource pressure. You can configure PriorityClass and ResourceRequirements
to reduce the possibility of eviction. For more details, refer to the comment of issue.

7.4.8.5.4 Save time for backup by controlling snapshot size calculation level

Symptom: Scheduled backup can’t be completed in the expected window due to the
cost of snapshot size calculation.

Solution: By default, both full size and incremental size are calculated by calling
the AWS service, which might take several minutes. You can set spec.template.
↪→ calcSizeLevel to full to skip incremental size calculation, set it to incremental to
skip full size calculation, and set it to none to skip both calculations.

7.5 Maintain

7.5.1 Restart a TiDB Cluster on Kubernetes

If you find that the memory leak occurs in a Pod during use, you need to restart the
cluster. This document describes how to perform a graceful rolling restart to all Pods in a
TiDB component and how to perform a graceful restart to a single TiKV Pod.

494

https://github.com/pingcap/tidb-operator/issues/5143
https://github.com/pingcap/tidb-operator/issues/5143#issuecomment-1654916830

Warning:
It is not recommended to manually remove a Pod in the TiDB cluster with-
out graceful restart in a production environment, because this might lead to
some request failures of accessing the TiDB cluster though the StatefulSet
controller pulls the Pod up again.

7.5.1.1 Perform a graceful rolling restart to all Pods in a component
After Deploying TiDB on general Kubernetes, modify the cluster configuration by run-

ning the following command:
kubectl edit tc ${name} -n ${namespace}

Add tidb.pingcap.com/restartedAt in the annotation of the spec of the TiDB com-
ponent you want to gracefully rolling restart, and set its value to be the current time.

In the following example, annotations of the pd, tikv, and tidb components are set,
which means that all the Pods in these three components will be gracefully rolling restarted.
You can set the annotation for a specific component according to your needs.
apiVersion: pingcap.com/v1alpha1
kind: TidbCluster
metadata:
name: basic

spec:
version: v8.5.0
timezone: UTC
pvReclaimPolicy: Delete
pd:
...
annotations:
tidb.pingcap.com/restartedAt: 2020-04-20T12:00

tikv:
...
annotations:
tidb.pingcap.com/restartedAt: 2020-04-20T12:00

tidb:
...
annotations:
tidb.pingcap.com/restartedAt: 2020-04-20T12:00

495

7.5.1.2 Perform a graceful restart to a single TiKV Pod
Starting from v1.2.5, TiDB Operator supports graceful restart for a single TiKV Pod.
To trigger a graceful restart, add an annotation with the tidb.pingcap.com/evict-

↪→ leader key:
kubectl -n ${namespace} annotate pod ${tikv_pod_name} tidb.pingcap.com/evict

↪→ -leader="delete-pod"

When the number of TiKV region leaders drops to zero, according to the value of this
annotation, TiDB Operator might have different behaviors:

• none: TiDB Operator does nothing.

• delete-pod: TiDB Operator deletes the Pod by taking the following steps:

1. TiDB Operator calls the PD API and adds evict-leader-scheduler for the TiKV
store.

2. When the number of TiKV region leaders drops to zero, TiDB Operator deletes
the Pod and recreates it.

3. When the new Pod becomes ready, remove the evict-leader-scheduler for the TiKV
store by calling the PD API.

Before deleting a Pod, if a log backup task is running, TiDB Operator attempts to flush
the backup logs to the external storage. To disable this feature, add the annotation tidb.
↪→ pingcap.com/tikv-restart-without-flush-log-backup to the TidbCluster CR and
set it to any value.

7.5.2 Destroy TiDB Clusters on Kubernetes

This document describes how to destroy TiDB clusters on Kubernetes.

7.5.2.1 Destroy a TiDB cluster managed by TidbCluster
To destroy a TiDB cluster managed by TidbCluster, run the following command:

kubectl delete tc ${cluster_name} -n ${namespace}

If you deploy the monitor in the cluster using TidbMonitor, run the following command
to delete the monitor component:
kubectl delete tidbmonitor ${tidb_monitor_name} -n ${namespace}

7.5.2.2 Destroy a TiDB cluster managed by Helm
To destroy a TiDB cluster managed by Helm, run the following command:

helm uninstall ${cluster_name} -n ${namespace}

496

7.5.2.3 Delete data
The above commands that destroy the cluster only remove the running Pod, but the

data is still retained. If you want to delete the data as well, use the following commands:

Warning:
The following commands delete your data completely. Please be cautious.
To ensure data safety, do not delete PVs on any circumstances, unless you
are familiar with the working principles of PVs.

kubectl delete pvc -n ${namespace} -l app.kubernetes.io/instance=${
↪→ cluster_name},app.kubernetes.io/managed-by=tidb-operator

kubectl get pv -l app.kubernetes.io/namespace=${namespace},app.kubernetes.io
↪→ /managed-by=tidb-operator,app.kubernetes.io/instance=${cluster_name}
↪→ -o name | xargs -I {} kubectl patch {} -p '{"spec":{"
↪→ persistentVolumeReclaimPolicy":"Delete"}}'

7.5.3 View TiDB Logs on Kubernetes

This document introduces the methods to view logs of TiDB components and TiDB slow
log.

7.5.3.1 View logs of TiDB components
The TiDB components deployed by TiDB Operator output the logs in the stdout and

stderr of the container by default. You can view the log of a single Pod by running the
following command:
kubectl logs -n ${namespace} ${pod_name}

If the Pod has multiple containers, you can also view the logs of a container in this Pod:
kubectl logs -n ${namespace} ${pod_name} -c ${container_name}

For more methods to view Pod logs, run kubectl logs --help.

7.5.3.2 View slow query logs of TiDB components
For TiDB 3.0 or later versions, TiDB separates slow query logs from application logs.

You can view slow query logs from the sidecar container named slowlog:

497

kubectl logs -n ${namespace} ${pod_name} -c slowlog

Note:
The format of TiDB slow query logs is the same as that of MySQL slow query
logs. However, due to the characteristics of TiDB itself, some of the specific
fields might be different. For this reason, the tool for parsing MySQL slow
query logs may not be fully compatible with TiDB slow query logs.

7.5.4 Modify TiDB Cluster Configuration

For a TiDB cluster, you can update the configuration of components online using SQL
statements, including TiDB, TiKV, and PD, without restarting the cluster components.
However, for TiDB clusters deployed on Kubernetes, after you upgrade or restart the clus-
ter, the configurations updated using SQL statements will be overwritten by those in the
TidbCluster CR. This leads to the online configuration update being invalid.

This document describes how to modify the configuration of TiDB clusters deployed on
Kubernetes. Due to the special nature of PD, you need to separately modify the configuration
of PD and other components.

7.5.4.1 Modify configuration for TiDB, TiKV, and other components
For TiDB and TiKV, if you modify their configuration online using SQL statements,

after you upgrade or restart the cluster, the configurations will be overwritten by those in the
TidbCluster CR. This leads to the online configuration update being invalid. Therefore, to
persist the configuration, you must directly modify their configurations in the TidbCluster
CR.

For TiFlash, TiProxy, TiCDC, and Pump, you can only modify their configurations in
the TidbCluster CR.

To modify the configuration in the TidbCluster CR, take the following steps:

1. Refer to the parameters in Configure TiDB components to modify the component
configuration in the TidbCluster CR:
kubectl edit tc ${cluster_name} -n ${namespace}

2. After the configuration is modified, view the updating progress:
watch kubectl -n ${namespace} get pod -o wide

After all the Pods are recreated and are in the Running state, the configuration is
successfully modified.

498

https://docs.pingcap.com/tidb/stable/dynamic-config/
https://docs.pingcap.com/tidb/stable/dynamic-config/

7.5.4.2 Modify PD configuration
After PD is started for the first time, some PD configuration items are persisted in

etcd. The persisted configuration in etcd takes precedence over the configuration file in
PD. Therefore, after the first start, you cannot modify some PD configuration by using the
TidbCluster CR.

Among all the PD configuration items listed in Modify PD configuration online, after
the first start, only log.level can be modified by using the TidbCluster CR. Other con-
figurations cannot be modified by using CR.

For TiDB clusters deployed on Kubernetes, if you need to modify the PD configuration,
you can modify the configuration online using SQL statements, pd-ctl, or PD server API.

7.5.4.2.1 Modify PD microservice configuration

Note:
Starting from v8.0.0, PD supports the microservice mode (experimental).

After each component of the PD microservices is started for the first time, some PD con-
figuration items are persisted in etcd. The persisted configuration in etcd takes precedence
over the configuration file in PD. Therefore, after the first start of each PD microservice
component, you cannot modify some PD configuration items by using the TidbCluster CR.

Among all the configuration items of PD microservices listed in Modify PD configuration
dynamically, after the first start of each PD microservice component, only log.level can be
modified by using the TidbCluster CR. Other configurations cannot be modified by using
CR.

For TiDB clusters deployed on Kubernetes, if you need to modify configuration items of
PD microservices, you can modify them dynamically using SQL statements, pd-ctl, or PD
server API.

7.5.4.3 Modify TiProxy configuration
Modifying the configuration of the TiProxy component never restarts the Pod. If you

want to restart the Pod, you need to manually kill the Pod or change the Pod image to
manually trigger the restart.

7.5.5 Automatic failover

TiDB Operator manages the deployment and scaling of Pods based on StatefulSet.
When some Pods or nodes fail, StatefulSet does not support automatically creating new
Pods to replace the failed ones. To solve this issue, TiDB Operator supports the automatic
failover feature by scaling Pods automatically.

499

https://docs.pingcap.com/tidb/stable/dynamic-config/#modify-pd-configuration-online
https://docs.pingcap.com/tidb/stable/dynamic-config/#modify-pd-configuration-online
https://docs.pingcap.com/tidb/stable/pd-control#config-show--set-option-value--placement-rules
https://docs.pingcap.com/tidb/dev/pd-microservices
https://docs.pingcap.com/tidb/stable/dynamic-config/#modify-pd-configuration-online
https://docs.pingcap.com/tidb/stable/dynamic-config/#modify-pd-configuration-online
https://docs.pingcap.com/tidb/stable/dynamic-config/#modify-pd-configuration-dynamically
https://docs.pingcap.com/tidb/stable/pd-control#config-show--set-option-value--placement-rules
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

7.5.5.1 Configure automatic failover
The automatic failover feature is enabled by default in TiDB Operator.
When deploying TiDB Operator, you can configure the waiting timeout for failover of

the PD, TiKV, TiDB, and TiFlash components in a TiDB cluster in the charts/tidb-
↪→ operator/values.yaml file. An example is as follows:
controllerManager:
...
autoFailover is whether tidb-operator should auto failover when failure

↪→ occurs
autoFailover: true
pd failover period default(5m)
pdFailoverPeriod: 5m
tikv failover period default(5m)
tikvFailoverPeriod: 5m
tidb failover period default(5m)
tidbFailoverPeriod: 5m
tiflash failover period default(5m)
tiflashFailoverPeriod: 5m

In the example, pdFailoverPeriod, tikvFailoverPeriod, tiflashFailoverPeriod
↪→ and tidbFailoverPeriod indicate the waiting timeout (5 minutes by default) after
an instance failure is identified. After the timeout, TiDB Operator starts the automatic
failover process.

In addition, when configuring a TiDB cluster, you can specify spec.${component}.
↪→ maxFailoverCount for each component, which is the threshold of the maximum number
of Pods that the TiDB Operator can create during automatic failover. For more information,
see the TiDB component configuration documentation.

Note:
If there are not enough resources in the cluster for TiDB Operator to create
new Pods, the newly scaled Pods will be in the pending status.

7.5.5.2 Automatic failover policies
There are six components in a TiDB cluster: PD, TiKV, TiDB, TiFlash, TiCDC, and

Pump. Currently, TiCDC and Pump do not support the automatic failover feature. PD,
TiKV, TiDB, and TiFlash have different failover policies. This section gives a detailed
introduction to these policies.

500

7.5.5.2.1 Failover with PD
TiDB Operator collects the health status of PD members via the pd/health PD API

and records the status in the .status.pd.members field of the TidbCluster CR.
Take a PD cluster with 3 Pods as an example. If a Pod fails for more than 5 min-

utes (pdFailoverPeriod is configurable), TiDB Operator automatically does the following
operations:

1. TiDB Operator records the Pod information in the .status.pd.failureMembers field
of TidbCluster CR.

2. TiDB Operator takes the Pod offline: TiDB Operator calls PD API to remove the Pod
from the member list, and then deletes the Pod and its PVC.

3. The StatefulSet controller recreates the Pod, and the recreated Pod joins the cluster
as a new member.

4. When calculating the replicas of PD StatefulSet, TiDB Operator takes the deleted
.status.pd.failureMembers into account, so it will create a new Pod. Then, 4 Pods
will exist at the same time.

When all the failed Pods in the cluster recover, TiDB Operator will automatically remove
the newly created Pods, and the number of Pods gets back to the original.

Note:

• For each PD cluster, the maximum number of Pods that TiDB Operator
can create is spec.pd.maxFailoverCount (the default value is 3). After
the threshold is reached, TiDB Operator will not perform failover.

• If most members in a PD cluster fail, which makes the PD cluster un-
available, TiDB Operator will not perform failover for the PD cluster.

7.5.5.2.2 Failover with TiDB
TiDB Operator collects the Pod health status by accessing the /status interface of each

TiDB Pod and records the status in the .status.tidb.members field of the TidbCluster
CR.

Take a TiDB cluster with 3 Pods as an example. If a Pod fails for more than 5 minutes
(tidbFailoverPeriod is configurable), TiDB Operator automatically does the following
operations:

1. TiDB Operator records the Pod information in the .status.tidb.failureMembers
field of TidbCluster CR.

501

2. When calculating the replicas of TiDB StatefulSet, TiDB Operator takes the .status
↪→ .tidb.failureMembers into account, so it will create a new Pod. Then, 4 Pods
will exist at the same time.

When the failed Pod in the cluster recovers, TiDB Operator will automatically remove
the newly created Pod, and the number of Pods gets back to 3.

Note:
For each TiDB cluster, the maximum number of Pods that TiDB Operator
can create is spec.tidb.maxFailoverCount (the default value is 3). After
the threshold is reached, TiDB Operator will not perform failover.

7.5.5.2.3 Failover with TiKV
TiDB Operator collects the TiKV store health status by accessing the PD API and

records the status in the .status.tikv.stores field in TidbCluster CR.
Take a TiKV cluster with 3 Pods as an example. When a TiKV Pod fails, the store

status of the Pod changes to Disconnected. By default, after 30 minutes (configurable
by changing max-store-down-time = "30m" in the [schedule] section of pd.config), the
status changes to Down. Then, TiDB Operator automatically does the following operations:

1. Wait for another 5 minutes (configurable by modifying tikvFailoverPeriod), if this
TiKV Pod is still not recovered, TiDB Operator records the Pod information in the
.status.tikv.failureStores field of TidbCluster CR.

2. When calculating the replicas of TiKV StatefulSet, TiDB Operator takes the .status
↪→ .tikv.failureStores into account, so it will create a new Pod. Then, 4 Pods will
exist at the same time.

When the failed Pod in the cluster recovers, TiDB Operator DOES NOT remove the
newly created Pod, but continues to keep 4 Pods. This is because scaling in TiKV Pods will
trigger data migration, which might affect the cluster performance.

Note:
For each TiKV cluster, the maximum number of Pods that TiDB Operator
can create is spec.tikv.maxFailoverCount (the default value is 3). After
the threshold is reached, TiDB Operator will not perform failover.

502

If all failed Pods have recovered, and you want to remove the newly created Pods, you
can refer to the following two methods:

• Method 1: Configure spec.tikv.recoverFailover: true (Supported since TiDB Op-
erator v1.1.5).
kubectl patch tc -n ${namespace} ${cluster_name} --type merge -p '{"

↪→ spec":{"tikv":{"recoverFailover": true}}}'

Every time after the cluster recovers from failover, TiDB Operator automatically scales
in the newly created Pods.

• Method 2: Configure spec.tikv.failover.recoverByUID: ${recover_uid}.
${recover_uid} is the UID of this failover. You can get the UID by running the
following command:
kubectl get tc -n ${namespace} ${cluster_name} -ojsonpath='{.status.

↪→ tikv.failoverUID}'

TiDB Operator automatically scales in the newly created TiKV Pods according to
${recover_uid}.

7.5.5.2.4 Failover with TiFlash
TiDB Operator collects the TiFlash store health status by accessing the PD API and

records the status in the .status.tiflash.stores field in TidbCluster CR.
Take a TiFlash cluster with 3 Pods as an example. When a TiFlash Pod fails, the store

status of the Pod changes to Disconnected. By default, after 30 minutes (configurable
by changing max-store-down-time = "30m" in the [schedule] section of pd.config), the
status changes to Down. Then, TiDB Operator automatically does the following operations:

1. Wait for another 5 minutes (configurable by modifying tiflashFailoverPeriod), if
the TiFlash Pod is still not recovered, TiDB Operator records the Pod information in
the .status.tiflash.failureStores field of TidbCluster CR.

2. When calculating the replicas of TiFlash StatefulSet, TiDB Operator takes the .status
↪→ .tiflash.failureStores into account, so it will create a new Pod. Then, 4 Pods
will exist at the same time.

When the failed Pod in the cluster recovers, TiDB Operator DOES NOT remove the
newly created Pod, but continues to keep 4 Pods. This is because scaling in TiFlash Pods
will trigger data migration, which might affect the cluster performance.

503

Note:
For each TiFlash cluster, the maximum number of Pods that TiDB Operator
can create is spec.tiflash.maxFailoverCount (the default value is 3). After
the threshold is reached, TiDB Operator will not perform failover.

If all of the failed Pods have recovered, and you want to remove the newly created Pods,
you can refer to the following two methods:

• Method 1: Configure spec.tiflash.recoverFailover: true (Supported since TiDB
Operator v1.1.5).
kubectl patch tc -n ${namespace} ${cluster_name} --type merge -p '{"

↪→ spec":{"tiflash":{"recoverFailover": true}}}'

Every time after the cluster recovers from failover, TiDB Operator automatically scales
in the newly created Pods.

• Method 2: Configure spec.tiflash.failover.recoverByUID: ${recover_uid}.
${recover_uid} is the UID of this failover. You can get the UID by running the
following command:
kubectl get tc -n ${namespace} ${cluster_name} -ojsonpath='{.status.

↪→ tiflash.failoverUID}'

TiDB Operator automatically scales in the newly created TiFlash Pods according to
${recover_uid}.

7.5.5.2.5 Disable automatic failover
You can disable the automatic failover feature at the cluster or component level:

• To disable the automatic failover feature at the cluster level, set controllerManager
↪→ .autoFailover to false in the charts/tidb-operator/values.yaml file when
deploying TiDB Operator. An example is as follows:
controllerManager:
...
autoFailover is whether tidb-operator should auto failover when

↪→ failure occurs
autoFailover: false

• To disable the automatic failover feature at the component level, set spec.${
↪→ component}.maxFailoverCount of the target component to 0 in the TidbCluster
CR when creating the TiDB cluster.

504

7.5.6 Pause Sync of a TiDB Cluster on Kubernetes

This document introduces how to pause sync of a TiDB cluster on Kubernetes using
configuration.

7.5.6.1 What is sync in TiDB Operator
In TiDB Operator, controller regulates the state of the TiDB cluster on Kubernetes.

The controller constantly compares the desired state recorded in the TidbCluster object
with the actual state of the TiDB cluster. This process is referred to as sync generally. For
more details, refer to TiDB Operator Architecture.

7.5.6.2 Use scenarios
Here are some cases where you might need to pause sync of a TiDB cluster on Kubernetes.

• Avoid unexpected rolling update
To prevent new versions of TiDB Operator from introducing compatibility issues into
the clusters, before updating TiDB Operator, you can pause sync of TiDB clusters.
After updating TiDB Operator, you can resume syncing clusters one by one, or specify
a time for resume. In this way, you can observe how the rolling update of TiDB
Operator would affect the cluster.

• Avoid multiple rolling restarts
In some cases, you might need to continuously modify the cluster over a period of time,
but do not want to restart the TiDB cluster many times. To avoid multiple rolling
restarts, you can pause sync of the cluster. During the sync pausing, any change of
the configuration does not take effect on the cluster. After you finish the modification,
resume sync of the TiDB cluster. All changes can be applied in a single rolling restart.

• Maintenance window
In some situations, you can update or restart the TiDB cluster only during a main-
tenance window. When outside the maintenance window, you can pause sync of the
TiDB cluster, so that any modification to the specs does not take effect. When inside
the maintenance window, you can resume sync of the TiDB cluster to allow TiDB
cluster to rolling update or restart.

7.5.6.3 Pause sync

1. Execute the following command to edit the TiDB cluster configuration. ${
↪→ cluster_name} represents the name of the TiDB cluster, and ${namespace}
refers to the TiDB cluster namespace.
kubectl patch tc ${cluster_name} -n ${namespace} --type merge -p '{"

↪→ spec":{"paused": true}}'

505

2. To confirm the sync status of a TiDB cluster, execute the following command. ${
↪→ pod_name} is the name of tidb-controller-manager Pod, and ${namespace} is the
namespace of TiDB Operator.
kubectl logs ${pod_name} -n ${namespace} | grep paused

The expected output is as follows. The sync of all components in the TiDB cluster is
paused.
I1207 11:09:59.029949 1 pd_member_manager.go:92] tidb cluster

↪→ default/basic is paused, skip syncing for pd service
I1207 11:09:59.029977 1 pd_member_manager.go:136] tidb cluster

↪→ default/basic is paused, skip syncing for pd headless service
I1207 11:09:59.035437 1 pd_member_manager.go:191] tidb cluster

↪→ default/basic is paused, skip syncing for pd statefulset
I1207 11:09:59.035462 1 tikv_member_manager.go:116] tikv cluster

↪→ default/basic is paused, skip syncing for tikv service
I1207 11:09:59.036855 1 tikv_member_manager.go:175] tikv cluster

↪→ default/basic is paused, skip syncing for tikv statefulset
I1207 11:09:59.036886 1 tidb_member_manager.go:132] tidb cluster

↪→ default/basic is paused, skip syncing for tidb headless service
I1207 11:09:59.036895 1 tidb_member_manager.go:258] tidb cluster

↪→ default/basic is paused, skip syncing for tidb service
I1207 11:09:59.039358 1 tidb_member_manager.go:188] tidb cluster

↪→ default/basic is paused, skip syncing for tidb statefulset

7.5.6.4 Resume sync
To resume the sync of the TiDB cluster, configure spec.paused: false in the Tidb-

Cluster CR.

1. Execute the following command to edit the TiDB cluster configuration. ${
↪→ cluster_name} represents the name of the TiDB cluster, and ${namespace}
refers to the TiDB cluster namespace.
kubectl patch tc ${cluster_name} -n ${namespace} --type merge -p '{"

↪→ spec":{"paused": false}}'

2. To confirm the sync status of a TiDB cluster, execute the following command. $
↪→ {pod_name} represents the name of the tidb-controller-manager Pod, and
${namespace} represents the namespace of TiDB Operator.
kubectl logs ${pod_name} -n ${namespace} | grep "Finished syncing

↪→ TidbCluster"

The expected output is as follows. The finished syncing timestamp is later than the
paused timestamp, which indicates that sync of the TiDB cluster has been resumed.

506

I1207 11:14:59.361353 1 tidb_cluster_controller.go:136] Finished
↪→ syncing TidbCluster "default/basic" (368.816685ms)

I1207 11:15:28.982910 1 tidb_cluster_controller.go:136] Finished
↪→ syncing TidbCluster "default/basic" (97.486818ms)

I1207 11:15:29.360446 1 tidb_cluster_controller.go:136] Finished
↪→ syncing TidbCluster "default/basic" (377.51187ms)

7.5.7 Suspend TiDB cluster

This document introduces how to suspend the TiDB cluster or suspend the TiDB cluster
components on Kubernetes by configuring the TidbCluster object. After suspending the
cluster, you can stop the Pods of all components or one specific component and retain the
TidbCluster object and other resources (such as Service and PVC).

In some test scenarios, if you need to save resources, you can suspend the TiDB cluster
when you are not using it.

Note:
To suspend the TiDB cluster, the TiDB Operator version must be >= v1.3.7.

7.5.7.1 Configure TiDB cluster suspending
If you need to suspend the TiDB cluster, take the following steps:

1. In the TidbCluster object, configure spec.suspendAction field to suspend the entire
TiDB cluster:
apiVersion: pingcap.com/v1alpha1
kind: TidbCluster
metadata:
name: ${cluster_name}
namespace: ${namespace}

spec:
suspendAction:
suspendStatefulSet: true

...

TiDB Operator also supports suspending one or more components in TiDB clusters.
Taking TiKV as an example, you can suspend TiKV in the TiDB cluster by configuring
spec.tikv.suspendAction field in the TidbCluster object:

507

apiVersion: pingcap.com/v1alpha1
kind: TidbCluster
metadata:
name: ${cluster_name}
namespace: ${namespace}

spec:
tikv:
suspendAction:
suspendStatefulSet: true

...

2. After suspending the TiDB cluster, you can run the following command to observe
that the Pods of the suspended component are gradually deleted.
kubectl -n ${namespace} get pods

Pods of each suspended component will be deleted in the following order:

• TiDB
• TiFlash
• TiCDC
• TiKV
• Pump
• TiProxy
• PD

Note:
If PD microservices (introduced in TiDB v8.0.0) are deployed in a cluster,
the Pods of PD microservices are deleted after the PD Pods are deleted.

7.5.7.2 Restore TiDB cluster
After a TiDB cluster or its component is suspended, if you need to restore the TiDB

cluster, take the following steps:

1. In the TidbCluster object, configure the spec.suspendAction field to restore the
entire suspended TiDB cluster:
apiVersion: pingcap.com/v1alpha1
kind: TidbCluster
metadata:

508

https://docs.pingcap.com/tidb/dev/pd-microservices

name: ${cluster_name}
namespace: ${namespace}

spec:
suspendAction:
suspendStatefulSet: false

...

TiDB Operator also supports restoring one or more components in the TiDB cluster.
Taking TiKV as an example, you can restore TiKV in the TiDB cluster by configuring
spec.tikv.suspendAction field in the TidbCluster object.
apiVersion: pingcap.com/v1alpha1
kind: TidbCluster
metadata:
name: ${cluster_name}
namespace: ${namespace}

spec:
tikv:
suspendAction:
suspendStatefulSet: false

...

2. After restoring the TiDB cluster, you can run the following command to observe that
the Pods of the suspended component are gradually created.
kubectl -n ${namespace} get pods

7.5.8 Maintain Different TiDB Clusters Separately Using Multiple Sets of TiDB
Operator

You can use one set of TiDB Operator to manage multiple TiDB clusters. If you have
the following application needs, you can deploy multiple sets of TiDB Operator to manage
different TiDB clusters:

• You need to perform a canary upgrade on TiDB Operator so that the potential issues
of the new version do not affect your application.

• Multiple TiDB clusters exist in your organization, and each cluster belongs to different
teams. Each team needs to manage their own cluster.

This document describes how to deploy multiple sets of TiDB Operator to manage
different TiDB clusters.

When you use TiDB Operator, tidb-scheduler is not mandatory. Refer to tidb-
scheduler and default-scheduler to confirm whether you need to deploy tidb-scheduler.

509

Note:

• Currently, you can only deploy multiple sets of tidb-controller-
↪→ manager and tidb-scheduler. Deploying multiple sets of Advanced-
StatefulSet controller and tidb-admission-webhook is not supported.

• If you have deployed multiple sets of TiDB Operator and only some
of them enable Advanced StatefulSet, the same TidbCluster Custom
Resource (CR) cannot be switched among these TiDB Operator.

• This feature is supported since v1.1.10.

7.5.8.1 Deploy multiple sets of TiDB Operator

1. Deploy the first set of TiDB Operator.
Refer to Deploy TiDB Operator - Customize TiDB Operator to deploy the first set of
TiDB Operator. Add the following configuration in the values.yaml:
controllerManager:
selector:
- user=dev

2. Deploy the first TiDB cluster.

1. Refer to Configure the TiDB Cluster - Configure TiDB deployment to configure
the TidbCluster CR, and configure labels to match the selector set in the last
step. For example:
apiVersion: pingcap.com/v1alpha1
kind: TidbCluster
metadata:
name: basic1
labels:
user: dev

spec:
...

If labels is not set when you deploy the TiDB cluster, you can configure labels
by running the following command:
kubectl -n ${namespace} label tidbcluster ${cluster_name} user=dev

2. Refer to Deploy TiDB on General Kubernetes to deploy the TiDB cluster. Con-
firm that each component in the cluster is started normally.

510

3. Deploy the second set of TiDB Operator.
Refer to Deploy TiDB Operator to deploy the second set of TiDB Operator without
tidb-scheduler. Add the following configuration in the values.yaml file, and deploy
the second TiDB Operator (without tidb-scheduler) in a different namespace
(such as tidb-admin-qa) with a different Helm Release Name (such as helm
↪→ install tidb-operator-qa ...):
controllerManager:
selector:
- user=qa

appendReleaseSuffix: true
scheduler:
If you do not need tidb-scheduler, set this value to false.
create: false

advancedStatefulset:
create: false

admissionWebhook:
create: false

Note:
• It is recommended to deploy the new TiDB Operator in a separate

namespace.
• Set appendReleaseSuffix to true.
• If you configure scheduler.create: true, a tidb-scheduler

named {{ .scheduler.schedulerName }}-{{.Release.Name}} is
created. To use this tidb-scheduler, you need to configure spec
↪→ .schedulerName in the TidbCluster CR to the name of this
scheduler.

• You need to set advancedStatefulset.create: false and
admissionWebhook.create: false, because deploying multiple
sets of AdvancedStatefulSet controller and tidb-admission-
↪→ webhook is not supported.

4. Deploy the second TiDB cluster.

1. Refer to Configure the TiDB Cluster to configure the TidbCluster CR, and con-
figure labels to match the selector set in the last step. For example:
apiVersion: pingcap.com/v1alpha1
kind: TidbCluster
metadata:
name: basic2
labels:

511

https://helm.sh/docs/intro/using_helm/#three-big-concepts

user: qa
spec:
...

If labels is not set when you deploy the TiDB cluster, you can configure labels
by running the following command:
kubectl -n ${namespace} label tidbcluster ${cluster_name} user=qa

2. Refer to Deploy TiDB on General Kubernetes to deploy the TiDB cluster. Con-
firm that each component in the cluster is started normally.

5. View the logs of the two sets of TiDB Operator, and confirm that each TiDB Operator
manages the TiDB cluster that matches the corresponding selectors.
For example:
View the log of tidb-controller-manager of the first TiDB Operator:
kubectl -n tidb-admin logs tidb-controller-manager-55b887bdc9-lzdwv

Output
View the log of tidb-controller-manager of the second TiDB Operator:
kubectl -n tidb-admin-qa logs tidb-controller-manager-qa-5dfcd7f9-vll4c

Output
By comparing the logs of the two sets of TiDB Operator, you can confirm that the first
TiDB Operator only manages the tidb-cluster-1/basic1 cluster, and the second
TiDB Operator only manages the tidb-cluster-2/basic2 cluster.

If you want to deploy a third or more sets of TiDB Operator, repeat step 3, step 4, and
step 5.

7.5.8.2 Related parameters
In the values.yaml file in the tidb-operator chart, the following parameters are related

to the deployment of multiple sets of TiDB Operator:

• appendReleaseSuffix
If this parameter is set to true, when you deploy TiDB Operator, the Helm chart
automatically adds a suffix (-{{ .Release.Name }}) to the name of resources related
to tidb-controller-manager and tidb-scheduler.
For example, if you execute helm install canary pingcap/tidb-operator ..., the
name of the tidb-controller-manager deployment is tidb-controller-manager-
↪→ canary.
If you need to deploy multiple sets of TiDB Operator, set this parameter to true.
Default value: false.

512

• controllerManager.create
Controls whether to create tidb-controller-manager.
Default value: true.

• controllerManager.selector
Sets the -selector parameter for tidb-controller-manager. The parameter is used
to filter the CRs controlled by tidb-controller-manager according to the CR labels.
If multiple selectors exist, the selectors are in and relationship.
Default value: [] (tidb-controller-manager controls all CRs).
Example:
selector:
- canary-release=v1
- k1==v1
- k2!=v2

• scheduler.create
Controls whether to create tidb-scheduler.
Default value: true.

7.5.9 Maintain Kubernetes Nodes that Hold the TiDB Cluster

TiDB is a highly available database that can run smoothly when some of the database
nodes go offline. For this reason, you can safely shut down and maintain the Kubernetes
nodes at the bottom layer without influencing TiDB’s service. Specifically, you need to adopt
various maintenance strategies when handling PD, TiKV, and TiDB Pods because of their
different characteristics.

This document introduces how to perform a temporary or long-term maintenance task
for the Kubernetes nodes.

7.5.9.1 Prerequisites

• kubectl
• jq

Note:
Before you maintain a node, you need to make sure that the remaining re-
sources in the Kubernetes cluster are enough for running the TiDB cluster.

513

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://stedolan.github.io/jq/download/

7.5.9.2 Maintain a node that can be recovered shortly

1. Mark the node to be maintained as non-schedulable to ensure that no new Pod is
scheduled to it:
kubectl cordon ${node_name}

2. Check whether there is any TiKV Pod on the node to be maintained:
kubectl get pod --all-namespaces -o wide | grep ${node_name} | grep

↪→ tikv

If any TiKV Pod is found, for each TiKV Pod, perform the following operations:

1. Evict the TiKV Region Leader to another Pod.
2. Increase the maximum offline duration for TiKV Pods by configuring max-store-

↪→ down-time of PD. After you maintain and recover the Kubernetes node within
that duration, all TiKV Pods on that node will be automatically recovered.
The following example shows how to set max-store-down-time to 60m. You can
set it to any reasonable value.
pd-ctl config set max-store-down-time 60m

3. Check whether there is any PD Pod on the node to be maintained:
kubectl get pod --all-namespaces -o wide | grep ${node_name} | grep pd

If any PD Pod is found, for each PD Pod, transfer the PD leader to other Pods.

4. Confirm that the node to be maintained no longer has any TiKV Pod or PD Pod:
kubectl get pod --all-namespaces -o wide | grep ${node_name}

5. Migrate all Pods on the node to be maintained to other nodes:
kubectl drain ${node_name} --ignore-daemonsets

After running this command, all Pods on this node are automatically migrated to
another available node.

6. Confirm that the node to be maintained no longer has any TiKV, TiDB, or PD Pod:
kubectl get pod --all-namespaces -o wide | grep ${node_name}

7. When the maintenance is completed, after you recover the node, make sure that the
node is in a healthy state:
watch kubectl get node ${node_name}

514

After the node goes into the Ready state, proceed with the following operations.

8. Lift the scheduling restriction on the node:
kubectl uncordon ${node_name}

9. Confirm that all Pods are running normally:
kubectl get pod --all-namespaces -o wide | grep ${node_name}

When all Pods are running normally, you have successfully finished the maintenance
task.

7.5.9.3 Maintain a node that cannot be recovered shortly

1. Check whether there is any TiKV Pod on the node to be maintained:
kubectl get pod --all-namespaces -o wide | grep ${node_name} | grep

↪→ tikv

If any TiKV Pod is found, for each TiKV Pod, reschedule the TiKV Pod to another
node.

2. Check whether there is any PD Pod on the node to be maintained:
kubectl get pod --all-namespaces -o wide | grep ${node_name} | grep pd

If any PD Pod is found, for each PD Pod, reschedule the PD Pod to another node.

3. Confirm that the node to be maintained no longer has any TiKV Pod or PD Pod:
kubectl get pod --all-namespaces -o wide | grep ${node_name}

4. Migrate all Pods on the node to be maintained to other nodes:
kubectl drain ${node_name} --ignore-daemonsets

After running this command, all Pods on this node are automatically migrated to
another available node.

5. Confirm that the node to be maintained no longer has any TiKV, TiDB, or PD Pod:
kubectl get pod --all-namespaces -o wide | grep ${node_name}

6. (Optional) If the node will be offline for a long time, it is recommended to delete the
node from your Kubernetes cluster:
kubectl delete node ${node_name}

515

7.5.9.4 Reschedule PD Pods
If a node will be offline for a long time, to minimize the impact on your application, you

can reschedule the PD Pods on this node to other nodes in advance.

7.5.9.4.1 If the node storage can be automatically migrated
If the node storage can be automatically migrated (such as EBS), to reschedule a PD

Pod, you do not need to delete the PD member. You only need to transfer the PD Leader
to another Pod and delete the old Pod.

1. Mark the node to be maintained as non-schedulable to ensure that no new Pod is
scheduled to it:
kubectl cordon ${node_name}

2. Check the PD Pod on the node to be maintained:
kubectl get pod --all-namespaces -o wide | grep ${node_name} | grep pd

3. Transfer the PD Leader to another Pod.

4. Delete the old PD Pod:
kubectl delete -n ${namespace} pod ${pod_name}

5. Confirm that the PD Pod is successfully scheduled to another node:
watch kubectl -n ${namespace} get pod -o wide

7.5.9.4.2 If the node storage cannot be automatically migrated
If the node storage cannot be automatically migrated (such as local storage), to resched-

ule a PD Pod, you need to delete the PD member.

1. Mark the node to be maintained as non-schedulable to ensure that no new Pod is
scheduled to it:
kubectl cordon ${node_name}

2. Check the PD Pod on the node to be maintained:
kubectl get pod --all-namespaces -o wide | grep ${node_name} | grep pd

3. Transfer the PD Leader to another Pod.

4. Take the PD Pod offline:

516

pd-ctl member delete name ${pod_name}

5. Confirm that the PD member is deleted:
pd-ctl member

6. Unbind the PD Pod with the local disk on the node.

1. Check the PersistentVolumeClaim used by the Pod:
kubectl -n ${namespace} get pvc -l tidb.pingcap.com/pod-name=${

↪→ pod_name}

2. Delete the PersistentVolumeClaim:
kubectl delete -n ${namespace} pvc ${pvc_name} --wait=false

7. Delete the old PD Pod:
kubectl delete -n ${namespace} pod ${pod_name}

8. Confirm that the PD Pod is successfully scheduled to another node:
watch kubectl -n ${namespace} get pod -o wide

7.5.9.5 Reschedule TiKV Pods
If a node will be offline for a long time, to minimize the impact on your application, you

can reschedule the TiKV Pods on this node to other nodes in advance.

7.5.9.5.1 If the node storage can be automatically migrated
If the node storage can be automatically migrated (such as EBS), to reschedule a TiKV

Pod, you do not need to delete the whole TiKV store. You only need to evict the TiKV
Region Leader to another Pod and delete the old Pod.

1. Mark the node to be maintained as non-schedulable to ensure that no new Pod is
scheduled to it:
kubectl cordon ${node_name}

2. Check the TiKV Pod on the node to be maintained:
kubectl get pod --all-namespaces -o wide | grep ${node_name} | grep

↪→ tikv

517

3. Add annotation with a tidb.pingcap.com/evict-leader key to the TiKV Pod to
trigger the graceful restart. After TiDB Operator evicts the TiKV Region Leader,
TiDB Operator deletes the Pod.
kubectl -n ${namespace} annotate pod ${pod_name} tidb.pingcap.com/evict

↪→ -leader="delete-pod"

4. Confirm that the TiKV Pod is successfully scheduled to another node:
watch kubectl -n ${namespace} get pod -o wide

5. Confirm that the Region Leader is transferred back:
kubectl -n ${namespace} get tc ${cluster_name} -ojson | jq ".status.

↪→ tikv.stores | .[] | select (.podName == \"${pod_name}\") | .
↪→ leaderCount"

7.5.9.5.2 If the node storage cannot be automatically migrated
If the node storage cannot be automatically migrated (such as local storage), to resched-

ule a TiKV Pod, you need to delete the whole TiKV store.

1. Mark the node to be maintained as non-schedulable to ensure that no new Pod is
scheduled to it:
kubectl cordon ${node_name}

2. Check the TiKV Pod on the node to be maintained:
kubectl get pod --all-namespaces -o wide | grep ${node_name} | grep

↪→ tikv

3. Recreate a TiKV Pod.

7.5.9.6 Transfer PD Leader

1. Check the PD Leader:
pd-ctl member leader show

2. If the Leader Pod is on the node to be maintained, you need to transfer the PD Leader
to a Pod on another node:
pd-ctl member leader transfer ${pod_name}

${pod_name} is the name of the PD Pod on another node.

518

7.5.9.7 Evict TiKV Region Leader

1. Add an annotation with a tidb.pingcap.com/evict-leader key to the TiKV Pod:
kubectl -n ${namespace} annotate pod ${pod_name} tidb.pingcap.com/evict

↪→ -leader="none"

2. Confirm that all Region Leaders are migrated:
kubectl -n ${namespace} get tc ${cluster_name} -ojson | jq ".status.

↪→ tikv.stores | .[] | select (.podName == \"${pod_name}\") | .
↪→ leaderCount"

If the output is 0, all Region Leaders are successfully migrated.

7.5.9.8 Recreate a TiKV Pod

1. Evict the TiKV Region Leader to another Pod.

2. Take the TiKV Pod offline.

Note:
Before you take the TiKV Pod offline, make sure that the remaining
TiKV Pods are not fewer than the TiKV replica number set in PD con-
figuration (max-replicas, 3 by default). If the remaining TiKV Pods are
not enough, scale out TiKV Pods before you take the TiKV Pod offline.

1. Check store-id of the TiKV Pod:
kubectl get -n ${namespace} tc ${cluster_name} -ojson | jq ".status

↪→ .tikv.stores | .[] | select (.podName == \"${pod_name}\")
↪→ | .id"

2. In any of the PD Pods, use pd-ctl command to take the TiKV Pod offline:
kubectl exec -n ${namespace} ${cluster_name}-pd-0 -- /pd-ctl store

↪→ delete ${store_id}

3. Wait for the store status (state_name) to become Tombstone:
kubectl exec -n ${namespace} ${cluster_name}-pd-0 -- watch /pd-ctl

↪→ store ${store_id}

Expected output

519

{
"store": {
"id": "${store_id}",
// ...
"state_name": "Tombstone"

},
// ...

}

3. Unbind the TiKV Pod with the currently used storage.

1. Check the PersistentVolumeClaim used by the Pod:
kubectl -n ${namespace} get pvc -l tidb.pingcap.com/pod-name=${

↪→ pod_name}

Expected output
The NAME field is the name of PVC.
NAME STATUS VOLUME CAPACITY

↪→ ACCESS MODES STORAGECLASS AGE
${pvc_name} Bound pvc-a8f16ca6-a675-448f-82c3-3cae624aa0e2 100Gi

↪→ RWO standard 18m

2. Delete the PersistentVolumeClaim:
kubectl delete -n ${namespace} pvc ${pvc_name} --wait=false

4. Delete the old TiKV Pod and wait for the new TiKV Pod to join the cluster.
kubectl delete -n ${namespace} pod ${pod_name}

Wait for the state of the new TiKV Pod to become Up.
kubectl get -n ${namespace} tc ${cluster_name} -ojson | jq ".status.

↪→ tikv.stores | .[] | select (.podName == \"${pod_name}\")"

Expected output
{
"id": "${new_store_id}",
"ip": "${pod_name}.${cluster_name}-tikv-peer.default.svc",
"lastTransitionTime": "2022-03-08T06:39:58Z",
"leaderCount": 3,
"podName": "${pod_name}",
"state": "Up"

}

520

As you can see from the output, the new TiKV Pod have a new store-id, and Region
Leaders are migrated to this TiKV Pod automatically.

5. Remove the useless evict-leader-scheduler:
kubectl exec -n ${namespace} ${cluster_name}-pd-0 -- /pd-ctl scheduler

↪→ remove evict-leader-scheduler-${store_id}

7.5.10 Migrate from Helm 2 to Helm 3

This document describes how to migrate component management from Helm 2 to Helm
3. This document takes TiDB Operator as an example. For other components, you can take
similar steps to perform the migration.

For more information about migrating releases managed by Helm 2 to Helm 3, refer to
Helm documentation.

7.5.10.1 Migration procedure
In this example, TiDB Operator (tidb-operator) managed by Helm 2 is installed in

the tidb-admin namespace. A basic TidbCluster and basic TidbMonitor are deployed in
the tidb-cluster namespace.
helm list

NAME REVISION UPDATED STATUS CHART
↪→ APP VERSION NAMESPACE

tidb-operator 1 Tue Jan 5 15:28:00 2021 DEPLOYED tidb-
↪→ operator-v1.1.8 v1.1.8 tidb-admin

1. Install Helm 3.
Helm 3 takes a different approach from Helm 2 in configuration and data storage.
Therefore, when you install Helm 3, there is no risk of overwriting the original config-
uration and data.

Note:
During the installation, do not let the CLI binary of Helm 3 overwrite
that of Helm 2. For example, you can name Helm 3 CLI binary as helm3.
(All following examples in this document uses helm3.)

2. Install helm-2to3 plugin for Helm 3.
helm3 plugin install https://github.com/helm/helm-2to3

521

https://helm.sh/docs/topics/v2_v3_migration/
https://helm.sh/docs/intro/install/
https://github.com/helm/helm-2to3

You can verify whether the plugin is successfully installed by running the following
command:
helm3 plugin list

NAME VERSION DESCRIPTION
2to3 0.8.0 migrate and cleanup Helm v2 configuration and releases in

↪→ -place to Helm v3

3. Migrate the configuration such as repositories and plugins from Helm 2 to Helm 3:
helm3 2to3 move config

Before you migrate, you can learn about the possible operations and their consequences
by executing helm3 2to3 move config --dry-run.
After the migration, the PingCAP repository is already in Helm 3:
helm3 repo list

NAME URL
pingcap https://charts.pingcap.org/

4. Migrate the releases from Helm 2 to Helm 3:
helm3 2to3 convert tidb-operator

Before you migrate, you can learn about the possible operations and their consequences
by executing helm3 2to3 convert tidb-operator --dry-run.
After the migration, you can view the release corresponding to TiDB Operator in Helm
3:
helm3 list --namespace=tidb-admin

NAME NAMESPACE REVISION UPDATED
↪→ STATUS CHART APP
↪→ VERSION

tidb-operator tidb-admin 1 2021-01-05 07:28:00.3545941
↪→ +0000 UTC deployed tidb-operator-v1.1.8 v1.1.8

Note:
If the original Helm 2 is Tillerless (Tiller is installed locally via plugins
like helm-tiller rather than in the Kubernetes cluster), you can migrate
the release by adding the --tiller-out-cluster flag in the command:
helm3 2to3 convert tidb-operator --tiller-out-cluster.

522

https://github.com/rimusz/helm-tiller

5. Confirm that TiDB Operator, TidbCluster, and TidbMonitor run normally.
To view the running status of TiDB Operator:
kubectl get pods --namespace=tidb-admin -l app.kubernetes.io/instance=

↪→ tidb-operator

If all Pods are in the Running state, TiDB Operator runs normally:
NAME READY STATUS RESTARTS AGE
tidb-controller-manager-6d8d5c6d64-b8lv4 1/1 Running 0 2m22s
tidb-scheduler-644d59b46f-4f6sb 2/2 Running 0 2m22s

To view the running status of TidbCluster and TidbMonitor:
watch kubectl get pods --namespace=tidb-cluster

If all Pods are in the Running state, TidbCluster and TidbMonitor runs normally:
NAME READY STATUS RESTARTS AGE
basic-discovery-6bb656bfd-xl5pb 1/1 Running 0 9m9s
basic-monitor-5fc8589c89-gvgjj 3/3 Running 0 8m58s
basic-pd-0 1/1 Running 0 9m8s
basic-tidb-0 2/2 Running 0 7m14s
basic-tikv-0 1/1 Running 0 8m13s

6. Clean up Helm 2 data, such as configuration and releases:
helm3 2to3 cleanup --name=tidb-operator

Before you clean up the data, you can learn about the possible operations and their
consequences by executing helm3 2to3 cleanup --name=tidb-operator --dry-run
↪→ .

Note:
After the cleanup, you can no longer manage the releases using Helm 2.

7.5.11 Replace Nodes for a TiDB Cluster

7.5.11.1 Replace Nodes for a TiDB Cluster on Cloud Disks
This document describes a method for replacing and upgrading nodes without down-

time for a TiDB cluster that uses cloud storage. You can change the nodes to a higher
configuration, or upgrade the nodes to a newer version of Kubernetes.

This document uses Amazon EKS as an example and describes how to create a new node
group and migrate a TiDB cluster to the new node group using a rolling restart. You can

523

use this method to replace a node group with more compute resources for TiKV or TiDB
and upgrade EKS.

For other cloud platforms, refer to Google Cloud GKE or Azure AKS and operate on
the node group.

7.5.11.1.1 Prerequisites

• A TiDB cluster is deployed on the cloud. If not, refer to Deploy on Amazon EKS and
deploy a cluster.

• The TiDB cluster uses cloud storage as its data disk.

7.5.11.1.2 Step 1: Create new node groups

1. Locate the cluster.yaml configuration file for the EKS cluster that the TiDB cluster
is deployed in, and save a copy of the file as cluster-new.yaml.

2. In cluster-new.yaml, add new groups (for example, tidb-1b-new and tikv-1a-new):
apiVersion: eksctl.io/v1alpha5
kind: ClusterConfig
metadata:
name: your-eks-cluster
region: ap-northeast-1

nodeGroups:
...
- name: tidb-1b-new
desiredCapacity: 1
privateNetworking: true
availabilityZones: ["ap-northeast-1b"]
instanceType: c5.4xlarge
labels:
dedicated: tidb

taints:
dedicated: tidb:NoSchedule

- name: tikv-1a-new
desiredCapacity: 1
privateNetworking: true
availabilityZones: ["ap-northeast-1a"]
instanceType: r5b.4xlarge
labels:
dedicated: tikv

taints:
dedicated: tikv:NoSchedule

524

Note:
• availabilityZones must be the same as that of the original node

group to be replaced.
• The tidb-1b-new and tikv-1a-new node groups configured in the

YAML above are only for demonstration. You need to configure the
node groups according to your needs.

If you want to scale up a node, modify instanceType. If you want to upgrade the
Kubernetes version, first upgrade the version of your cluster control plane. For details,
see Updating a Cluster.

3. In cluster-new.yaml, delete the original node groups to be replaced.
In this example, delete tidb-1b and tikv-1a. You need to delete node groups accord-
ing to your needs.

4. In cluster.yaml, delete the node groups that are not to be replaced and keep the
node groups that are to be replaced. The retained node groups will be deleted from
the cluster.
In this example, keep tidb-1a and tikv-1b, and delete other node groups. You need
to keep or delete node groups according to your needs.

5. Create the new node groups:
eksctl create nodegroup -f cluster_new.yml

Note:
This command only creates new node groups. Node groups that already
exist are ignored and not created again. The command does not delete
the node groups that do not exist.

6. Confirm that the new nodes are added to the cluster.
kubectl get no -l alpha.eksctl.io/nodegroup-name=${new_nodegroup1}
kubectl get no -l alpha.eksctl.io/nodegroup-name=${new_nodegroup2}
...

${new_nodegroup} is the name of a new node group. In this example, the new node
groups are tidb-1b-new and tikv-1a-new. You need to configure the node group name
according to your needs.

525

https://docs.aws.amazon.com/eks/latest/userguide/update-cluster.html

7.5.11.1.3 Step 2: Mark the original nodes as non-schedulable
You need to mark the original nodes as non-schedulable to ensure that no new Pod is

scheduled to it. Run the kubectl cordon command:
kubectl cordon -l alpha.eksctl.io/nodegroup-name=${origin_nodegroup1}
kubectl cordon -l alpha.eksctl.io/nodegroup-name=${origin_nodegroup2}
...

${origin_nodegroup} is the name of an original node group. In this example, the
original node groups are tidb-1b and tikv-1a. You need to configure the node group name
according to your needs.

7.5.11.1.4 Step 3: Rolling restart the TiDB cluster
Refer to Restart a TiDB Cluster on Kubernetes and perform a rolling restart on the

TiDB cluster.

7.5.11.1.5 Step 4: Delete the original node groups
Check whether there are TiDB, PD, or TiKV Pods left on nodes of the original node

groups:
kubectl get po -n ${namespace} -owide

If no TiDB, PD, or TiKV Pods are left on the nodes of the original node groups, you
can delete the original node groups:
eksctl delete nodegroup -f cluster.yaml --approve

7.5.11.2 Replace Nodes for a TiDB Cluster on Local Disks
This document describes a method for replacing and upgrading nodes without downtime

for a TiDB cluster that uses local storage.

Note:
If you only need to maintain a specific node in the TiDB cluster, refer to
Maintain Kubernetes Nodes that Hold the TiDB Cluster.

7.5.11.2.1 Prerequisites

• A TiDB cluster is deployed. If not, refer to Deploy TiDB on General Kubernetes and
deploy a cluster.

• The new node is ready and joins the Kubernetes cluster.

526

7.5.11.2.2 Step 1: Clone the configuration of the original TiDB cluster

1. Export a copy of the cluster configuration file, tidb-cluster-clone.yaml, by running
the following command:
kubectl get tidbcluster ${origin_cluster_name} -n ${namespace} -oyaml >

↪→ tidb-cluster-clone.yaml

${origin_cluster_name} is the name of the original cluster. ${namespace} is the
namespace of the original cluster.

2. Modify tidb-cluster-clone.yaml and allow the new clone cluster to join the original
TiDB cluster.
kind: TidbCluster
metadata:
name: ${clone_cluster_name}

spec:
cluster:
name: ${origin_cluster_name}

...

${clone_cluster_name} is the name of the clone cluster. ${origin_cluster_name}
is the name of the original cluster.

7.5.11.2.3 Step 2: Sign certificates for the clone cluster
If the original cluster enables TLS, you need to sign certificates for the clone cluster. If

not, you can skip this step and move to Step 3.
Use cfssl
If you use cfssl to sign certificates, you must sign certificates using the same certification

authority (CA) as the original cluster. To complete the signing process, follow instructions
in step 5~7 in Using cfssl.

Use cert-manager
If you use cert-manager, you must sign certificates using the same Issuer as the original

cluster. To complete the signing process, follow instructions in step 3 in Using cert-manager.

7.5.11.2.4 Step 3: Mark the nodes to be replaced as non-schedulable
By marking the nodes to be replaced as non-schedulable, you can ensure that no new

Pod is scheduled to the nodes. Run the kubectl cordon command:
kubectl cordon ${replace_nodename1} ${replace_nodename2} ...

527

7.5.11.2.5 Step 4: Create the clone cluster

1. Create the clone cluster by running the following command:
kubectl apply -f tidb-cluster-clone.yaml

2. Confirm that the new TiDB cluster that consists of the clone cluster and the original
cluster is running normally.

• Obtain the count and state of stores in the new cluster:
store count
pd-ctl -u http://<address>:<port> store | jq '.count'
store state
pd-ctl -u http://<address>:<port> store | jq '.stores | .[] | .

↪→ store.state_name'

• Access the TiDB cluster via MySQL client.

7.5.11.2.6 Step 5: Scale in all TiDB nodes of the original cluster
Scale in all TiDB nodes of the original cluster to 0. For details, refer to Horizontal

scaling.

Note:
If you access the original TiDB cluster via a load balancer or database mid-
dleware, before scaling in the original TiDB cluster, you need to modify the
configuration to route your application traffic to the target TiDB cluster.
Otherwise, your application might be affected.

7.5.11.2.7 Step 6: Scale in all TiKV nodes of the original cluster
Scale in all TiKV nodes of the original cluster to 0. For details, refer to Horizontal

scaling.

7.5.11.2.8 Step 7: Scale in all PD nodes of the original cluster
Scale in all PD nodes of the original cluster to 0. For details, refer to Horizontal scaling.

528

7.5.11.2.9 Step 8: Delete the spec.cluster field in the clone cluster
Delete the spec.cluster field in the clone cluster by running the following command:

kubectl patch -n ${namespace} tc ${clone_cluster_name} --type=json -p '[{"
↪→ op":"remove", "path":"/spec/cluster"}]'

${namespace} is the name of the clone cluster (unchanged). ${clone_cluster_name}
is the name of the clone cluster.

7.5.11.2.10 Step 9: Delete the cluster, data, and nodes of the original cluster

1. Delete the TidbCluster of the original cluster:
kubectl delete -n ${namespace} tc ${origin_cluster_name}

${namespace} is the name of the original cluster (unchanged). ${original_cluster_name
↪→ } is the name of the original cluster.

2. Delete the data of the original cluster. For details, refer to Delete PV and data.

3. Delete the nodes to be replaced from the Kubernetes cluster:
kubectl delete node ${replace_nodename1} ${replace_nodename2} ...

7.6 Disaster Recovery

7.6.1 Recover the Deleted Cluster

This document describes how to recover a TiDB cluster that has been deleted mistakenly
on Kubernetes. If you have mistakenly deleted a TiDB cluster using TidbCluster, you can
use the method introduced in this document to recover the cluster.

TiDB Operator uses PV (Persistent Volume) and PVC (Persistent Volume Claim) to
store persistent data. If you accidentally delete a cluster using kubectl delete tc, the
PV/PVC objects and data are still retained to ensure data safety.

To recover the deleted cluster, use the kubectl create command to create a cluster that
has the same name and configuration as the deleted one. In the new cluster, the retained
PV/PVC and data are reused.
kubectl -n ${namespace} create -f tidb-cluster.yaml

529

7.6.2 Use PD Recover to Recover the PD Cluster

PD Recover is a disaster recovery tool of PD, used to recover the PD cluster which
cannot start or provide services normally. For detailed introduction of this tool, see TiDB
documentation - PD Recover. This document introduces how to download PD Recover and
how to use it to recover a PD cluster.

7.6.2.1 Download PD Recover

1. Download the official TiDB package:
wget https://download.pingcap.org/tidb-community-toolkit-${version}-

↪→ linux-amd64.tar.gz

In the command above, ${version} is the version of the TiDB cluster, such as v8.5.0.

2. Unpack the TiDB package:
tar -xzf tidb-community-toolkit-${version}-linux-amd64.tar.gz
tar -xzf tidb-community-toolkit-${version}-linux-amd64/pd-recover-${

↪→ version}-linux-amd64.tar.gz

pd-recover is in the current directory.

7.6.2.2 Scenario 1: At least one PD node is alive
This section introduces how to recover the PD cluster using PD Recover and alive PD

nodes. This section is only applicable to the scenario where the PD cluster has alive PD
nodes. If all PD nodes are unavailable, refer to Scenario 2.

Note:
If you restore the cluster by using alive PD, the cluster can keep all the
configuration information that has taken effect in PD before the restoration.

7.6.2.2.1 Step 1. Recover the PD Pod

Note:
This document takes pd-0 as an example. If you use other PD pods, modify
the corresponding command.

530

https://docs.pingcap.com/tidb/stable/tidb-scheduling
https://docs.pingcap.com/tidb/stable/pd-recover
https://docs.pingcap.com/tidb/stable/pd-recover

Use an alive PD node pd-0 to force recreate the PD cluster. The detailed steps are as
follows:

1. Let pd-0 pod enter debug mode:
kubectl annotate pod ${cluster_name}-pd-0 -n ${namespace} runmode=debug
kubectl exec ${cluster_name}-pd-0 -n ${namespace} -- kill -SIGTERM 1

2. Enter the pd-0 pod:
kubectl exec ${cluster_name}-pd-0 -n ${namespace} -it -- sh

3. Refer to the default startup script pd-start-script or the start script of an alive PD
node, and configure environment variables in pd-0:
Use HOSTNAME if POD_NAME is unset for backward compatibility.
POD_NAME=${POD_NAME:-$HOSTNAME}
the general form of variable PEER_SERVICE_NAME is: "<clusterName>-pd-

↪→ peer"
cluster_name=`echo ${PEER_SERVICE_NAME} | sed 's/-pd-peer//'`
domain="${POD_NAME}.${PEER_SERVICE_NAME}.${NAMESPACE}.svc"
discovery_url="${cluster_name}-discovery.${NAMESPACE}.svc:10261"
encoded_domain_url=`echo ${domain}:2380 | base64 | tr "\n" " " | sed "s

↪→ / //g"`
elapseTime=0
period=1
threshold=30
while true; do
sleep ${period}
elapseTime=$((elapseTime+period))

if [[${elapseTime} -ge ${threshold}]]
then
echo "waiting for pd cluster ready timeout" >&2
exit 1
fi

if nslookup ${domain} 2>/dev/null
then
echo "nslookup domain ${domain}.svc success"
break
else
echo "nslookup domain ${domain} failed" >&2
fi
done

531

https://github.com/pingcap/tidb-operator/blob/91f4edf549c9a268972dfe1aaf8e7f89feec65ff/pkg/manager/member/startscript/v1/template.go#L116

ARGS="--data-dir=/var/lib/pd \
--name=${POD_NAME} \
--peer-urls=http://0.0.0.0:2380 \
--advertise-peer-urls=http://${domain}:2380 \
--client-urls=http://0.0.0.0:2379 \
--advertise-client-urls=http://${domain}:2379 \
--config=/etc/pd/pd.toml \
"

if [[-f /var/lib/pd/join]]
then
The content of the join file is:
demo-pd-0=http://demo-pd-0.demo-pd-peer.demo.svc:2380,demo-pd-1=

↪→ http://demo-pd-1.demo-pd-peer.demo.svc:2380
The --join args must be:
--join=http://demo-pd-0.demo-pd-peer.demo.svc:2380,http://demo-pd

↪→ -1.demo-pd-peer.demo.svc:2380
join=`cat /var/lib/pd/join | tr "," "\n" | awk -F'=' '{print $2}' | tr

↪→ "\n" ","`
join=${join%,}
ARGS="${ARGS} --join=${join}"
elif [[! -d /var/lib/pd/member/wal]]
then
until result=$(wget -qO- -T 3 http://${discovery_url}/new/${

↪→ encoded_domain_url} 2>/dev/null); do
echo "waiting for discovery service to return start args ..."
sleep $((RANDOM % 5))
done
ARGS="${ARGS}${result}"
fi

4. Use original pd-0 data directory to force start a new PD cluster:
echo "starting pd-server ..."
sleep $((RANDOM % 10))
echo "/pd-server --force-new-cluster ${ARGS}"
exec /pd-server --force-new-cluster ${ARGS} &

5. Exit pd-0 pod:
exit

6. Execute the following command to confirm that PD is started:
kubectl logs -f ${cluster_name}-pd-0 -n ${namespace} | grep "Welcome to

↪→ Placement Driver (PD)"

532

7.6.2.2.2 Step 2. Recover the PD cluster

1. Copy pd-recover to the PD pod:
kubectl cp ./pd-recover ${namespace}/${cluster_name}-pd-0:./

2. Recover the PD cluster by running the pd-recover command:
In the command, use the newly created cluster in the previous step:
kubectl exec ${cluster_name}-pd-0 -n ${namespace} -- ./pd-recover --

↪→ from-old-member -endpoints http://127.0.0.1:2379

recover success! please restart the PD cluster

7.6.2.2.3 Step 3. Restart the PD Pod

1. Delete the PD Pod:
kubectl delete pod ${cluster_name}-pd-0 -n ${namespace}

2. Confirm the Cluster ID is generated:
kubectl -n ${namespace} exec -it ${cluster_name}-pd-0 -- wget -q http

↪→ ://127.0.0.1:2379/pd/api/v1/cluster
kubectl -n ${namespace} exec -it ${cluster_name}-pd-0 -- cat cluster

7.6.2.2.4 Step 4. Recreate other failed or available PD nodes
In this example, recreate pd-1 and pd-2:

kubectl -n ${namespace} delete pvc pd-${cluster_name}-pd-1 --wait=false
kubectl -n ${namespace} delete pvc pd-${cluster_name}-pd-2 --wait=false

kubectl -n ${namespace} delete pod ${cluster_name}-pd-1
kubectl -n ${namespace} delete pod ${cluster_name}-pd-2

7.6.2.2.5 Step 5. Check PD health and configuration
Check health:

kubectl -n ${namespace} exec -it ${cluster_name}-pd-0 -- ./pd-ctl health

Check configuration. The following command uses placement rules as an example:
kubectl -n ${namespace} exec -it ${cluster_name}-pd-0 -- ./pd-ctl config

↪→ placement-rules show

Now the TiDB cluster is recovered.

533

7.6.2.3 Scenarios 2: All PD nodes are down and cannot be recovered
This section introduces how to recover the PD cluster by using PD Recover and creating

new PD nodes. This section is only applicable when all PD nodes in the cluster have failed
and cannot be recovered. If there are alive PD nodes in the cluster, refer to Scenario 1.

Warning:
If you restore the cluster by creating new PD nodes, the cluster will lose all the
configuration information that has taken effect in PD before the restoration.

7.6.2.3.1 Step 1: Get Cluster ID
kubectl get tc ${cluster_name} -n ${namespace} -o='go-template={{.status.

↪→ clusterID}}{{"\n"}}'

Example:
kubectl get tc test -n test -o='go-template={{.status.clusterID}}{{"\n"}}'
6821434242797747735

7.6.2.3.2 Step 2. Get Alloc ID
When you use pd-recover to recover the PD cluster, you need to specify alloc-id. The

value of alloc-id must be larger than the largest allocated ID (Alloc ID) of the original
cluster.

1. Access the Prometheus monitoring data of the TiDB cluster by taking steps in Access
the Prometheus monitoring data.

2. Enter pd_cluster_id in the input box and click the Execute button to make a query.
Get the largest value in the query result.

3. Multiply the largest value in the query result by 100. Use the multiplied value as the
alloc-id value specified when using pd-recover.

7.6.2.3.3 Step 3. Recover the PD Pod

1. Delete the Pod of the PD cluster.
Execute the following command to set the value of spec.pd.replicas to 0:
kubectl patch tc ${cluster_name} -n ${namespace} --type merge -p '{"

↪→ spec":{"pd":{"replicas": 0}}}'

534

Because the PD cluster is in an abnormal state, TiDB Operator cannot synchronize
the change above to the PD StatefulSet. You need to execute the following command
to set the spec.replicas of the PD StatefulSet to 0.
kubectl patch sts ${cluster_name}-pd -n ${namespace} -p '{"spec":{"

↪→ replicas": 0}}'

Execute the following command to confirm that the PD Pod is deleted:
kubectl get pod -n ${namespace}

2. After confirming that all PD Pods are deleted, execute the following command to delete
the PVCs bound to the PD Pods:
kubectl delete pvc -l app.kubernetes.io/component=pd,app.kubernetes.io/

↪→ instance=${cluster_name} -n ${namespace}

3. After the PVCs are deleted, scale out the PD cluster to one Pod:
Execute the following command to set the value of spec.pd.replicas to 1:
kubectl patch tc ${cluster_name} -n ${namespace} --type merge -p '{"

↪→ spec":{"pd":{"replicas": 1}}}'

Because the PD cluster is in an abnormal state, TiDB Operator cannot synchronize
the change above to the PD StatefulSet. You need to execute the following command
to set the spec.replicas of the PD StatefulSet to 1.
kubectl patch sts ${cluster_name}-pd -n ${namespace} -p '{"spec":{"

↪→ replicas": 1}}'

Execute the following command to confirm that the PD cluster is started:
kubectl logs -f ${cluster_name}-pd-0 -n ${namespace} | grep "Welcome to

↪→ Placement Driver (PD)"

7.6.2.3.4 Step 4. Recover the cluster

1. Copy pd-recover command to the PD pod:
kubectl cp ./pd-recover ${namespace}/${cluster_name}-pd-0:./

2. Execute the pd-recover command to recover the PD cluster:
kubectl exec ${cluster_name}-pd-0 -n ${namespace} -- ./pd-recover -

↪→ endpoints http://127.0.0.1:2379 -cluster-id ${cluster_id} -alloc-
↪→ id ${alloc_id}

535

In the command above, ${cluster_id} is the cluster ID got in Get Cluster ID. ${
↪→ alloc_id} is the largest value of pd_cluster_id (got in Get Alloc ID) multiplied
by 100.
After the pd-recover command is successfully executed, the following result is printed:
recover success! please restart the PD cluster

7.6.2.3.5 Step 5. Restart the PD Pod

1. Delete the PD Pod:
kubectl delete pod ${cluster_name}-pd-0 -n ${namespace}

2. Execute the following command to confirm the Cluster ID is the one got in Get Cluster
ID.
kubectl -n ${namespace} exec -it ${cluster_name}-pd-0 -- wget -q http

↪→ ://127.0.0.1:2379/pd/api/v1/cluster
kubectl -n ${namespace} exec -it ${cluster_name}-pd-0 -- cat cluster

7.6.2.3.6 Step 6. Scale out the PD cluster
Execute the following command to set the value of spec.pd.replicas to the desired

number of Pods:
kubectl patch tc ${cluster_name} -n ${namespace} --type merge -p '{"spec":{"

↪→ pd":{"replicas": $replicas}}}'

7.6.2.3.7 Step 7. Restart TiDB and TiKV
Use the following commands to restart the TiDB and TiKV clusters:

kubectl delete pod -l app.kubernetes.io/component=tidb,app.kubernetes.io/
↪→ instance=${cluster_name} -n ${namespace} &&

kubectl delete pod -l app.kubernetes.io/component=tikv,app.kubernetes.io/
↪→ instance=${cluster_name} -n ${namespace}

Now the TiDB cluster is recovered.

8 Troubleshoot

8.1 Tips for troubleshooting TiDB on Kubernetes

This document describes the commonly used tips for troubleshooting TiDB on Kuber-
netes.

536

8.1.1 Use the debug mode

When a Pod is in the CrashLoopBackoff state, the containers in the Pod exit continually.
As a result, you cannot use kubectl exec normally, making it inconvenient to diagnose
issues.

To solve this problem, TiDB Operator provides the Pod debug mode for PD, TiKV,
and TiDB components. In this mode, the containers in the Pod hang directly after they are
started, and will not repeatedly crash. Then you can use kubectl exec to connect to the
Pod containers for diagnosis.

To use the debug mode for troubleshooting:

1. Add an annotation to the Pod to be diagnosed:
kubectl annotate pod ${pod_name} -n ${namespace} runmode=debug

When the container in the Pod is restarted again, it will detect this annotation and
enter the debug mode.

Note:
If Pod is running, you can force restart the container by running the
following command.
kubectl exec ${pod_name} -n ${namespace} -c ${container} --

↪→ kill -SIGTERM 1

2. Wait for the Pod to enter the Running state.
watch kubectl get pod ${pod_name} -n ${namespace}

Here’s an example of using kubectl exec to get into the container for diagnosis:
kubectl exec -it ${pod_name} -n ${namespace} -- /bin/sh

3. After finishing the diagnosis and resolving the problem, delete the Pod.
kubectl delete pod ${pod_name} -n ${namespace}

After the Pod is rebuilt, it automatically returns to the normal mode.

8.1.2 Modify the configuration of a TiKV instance

In some test scenarios, if you need to modify the configuration of a TiKV instance and
do not want the configuration to affect other instances, you can use the following methods.

537

8.1.2.1 Modify online
Refer to the document and use SQL to online modify the configuration of a single TiKV

instance.

Note:
The modification made by this method is temporary and not persistent. After
the Pod is restarted, the original configuration will be used.

8.1.2.2 Modify manually in debug mode
After the TiKV Pod enters debug mode, you can modify the TiKV configuration file and

then manually start the TiKV process using the modified configuration file.
The steps are as follows:

1. Get the start command from the TiKV log, which will be used in a subsequent step.
kubectl logs pod ${pod_name} -n ${namespace} -c tikv | head -2 | tail

↪→ -1

You can see a similar output as follows, which is the start command of TiKV.
/tikv-server --pd=http://${tc_name}-pd:2379 --advertise-addr=${pod_name

↪→ }.${tc_name}-tikv-peer.default.svc:20160 --addr=0.0.0.0:20160 --
↪→ status-addr=0.0.0.0:20180 --data-dir=/var/lib/tikv --capacity=0
↪→ --config=/etc/tikv/tikv.toml

Note:
If the TiKV Pod is in the CrashLoopBackoff state, you cannot get the
start command from the log. In such cases, you might splice the start
command according to the above command format.

2. Turn on debug mode for the Pod and restart the Pod.
Add an annotation to the Pod and wait for the Pod to restart.
kubectl annotate pod ${pod_name} -n ${namespace} runmode=debug

If the Pod keeps running, you can force restart the container by running the following
command:

538

https://docs.pingcap.com/tidb/stable/dynamic-config#modify-tikv-configuration-online

kubectl exec ${pod_name} -n ${namespace} -c tikv -- kill -SIGTERM 1

Check the log of TiKV to ensure that the Pod is in debug mode.
kubectl logs ${pod_name} -n ${namespace} -c tikv

The output is similar to the following:
entering debug mode.

3. Enter the TiKV container by running the following command:
kubectl exec -it ${pod_name} -n ${namespace} -c tikv -- sh

4. In the TiKV container, copy the configuration file of TiKV to a new file, and modify
the new file.
cp /etc/tikv/tikv.toml /tmp/tikv.toml && vi /tmp/tikv.tmol

5. In the TiKV container, modify the start command obtained in Step 1 and configure
the --config flag as the new configuration file. Run the modified start command to
start the TiKV process:
/tikv-server --pd=http://${tc_name}-pd:2379 --advertise-addr=${pod_name

↪→ }.${tc_name}-tikv-peer.default.svc:20160 --addr=0.0.0.0:20160 --
↪→ status-addr=0.0.0.0:20180 --data-dir=/var/lib/tikv --capacity=0
↪→ --config=/tmp/tikv.toml

After the test is completed, if you want to recover the TiKV Pod, you can delete the
TiKV Pod and wait for the Pod to be automatically started.
kubectl delete ${pod_name} -n ${namespace}

8.1.3 Configure forceful upgrade for the TiKV cluster

Normally, during TiKV rolling update, TiDB Operator evicts all Region leaders for
TiKV Pods before restarting the TiKV Pods. This is meant for minimizing the impact of
the rolling update on user requests.

In some test scenarios, if you do not need to wait for the Region leader to migrate during
TiKV rolling upgrade, or if you want to speed up the rolling upgrade, you can configure the
spec.tikv.evictLeaderTimeout field in the spec of TidbCluster to a small value.
spec:
tikv:
evictLeaderTimeout: 10s

539

For more information about this field, refer to Configure graceful upgrade.

Warning:
Configuring forceful upgrade causes some user requests to fail. It is not rec-
ommended for a production environment.

8.1.4 Configure forceful upgrade for the TiCDC cluster

Warning:
Configuring forceful upgrade causes replication latency to increase. It is not
recommended for a production environment.

Normally, during TiCDC rolling update, TiDB Operator drains all replication workloads
for TiCDC Pods before restarting the TiCDC Pods. This is meant for minimizing the impact
of the rolling update on replication latency.

In some test scenarios, if you do not need to wait for the draining to complete during
TiCDC rolling upgrade, or if you want to speed up the rolling upgrade, you can configure the
spec.ticdc.gracefulShutdownTimeout field in the spec of TidbCluster to a small value.
spec:
ticdc:
gracefulShutdownTimeout: 10s

For more information about this field, refer to Configure graceful upgrade.

8.2 Common Deployment Failures of TiDB on Kubernetes

This document describes the common deployment failures of TiDB on Kubernetes and
their solutions.

8.2.1 The Pod is not created normally

After creating a cluster, if the Pod is not created, you can diagnose it using the following
commands:

540

kubectl get tidbclusters -n ${namespace} && \
kubectl describe tidbclusters -n ${namespace} ${cluster_name} && \
kubectl get statefulsets -n ${namespace} && \
kubectl describe statefulsets -n ${namespace} ${cluster_name}-pd

After creating a backup/restore task, if the Pod is not created, you can perform a
diagnostic operation by executing the following commands:
kubectl get backups -n ${namespace}
kubectl get jobs -n ${namespace}
kubectl describe backups -n ${namespace} ${backup_name}
kubectl describe backupschedules -n ${namespace} ${backupschedule_name}
kubectl describe jobs -n ${namespace} ${backupjob_name}
kubectl describe restores -n ${namespace} ${restore_name}

8.2.2 The Pod is in the Pending state

The Pending state of a Pod is usually caused by conditions of insufficient resources, for
example:

• The StorageClass of the PVC used by PD, TiKV, TiFlash, Pump, Monitor, Backup,
and Restore Pods does not exist or the PV is insufficient.

• No nodes in the Kubernetes cluster can satisfy the CPU or memory resources requested
by the Pod.

• The number of TiKV or PD replicas and the number of nodes in the cluster do not
satisfy the high availability scheduling policy of tidb-scheduler.

• The certificates used by TiDB or TiProxy components are not configured.

You can check the specific reason for Pending by using the kubectl describe pod
command:
kubectl describe po -n ${namespace} ${pod_name}

8.2.2.1 CPU or memory resources are insufficient
If the CPU or memory resources are insufficient, you can lower the CPU or memory

resources requested by the corresponding component for scheduling, or add a new Kubernetes
node.

8.2.2.2 StorageClass of the PVC does not exist
If the StorageClass of the PVC cannot be found, take the following steps:

1. Get the available StorageClass in the cluster:

541

kubectl get storageclass

2. Change storageClassName to the name of the StorageClass available in the cluster.

3. Update the configuration file:

• If you want to start the TiDB cluster, execute kubectl edit tc ${cluster_name
↪→ } -n ${namespace} to update the cluster.

• If you want to run a backup/restore task, first execute kubectl delete bk ${
↪→ backup_name} -n ${namespace} to delete the old backup/restore task, and
then execute kubectl apply -f backup.yaml to create a new backup/restore
task.

4. Delete StatefulSet and the corresponding PVCs:
kubectl delete pvc -n ${namespace} ${pvc_name} && \
kubectl delete sts -n ${namespace} ${statefulset_name}

8.2.2.3 Insufficient available PVs
If a StorageClass exists in the cluster but the available PV is insufficient, you need to

add PV resources correspondingly. For Local PV, you can expand it by referring to Local
PV Configuration.

8.2.3 The high availability scheduling policy of tidb-scheduler is not satisfied

tidb-scheduler has a high availability scheduling policy for PD and TiKV. For the same
TiDB cluster, if there are N replicas of TiKV or PD, then the number of PD Pods that can
be scheduled to each node is M=(N-1)/2 (if N<3, then M=1) at most, and the number of
TiKV Pods that can be scheduled to each node is M=ceil(N/3) (if N<3, then M=1; ceil
means rounding up) at most.

If the Pod’s state becomes Pending because the high availability scheduling policy is not
satisfied, you need to add more nodes in the cluster.

8.2.4 The Pod is in the CrashLoopBackOff state

A Pod in the CrashLoopBackOff state means that the container in the Pod repeatedly
aborts (in the loop of abort - restart by kubelet - abort). There are many potential causes
of CrashLoopBackOff.

8.2.4.1 View the log of the current container
kubectl -n ${namespace} logs -f ${pod_name}

542

8.2.4.2 View the log when the container was last restarted
kubectl -n ${namespace} logs -p ${pod_name}

After checking the error messages in the log, you can refer to Cannot start tidb-server,
Cannot start tikv-server, and Cannot start pd-server for further troubleshooting.

8.2.4.3 “cluster id mismatch”
When the “cluster id mismatch” message appears in the TiKV Pod log, the TiKV Pod

might have used old data from other or previous TiKV Pod. If the data on the local disk
remain uncleared when you configure local storage in the cluster, or the data is not recycled
by the local volume provisioner due to a forced deletion of PV, this error might occur.

If you confirm that the TiKV should join the cluster as a new node and that the data
on the PV should be deleted, you can delete the TiKV Pod and the corresponding PVC.
The TiKV Pod automatically rebuilds and binds the new PV for use. When configuring
local storage, delete local storage on the machine to avoid Kubernetes using old data. In
cluster operation and maintenance, manage PV using the local volume provisioner and do
not delete it forcibly. You can manage the lifecycle of PV by creating, deleting PVCs, and
setting reclaimPolicy for the PV.

8.2.4.4 ulimit is not big enough
TiKV might fail to start when ulimit is not big enough. In this case, you can modify

the /etc/security/limits.conf file of the Kubernetes node to increase the ulimit:
root soft nofile 1000000
root hard nofile 1000000
root soft core unlimited
root soft stack 10240

8.2.4.5 PD Pod nslookup domain failed

You should see some log of PD Pod like:
Thu Jan 13 14:55:52 IST 2022
;; Got recursion not available from 10.43.0.10, trying next server
;; Got recursion not available from 10.43.0.10, trying next server
;; Got recursion not available from 10.43.0.10, trying next server
Server: 10.43.0.10
Address: 10.43.0.10#53

** server can't find basic-pd-0.basic-pd-peer.default.svc: NXDOMAIN

nslookup domain basic-pd-0.basic-pd-peer.default.svc failed

543

https://docs.pingcap.com/tidb/stable/troubleshoot-tidb-cluster#cannot-start-tidb-server
https://docs.pingcap.com/tidb/stable/troubleshoot-tidb-cluster#cannot-start-tikv-server
https://docs.pingcap.com/tidb/stable/troubleshoot-tidb-cluster#cannot-start-pd-server

This type of failure occurs when the cluster meets both of the following two conditions:

• There are two nameserver in /etc/resolv.conf, and the second one is not IP of
CoreDNS.

• The version of PD is:

– Greater than or equal to v5.0.5.
– Greater than or equal to v5.1.4.
– Greater than or equal to v5.2.4.
– All 5.3 versions.

To address this failure, add startUpScriptVersion to TidbCluster as:
...
spec:
pd:
startUpScriptVersion: "v1"

...

This failure occurs because there is something wrong with the nslookup in the base image
(see detail in #4379). After configuring startUpScriptVersion to v1, TiDB Operator uses
dig to check DNS instead of using nslookup.

8.2.4.6 Other causes
If you cannot confirm the cause from the log and ulimit is also a normal value, trou-

bleshoot the issue by using the debug mode.

8.3 Common Cluster Exceptions of TiDB on Kubernetes

This document describes the common exceptions during the operation of TiDB clusters
on Kubernetes and their solutions.

8.3.1 TiKV Store is in Tombstone status abnormally

Normally, when a TiKV Pod is in a healthy state (Running), the corresponding TiKV
store is also in a healthy state (UP). However, concurrent scale-in or scale-out on the TiKV
component might cause part of TiKV stores to fall into the Tombstone state abnormally.
When this happens, try the following steps to fix it:

1. View the state of the TiKV store:
kubectl get -n ${namespace} tidbcluster ${cluster_name} -ojson | jq '.

↪→ status.tikv.stores'

544

https://github.com/pingcap/tidb-operator/pull/4379

2. View the state of the TiKV Pod:
kubectl get -n ${namespace} po -l app.kubernetes.io/component=tikv

3. Compare the state of the TiKV store with that of the Pod. If the store corresponding
to a TiKV Pod is in the Offline state, it means the store is being taken offline
abnormally. You can use the following commands to cancel the offline process and
perform recovery operations:

1. Open the connection to the PD service:
kubectl port-forward -n ${namespace} svc/${cluster_name}-pd ${

↪→ local_port}:2379 &>/tmp/portforward-pd.log &

2. Bring online the corresponding store:
curl -X POST http://127.0.0.1:2379/pd/api/v1/store/${store_id}/

↪→ state?state=Up

4. If the TiKV store with the latest lastHeartbeatTime that corresponds to a Pod is in
a Tombstone state, it means that the offline process is completed. At this time, you
need to re-create the Pod and bind it with a new PV to perform recovery by taking
the following steps:

1. Set the reclaimPolicy value of the PV corresponding to the store to Delete:
kubectl patch $(kubectl get pv -l app.kubernetes.io/instance=${

↪→ release_name},tidb.pingcap.com/store-id=${store_id} -o name)
↪→ -p '{"spec":{"persistentVolumeReclaimPolicy":"Delete"}}'

2. Remove the PVC used by the Pod:
kubectl delete -n ${namespace} pvc tikv-${pod_name} --wait=false

3. Remove the Pod, and wait for it to be re-created:
kubectl delete -n ${namespace} pod ${pod_name}

After the Pod is re-created, a new store is registered in the cluster. Then the recovery
is completed.

8.3.2 Persistent connections are abnormally terminated in TiDB

Load balancers often set the idle connection timeout. If no data is sent via a connection
for a specific period of time, the load balancer closes the connection.

545

• If a persistent connection is terminated when you use TiDB, check the middleware
program between the client and the TiDB server.

• If the idle timeout is not long enough for your query, try to set the timeout to a larger
value. If you cannot reset it, enable the tcp-keep-alive option in TiDB.

In Linux, the keepalive probe packet is sent every 7,200 seconds by default. To shorten
the interval, configure sysctls via the podSecurityContext field.

• If --allowed-unsafe-sysctls=net.* can be configured for kubelet in the Kubernetes
cluster, configure this parameter for kubelet and configure TiDB in the following way:
tidb:
...
podSecurityContext:
sysctls:
- name: net.ipv4.tcp_keepalive_time
value: "300"

• If --allowed-unsafe-sysctls=net.* cannot be configured for kubelet, configure
TiDB in the following way:
tidb:
annotations:
tidb.pingcap.com/sysctl-init: "true"

podSecurityContext:
sysctls:
- name: net.ipv4.tcp_keepalive_time
value: "300"

...

Note:
The configuration above requires TiDB Operator 1.1 or later versions.

8.4 Common Network Issues of TiDB on Kubernetes

This document describes the common network issues of TiDB on Kubernetes and their
solutions.

546

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/

8.4.1 Network connection failure between Pods

In a TiDB cluster, you can access most Pods by using the Pod’s domain name (allocated
by the Headless Service). The exception is when TiDB Operator collects the cluster infor-
mation or issues control commands, it accesses the PD (Placement Driver) cluster using the
service-name of the PD service.

When you find some network connection issues among Pods from the log or monitoring
metrics, or when you find the network connection among Pods might be abnormal according
to the problematic condition, follow the following process to diagnose and narrow down the
problem:

1. Confirm that the endpoints of the Service and Headless Service are normal:
kubectl -n ${namespace} get endpoints ${cluster_name}-pd
kubectl -n ${namespace} get endpoints ${cluster_name}-tidb
kubectl -n ${namespace} get endpoints ${cluster_name}-pd-peer
kubectl -n ${namespace} get endpoints ${cluster_name}-tikv-peer
kubectl -n ${namespace} get endpoints ${cluster_name}-tidb-peer

The ENDPOINTS field shown in the above command must be a comma-separated list of
cluster_ip:port. If the field is empty or incorrect, check the health of the Pod and
whether kube-controller-manager is working properly.

2. Enter the Pod’s Network Namespace to diagnose network problems:
kubectl -n ${namespace} exec -it ${pod_name} -- sh

Use the dig command to diagnose the DNS resolution. If the DNS resolution is abnor-
mal, refer to Debugging DNS Resolution for troubleshooting.
dig ${HOSTNAME}

Use the ping command to diagnose the connection with the destination IP (the Pod
IP resolved using dig):
ping ${TARGET_IP}

• If the ping check fails, refer to Debugging Kubernetes Networking for trou-
bleshooting.

• If the ping check succeeds, continue to check whether the target port is open by
using wget or curl.
If the wget or curl check fails, check whether the port corresponding to the Pod is
correctly exposed and whether the port of the application is correctly configured:

547

https://kubernetes.io/docs/tasks/administer-cluster/dns-debugging-resolution/
https://www.praqma.com/stories/debugging-kubernetes-networking/

Checks whether the ports are consistent.
kubectl -n ${namespace} get po ${pod_name} -ojson | jq '.spec.

↪→ containers[].ports[].containerPort'

Checks whether the application is correctly configured to serve
↪→ the specified port.

The default port of PD is 2379 when not configured.
kubectl -n ${namespace} -it exec ${pod_name} -- cat /etc/pd/pd.toml

↪→ | grep client-urls
The default port of PD is 20160 when not configured.
kubectl -n ${namespace} -it exec ${pod_name} -- cat /etc/tikv/tikv.

↪→ toml | grep addr
The default port of TiDB is 4000 when not configured.
kubectl -n ${namespace} -it exec ${pod_name} -- cat /etc/tidb/tidb.

↪→ toml | grep port

8.4.2 Unable to access the TiDB service

If you cannot access the TiDB service, first check whether the TiDB service is deployed
successfully using the following method:

1. Check whether all components of the cluster are up and the status of each component
is Running.
kubectl get po -n ${namespace}

2. Check whether the TiDB service correctly generates the endpoint object:
kubectl get endpoints -n ${namespaces} ${cluster_name}-tidb

3. Check the log of TiDB components to see whether errors are reported.
kubectl logs -f ${pod_name} -n ${namespace} -c tidb

If the cluster is successfully deployed, check the network using the following steps:

1. If you cannot access the TiDB service using NodePort, try to access the TiDB service
using the clusterIP on the node. If the clusterIP works, the network within the
Kubernetes cluster is normal. Then the possible issues are as follows:

• Network failure exists between the client and the node.
• Check whether the externalTrafficPolicy attribute of the TiDB service is

Local. If it is Local, you must access the client using the IP of the node where
the TiDB Pod is located.

548

2. If you still cannot access the TiDB service using the clusterIP, connect using <PodIP
↪→ >:4000 on the TiDB service backend. If the PodIP works, you can confirm that
the problem is in the connection between clusterIP and PodIP. Check the following
items:

• Check whether kube-proxy on each node is working.
kubectl get po -n kube-system -l k8s-app=kube-proxy

• Check whether the TiDB service rule is correct in the iptables rules.
iptables-save -t nat |grep ${clusterIP}

• Check whether the corresponding endpoint is correct:
kubectl get endpoints -n ${namespaces} ${cluster_name}-tidb

3. If you cannot access the TiDB service even using PodIP, the problem is on the Pod
level network. Check the following items:

• Check whether the relevant route rules on the node are correct.
• Check whether the network plugin service works well.
• Refer to network connection failure between Pods section.

8.5 Troubleshoot TiDB Cluster Using PingCAP Clinic

For TiDB clusters deployed on Kubernetes using TiDB Operator, you can use PingCAP
Clinic Diagnostic Service (PingCAP Clinic) to remotely troubleshoot cluster problems and
locally check the cluster status using the Clinic Diag client (Diag) and the Clinic Server
Platform (Clinic Server).

Note:
This document only applies to clusters deployed using TiDB Operator on
Kubernetes. For clusters deployed using TiUP in a self-managed environment,
see PingCAP Clinic for TiUP environments.
PingCAP Clinic does not support collecting data from clusters deployed
using TiDB Ansible.

For clusters deployed using TiDB Operator, Diag is deployed as a standalone Pod. This
document describes how to use the kubectl command to create and deploy the Diag Pod,
then to collect data and perform a quick check through the API.

549

https://docs.pingcap.com/tidb/stable/clinic-user-guide-for-tiup

8.5.1 Usage scenarios

You can easily collect data from clusters and perform a quick check using the Diag of
PingCAP Clinic:

• Use Diag to collect data
• Use Diag to perform a quick check on the cluster

8.5.2 Install Diag client

The following sections describe how to install Diag.

8.5.2.1 Step 1: Prepare the environment
Before deploying Diag, make sure the following items are installed on the cluster:

• Kubernetes >= v1.24
• TiDB Operator
• PersistentVolume
• RBAC
• Helm 3

8.5.2.1.1 Install Helm
To install Helm and configure the chart repository https://charts.pingcap.org/main-

tained by PingCAP, you can refer to the Use Helm document.

Note:
In the following sections, ${chart_version} refers to the version of the Diag
chart, for example v1.3.1. You can get a list of the currently supported
versions by executing the helm search repo -l diag command.

helm search repo diag
NAME CHART VERSION APP VERSION DESCRIPTION
pingcap/diag v1.3.1 v1.3.1 Clinic Diag Helm chart for Kubernetes

550

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://helm.sh

8.5.2.1.2 Check the privilege of the user
The user used for deploying Diag is expected to have the following Role and Cluster Role

resources:
Role access:

PolicyRule:
Resources Non-Resource URLs Resource Names Verbs
--------- ----------------- -------------- -----
serviceaccounts [] [] [get

↪→ create delete]
deployments.apps [] [] [get

↪→ create delete]
rolebindings.rbac.authorization.k8s.io [] [] [get

↪→ create delete]
roles.rbac.authorization.k8s.io [] [] [get

↪→ create delete]
secrets [] [] [get

↪→ list create delete]
services [] [] [get

↪→ list create delete]
pods [] [] [get

↪→ list]
tidbclusters.pingcap.com [] [] [get

↪→ list]
tidbmonitors.pingcap.com [] [] [get

↪→ list]

Cluster Role access:
PolicyRule:
Resources Non-Resource URLs Resource Names

↪→ Verbs
--------- ----------------- --------------

↪→ -----
clusterrolebindings.rbac.authorization.k8s.io [] [] [

↪→ get create delete]
clusterroles.rbac.authorization.k8s.io [] [] [

↪→ get create delete]
pods [] [] [

↪→ get list]
secrets [] [] [

↪→ get list]
services [] [] [

↪→ get list]
tidbclusters.pingcap.com [] [] [

551

↪→ get list]
tidbmonitors.pingcap.com [] [] [

↪→ get list]

Note:
If the cluster meets the criteria of least privilege deployment, you can use a
smaller set of privileges. For more information, see Least privilege deploy-
ment.

Follow these steps to check the user access:

1. Check the user’s Role and clusterRole:
kubectl describe rolebinding -n ${namespace} | grep ${user_name} -A 7
kubectl describe clusterrolebinding -n ${namespace} | grep ${user_name}

↪→ -A 7

2. Check the user’s access of Role and Cluster Role:
kubectl describe role ${role_name} -n ${namespace}
kubectl describe clusterrole ${clusterrole_name} -n ${namespace}

8.5.2.2 Step 2: Log in to the Clinic Server and get an access token
When Diag uploads data, the access token is used to identify the user and ensures that

the data from Diag is uploaded to the organization created by the user. You need to log in
to the Clinic Server to get a token.

1. Log in to the Clinic Server.
Go to the Clinic Server for international users and select Continue with TiDB
Account to enter the TiDB Cloud login page. If you do not have a TiDB Cloud
account, you can create one on that page.

Note:
Clinic Server in US only uses TiDB Cloud account to log in. Users are
not required to actually use TiDB Cloud service.

Go to the Clinic Server for users in the Chinese mainland and select Continue with
AskTUG to enter the AskTUG community login page. If you do not have an AskTUG
account, you can create one on that page.

552

https://clinic.pingcap.com
https://clinic.pingcap.com.cn

2. Create an organization.
Create an organization on the Clinic Server. An organization is a collection of TiDB
clusters. You can upload diagnostic data to the created organization.

3. Get an access token.
To get a token, enter the organization page and click the icon in the lower-right corner
of the Clusters page, and select Get Access Token For Diag Tool. Make sure that
you have copied and saved the displayed token information.

Figure 10: An example of a token

Note:
For security reasons, Clinic Server only displays the token upon the token
creation. If you have lost the token, delete the old token and create a
new one.

8.5.2.3 Step 3: Deploy a Diag Pod
Depending on the network connection of the cluster, you can choose one of the following

methods to deploy a Diag Pod:

• Quick online deployment: If the cluster has Internet access and you would like to use
the default Diag configuration, it is recommended to use the quick online deployment.

• Standard online deployment: If the cluster has Internet access and you need to cus-
tomize the Diag configuration, it is recommended to use the standard online deploy-
ment.

553

• Offline deployment: If the cluster cannot access the Internet, you can use the offline
deployment.

• Least privilege deployment: If all nodes in the cluster are running under the same
namespace, you can deploy Diag to the namespace of the cluster so that Diag has the
least privileges.

To use the quick online deployment, do the following:
Deploy Diag using the following helm command and the latest Diag image is pulled from

the Docker Hub.
namespace: the same as that of TiDB Operator
diag.clinicToken: get your token in "https://clinic.pingcap.com.cn" or "

↪→ https://clinic.pingcap.com"
helm install --namespace tidb-admin diag-collector pingcap/diag --version ${

↪→ chart_version} \
--set diag.clinicToken=${clinic_token}
--set diag.clinicRegion=${clinic_region} # CN or US

The output is as follows:
NAME: diag-collector
LAST DEPLOYED: Tue Mar 15 13:00:44 2022
NAMESPACE: tidb-admin
STATUS: deployed
REVISION: 1
NOTES:
Make sure diag-collector components are running:

kubectl get pods --namespace tidb-admin -l app.kubernetes.io/instance=
↪→ diag-collector

kubectl get svc --namespace tidb-admin -l app.kubernetes.io/name=diag-
↪→ collector

To use the standard online deployment, do the following:

1. Get the values-diag-collector.yaml file from the Diag chart.
mkdir -p ${HOME}/diag-collector && \
helm inspect values pingcap/diag --version=${chart_version} > ${HOME}/

↪→ diag-collector/values-diag-collector.yaml

2. Configure the values-diag-collector.yaml file.
Modify your clinicToken and clinicRegion in the ${HOME}/diag-collector/
↪→ values-diag-collector.yaml file.
Other configuration parameters such as limits, requests, and volume can be modified
according to your needs.

554

Note:
To get the token, refer to Step 2: Log in to the Clinic Server and get an
access token.

3. Deploy Diag.
helm install diag-collector pingcap/diag --namespace=tidb-admin --

↪→ version=${chart_version} -f ${HOME}/diag-collector/values-diag-
↪→ collector.yaml && \

kubectl get pods --namespace tidb-admin -l app.kubernetes.io/instance=
↪→ diag-collector

Note:
The namespace should be the same as the namespace of TiDB Operator.
If TiDB Operator is not deployed, deploy TiDB Operator first and then
deploy Diag.

4. (Optional) Set a persistent volume.
This step sets a data volume for Diag to persist its data. To set the volume, you can
configure the diag.volume field with the volume type in the ${HOME}/diag-collector
↪→ /values-diag-collector.yaml file. The following examples are PVC and Host:
Use PVC volume type
volume:
persistentVolumeClaim:
claimName: local-storage-diag

Use Host volume type
volume:
hostPath:
path: /data/diag

Note:
• Setting a volume on multiple disks is not supported.
• All types of StorageClass are supported.

5. (Optional) Upgrade Diag.
To upgrade Diag, modify the ${HOME}/diag-collector/values-diag-collector.
↪→ yaml file and then run the following command.

555

helm upgrade diag-collector pingcap/diag --namespace=tidb-admin -f ${
↪→ HOME}/diag-collector/values-diag-collector.yaml

If your cluster cannot access the Internet, you can deploy Diag using the offline method.

1. Download the Diag chart.
If your cluster cannot access the Internet, you cannot install Diag and other components
by configuring the Helm repo. In this situation, you need to download the chart files
on a machine with Internet access and then copy the file to the cluster.
To download Diag chart files, you can use the following command:
wget http://charts.pingcap.org/diag-${chart_version}.tgz

Copy diag-${chart_version}.tgz to the cluster and unpack it to the current direc-
tory.
tar zxvf diag-${chart_version}.tgz

2. Download the Diag image.
You need to download the Diag image on a machine that has Internet access and then
use the docker load command to load the image to the cluster.
The Diag image is pingcap/diag:${chart_version}. You can download and save the
image using the following commands:
docker pull pingcap/diag:${chart_version}
docker save -o diag-${chart_version}.tar pingcap/diag:${chart_version}

Then, copy the archived image to the cluster and use the docker load command to
load the image to the cluster:
docker load -i diag-${chart_version}.tar

3. Configure the values-diag-collector.yaml file.
Modify your clinicToken and clinicRegion in the ${HOME}/diag-collector/
↪→ values-diag-collector.yaml file.
Other configuration parameters such as limits, requests, and volume can be modified
according to your needs.

Note:
To get the token, refer to Step 2: Log in to the Clinic Server and get an
access token.

556

4. Install Diag.
Install Diag using the following command:
helm install diag-collector ./diag --namespace=tidb-admin

Note:
The namespace should be the same as that of TiDB Operator. If TiDB
Operator is not deployed, deploy TiDB Operator first and then deploy
Diag.

5. (Optional) Set a persistent volume.
This step sets a data volume for Diag to persist its data. To set the volume, you can
configure the diag.volume field with the volume type in the ${HOME}/diag-collector
↪→ /values-diag-collector.yaml file. The following examples are PVC and Host:
Use PVC volume type
volume:
persistentVolumeClaim:
claimName: local-storage-diag

Use Host volume type
volume:
hostPath:
path: /data/diag

Note:
• Setting a volume on multiple disks is not supported.
• All types of StorageClass are supported.

To use the least privilege deployment, do the following:

Note:
Least privilege deployment is to deploy Diag to the namespace of the cluster so
that Diag can collect data only in that namespace but not across namespaces.

557

1. Check the privilege of the user.
This deployment method creates a Role with the following access. The user to deploy
Diag needs the corresponding permissions to create a Role of this type.
Resources Non-Resource URLs Resource Names

↪→ Verbs
--------- ----------------- --------------

↪→ -----
serviceaccounts [] [] [get

↪→ create delete]
deployments.apps [] [] [get

↪→ create delete]
rolebindings.rbac.authorization.k8s.io [] [] [get

↪→ create delete]
roles.rbac.authorization.k8s.io [] [] [get

↪→ create delete]
secrets [] [] [get

↪→ list create delete]
services [] [] [get

↪→ list create delete]
pods [] [] [get

↪→ list]
tidbclusters.pingcap.com [] [] [get

↪→ list]
tidbmonitors.pingcap.com [] [] [get

↪→ list]

2. Deploy Diag using the following helm command, and the latest Diag image is pulled
from the Docker Hub.
helm install --namespace tidb-cluster diag-collector pingcap/diag --

↪→ version ${chart_version} \
--set diag.clinicToken=${clinic_token} \
--set diag.clusterRoleEnabled=false \
--set diag.clinicRegion=US

If TLS is not enabled in the cluster, you can add the --set diag.tls.enabled=false
flag, then the created Role will not have the get and list privileges of secrets.
helm install --namespace tidb-cluster diag-collector pingcap/diag --

↪→ version ${chart_version} \
--set diag.clinicToken=${clinic_token} \
--set diag.tlsEnabled=false \
--set diag.clusterRoleEnabled=false \
--set diag.clinicRegion=US

558

The output is as follows:
NAME: diag-collector
LAST DEPLOYED: Tue Mar 15 13:00:44 2022
NAMESPACE: tidb-cluster
STATUS: deployed
REVISION: 1
NOTES:
Make sure diag-collector components are running:
kubectl get pods --namespace tidb-cluster -l app.kubernetes.io/

↪→ instance=diag-collector
kubectl get svc --namespace tidb-cluster -l app.kubernetes.io/name=

↪→ diag-collector

8.5.2.4 Step 4: Check the status of the Diag Pod
You can check the status of the Diag Pod using the following command:

kubectl get pods --namespace tidb-admin -l app.kubernetes.io/instance=diag-
↪→ collector

The output is as follows when the Pod is running properly:
NAME READY STATUS RESTARTS AGE
diag-collector-5c9d8968c-clnfr 1/1 Running 0 89s

8.5.3 Use Diag to collect data

You can use Diag to quickly collect diagnostic data from TiDB clusters, including moni-
toring data and configurations.

8.5.3.1 Usage scenarios for Diag
Diag is suitable for the following scenarios:

• When your cluster has some problems, if you need to contact PingCAP technical sup-
port, you can use Diag to collect the diagnostic data to facilitate remote troubleshoot-
ing.

• Use Diag to collect and save the data for later analysis.

Note:
Currently, Diag does not support collecting logs, configuration files, and
system hardware information from clusters deployed using TiDB Operator.

559

8.5.3.2 Step 1: Check the data to be collected
For a full list of data that can be collected by Diag, see Clinic diagnostic Data. It is

recommended to collect all data to improve the efficiency of the diagnosis.

8.5.3.3 Step 2: Collect data
You can collect data using Diag APIs.

• For detailed API documents, visit http://${host}:${port}/api/v1.

• To get the IP of the node, use the following command:
kubectl get node | grep node

• To get the port of diag-collector service, use the following command:
kubectl get service -n tidb-admin

The output is as follows:
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

↪→ AGE
diag-collector NodePort 10.111.143.227 <none> 4917:31917/TCP

↪→ 18m

In the preceding output:

– The port to access diag-collector service from outside is 31917.
– The service type is NodePort. You can access this service from any host in the

Kubernetes cluster with its IP address ${host} and port ${port}.
– If there are network restrictions between hosts, you can use the port-forward

command to redirect the service port 4917 to local, and then use 127.0.0.1:4917
to access this service.

The following describes how to collect data using Diag APIs.

1. Request for collecting data.
You can request for collecting data using the following API:
curl -s http://${host}:${port}/api/v1/collectors -X POST -d '{"

↪→ clusterName": "${cluster-name}","namespace": "${cluster-namespace
↪→ }","from": "2022-02-08 12:00 +0800","to": "2022-02-08 18:00 +0800
↪→ "}'

The usage of the API parameters is as follows:

560

• clusterName: the name of the TiDB cluster.
• namespace: the namespace name of the TiDB cluster (not the namespace of TiDB

Operator).
• collector: optional, which controls the data types to be collected. The sup-

ported values include monitor, config, and perf. If the parameter is not speci-
fied, monitor and config data is collected by default.

• from and to: specify the start time and end time of the data collection. +0800
indicates the time zone is UTC+8. The supported time formats are as follows:
"2006-01-02T15:04:05Z07:00"
"2006-01-02T15:04:05.999999999Z07:00"
"2006-01-02 15:04:05 -0700",
"2006-01-02 15:04 -0700",
"2006-01-02 15 -0700",
"2006-01-02 -0700",
"2006-01-02 15:04:05",
"2006-01-02 15:04",
"2006-01-02 15",
"2006-01-02",

An example output is as follows:
"clusterName": "${cluster-namespace}/${cluster-name}",
"collectors" "config",

"monitor"
],
"date": "2021-12-10T10:10:54Z",
"from": "2021-12-08 12:00 +0800",
"id": "fMcXDZ4hNzs",
"status": "accepted",
"to": "2021-12-08 18:00 +0800"

Descriptions of the preceding output:

• date: the time when the collection task is requested.
• id: the ID of the collection task. It is the only information to identify the

collection task in the following operations.
• status: the current status of the task and accepted means the task is queued.

Note:
The response of the API indicates that the collection task is started
but might not be completed. To check whether the collection task is
completed, go to the next step.

561

2. Check the status of collecting data.
To check the status of the collection task, use the following API:
curl -s http://${host}:${port}/api/v1/collectors/${id}
{

"clusterName": "${cluster-namespace}/${cluster-name}",
"collectors": [

"config",
"monitor"

],
"date": "2021-12-10T10:10:54Z",
"from": "2021-12-08 12:00 +0800",
"id": "fMcXDZ4hNzs",
"status": "finished",
"to": "2021-12-08 18:00 +0800"

}

In the preceding command, id is the ID of the collection task, which is fMcXDZ4hNzs
in this case. The output format of this step is the same as the request for collecting
data step.
When the status of the collection task becomes finished, the collection task is com-
pleted.

3. View the collected data.
After the collection task, you can get the collection time and data size using the
following API:
curl -s http://${host}:${port}/api/v1/data/${id}
{

"clusterName": "${cluster-namespace}/${cluster-name}",
"date": "2021-12-10T10:10:54Z",
"id": "fMcXDZ4hNzs",
"size": 1788980746

}

With the preceding command, you can only get the size of the dataset but cannot
view the detailed data.

8.5.3.4 Step 3: Upload data
To provide cluster diagnostic data to PingCAP technical support, you need to upload

the data to the Clinic Server first, and then send the obtained data access link to the staff.
The Clinic Server is a cloud service that stores and shares the collected data.

1. Request for an upload task.
You can upload the collected dataset using the following API:

562

curl -s http://${host}:${port}/api/v1/data/${id}/upload -XPOST
{

"date": "2021-12-10T11:26:39Z",
"id": "fMcXDZ4hNzs",
"status": "accepted"

}

The response of the preceding command only indicates that the upload task is started
but might not be completed. To check whether the upload task is completed, go to
the next step.

2. Check the status of the upload task.
To check the status of the upload task, use the following API:
curl -s http://${host}:${port}/api/v1/data/${id}/upload
{

"date": "2021-12-10T10:23:36Z",
"id": "fMcXDZ4hNzs",
"result": "\"https://clinic.pingcap.com/portal/#/orgs/XXXXXXXX/

↪→ clusters/XXXXXXXX\"",
"status": "finished"

}

When the status of the upload task becomes finished, the upload task is completed.
At this time, result indicates the access link of the uploaded data in the Clinic Server,
which is the link you need to send to the staff.

8.5.3.5 View data locally (optional)
The collected data is stored in the /diag/collector/diag-${id} directory. You can

view the data in the Pod using the following steps.

1. Get diag-collector-pod-name.
To get the diag-collector-pod-name, you can execute the following command:
kubectl get pod --all-namespaces | grep diag

An example output is as follows:
tidb-admin diag-collector-69bf78478c-nvt47 1/1 Running

↪→ 0 19h

In the preceding output, the name of Diag Pod is diag-collector-69bf78478c-nvt47
and the namespace is tidb-admin.

563

2. View data in Pod.
To view data in Pod, you can use the following command. You should replace ${
↪→ namespace} with the namespace of TiDB Operator (usually tidb-admin).
kubectl exec -n ${namespace} ${diag-collector-pod-name} -it -- sh
cd /diag/collector/diag-${id}

8.5.4 Use Diag to perform a quick check on the cluster

You can use PingCAP Clinic to perform a quick check on cluster health. It mainly checks
the configurations for unreasonable configuration items.

8.5.4.1 How to use
The following introduces how to use PingCAP Clinic to perform a quick check on a

cluster deployed using TiDB Operator.

1. Collect data.
For more about how to collect data, see Use Diag to collect data.

2. Diagnose data.
You can diagnose the data locally using the following command:
curl -s http://${host}:${port}/api/v1/data/${id}/check -XPOST -d '{"

↪→ types": ["config"]}'

In the preceding output, id is the ID of the collection task, which is fMcXDZ4hNzs in
this case.
The result lists potential risks found in configurations and detailed configuration sug-
gestions with corresponding knowledge base links. For example:
Diagnostic result
basic 2022-02-07T12:00:00+08:00

1. Cluster basic Information
- Cluster ID: 7039963340562527412
- Cluster Name: basic
- Cluster Version: v5.4.0

2. Sampling Information
- Sample ID: fPrz0RnDxRn
- Sampling Date: 2022-02-07T12:00:00+08:00
- Sample Content:: [monitor config]

564

3. Diagnostic results, including potential configuration problems
In this inspection, 21 rules were executed.
The results of **3** rules were abnormal and needed to be further

↪→ discussed with support team.
The following is the details of the abnormalities.

Configuration rules
The configuration rules are all derived from PingCAP’s OnCall Service.
If the results of the configuration rules are found to be abnormal,

↪→ they may cause the cluster to fail.
There were **3** abnormal results.

Rule Name: tidb-max-days
- RuleID: 100
- Variation: TidbConfig.log.file.max-days
- For more information, please visit: https://s.tidb.io/msmo6awg
- Check Result:
TidbConfig_172.20.21.213:4000 TidbConfig.log.file.max-days:0 warning

Rule Name: pdconfig-max-days
- RuleID: 209
- Variation: PdConfig.log.file.max-days
- For more information, please visit: https://s.tidb.io/jkdqxudq
- Check Result:
PdConfig_172.20.22.100:2379 PdConfig.log.file.max-days:0 warning
PdConfig_172.20.14.102:2379 PdConfig.log.file.max-days:0 warning
PdConfig_172.20.15.222:2379 PdConfig.log.file.max-days:0 warning

Rule Name: pdconfig-max-backups
- RuleID: 210
- Variation: PdConfig.log.file.max-backups
- For more information, please visit: https://s.tidb.io/brd9zy53
- Check Result:
PdConfig_172.20.22.100:2379 PdConfig.log.file.max-backups:0 warning
PdConfig_172.20.14.102:2379 PdConfig.log.file.max-backups:0 warning
PdConfig_172.20.15.222:2379 PdConfig.log.file.max-backups:0 warning

Result report and record are saved at /diag-fPrz0RnDxRn/report
↪→ -220208030210

In the preceding example:

• The first part is the basic information about the cluster.
• The second part is the sampling information.

565

• The third part is the diagnostic results, including potential configuration prob-
lems. For each configuration potential risk found, Diag provides a corresponding
knowledge base link with detailed configuration suggestions.

• The last line is the file path of the result report and record.

9 TiDB FAQs on Kubernetes

This document collects frequently asked questions (FAQs) about the TiDB cluster on
Kubernetes.

9.1 How to modify time zone settings？

The default time zone setting for each component container of a TiDB cluster on Kuber-
netes is UTC. To modify this setting, take the steps below based on your cluster status:

9.1.1 For the first deployment

Configure the .spec.timezone attribute in the TidbCluster CR. For example:
...
spec:
timezone: Asia/Shanghai

...

Then deploy the TiDB cluster.

9.1.2 For a running cluster

If the TiDB cluster is already running, first upgrade the cluster, and then configure it
to support the new time zone.

1. Upgrade the TiDB cluster:
Configure the .spec.timezone attribute in the TidbCluster CR. For example:
...
spec:
timezone: Asia/Shanghai

...

Then upgrade the TiDB cluster.

2. Configure TiDB to support the new time zone:
Refer to Time Zone Support to modify TiDB service time zone settings.

566

https://docs.pingcap.com/tidb/stable/configure-time-zone

9.2 Can HPA or VPA be configured on TiDB components?

Currently, the TiDB cluster does not support HPA (Horizontal Pod Autoscaling) or
VPA (Vertical Pod Autoscaling), because it is difficult to achieve autoscaling on stateful
applications such as a database. Autoscaling can not be achieved merely by the monitoring
data of CPU and memory.

9.3 What scenarios require manual intervention when I use TiDB
Operator to orchestrate a TiDB cluster?

Besides the operation of the Kubernetes cluster itself, there are the following two scenar-
ios that might require manual intervention when using TiDB Operator:

• Adjusting the cluster after the auto-failover of TiKV. See Auto-Failover for details;
• Maintaining or dropping the specified Kubernetes nodes. See Maintaining Nodes for

details.

9.4 What is the recommended deployment topology when I use
TiDB Operator to orchestrate a TiDB cluster on a public
cloud?

To achieve high availability and data safety, it is recommended that you deploy the TiDB
cluster in at least three availability zones in a production environment.

In terms of the deployment topology relationship between the TiDB cluster and TiDB
services, TiDB Operator supports the following three deployment modes. Each mode has
its own merits and demerits, so your choice must be based on actual application needs.

• Deploy the TiDB cluster and TiDB services in the same Kubernetes cluster of the same
VPC;

• Deploy the TiDB cluster and TiDB services in different Kubernetes clusters of the
same VPC;

• Deploy the TiDB cluster and TiDB services in different Kubernetes clusters of different
VPCs.

9.5 Does TiDB Operator support TiSpark?

TiDB Operator does not yet support automatically orchestrating TiSpark.
If you want to add the TiSpark component to TiDB on Kubernetes, you must maintain

Spark on your own in the same Kubernetes cluster. You must ensure that Spark can access
the IPs and ports of PD and TiKV instances, and install the TiSpark plugin for Spark.
TiSpark offers a detailed guide for you to install the TiSpark plugin.

To maintain Spark on Kubernetes, refer to Spark on Kubernetes.

567

https://docs.pingcap.com/tidb/stable/tispark-overview
http://spark.apache.org/docs/latest/running-on-kubernetes.html

9.6 How to check the configuration of the TiDB cluster?

To check the configuration of the PD, TiKV, and TiDB components of the current
cluster, run the following command:

• Check the PD configuration file:
kubectl exec -it ${pod_name} -n ${namespace} -- cat /etc/pd/pd.toml

• Check the TiKV configuration file:
kubectl exec -it ${pod_name} -n ${namespace} -- cat /etc/tikv/tikv.toml

• Check the TiDB configuration file:
kubectl exec -it ${pod_name} -c tidb -n ${namespace} -- cat /etc/tidb/

↪→ tidb.toml

9.7 Why does TiDB Operator fail to schedule Pods when I deploy
the TiDB clusters?

Three possible reasons:

• Insufficient resource or HA Policy causes the Pod stuck in the Pending state. Refer to
Deployment Failures for more details.

• taint is applied to some nodes, which prevents the Pod from being scheduled to these
nodes unless the Pod has the matching toleration. Refer to taint & toleration for
more details.

• Scheduling conflict, which causes the Pod stuck in the ContainerCreating state. In
such cases, you can check if there is more than one TiDB Operator deployed in the Ku-
bernetes cluster. Conflicts occur when custom schedulers in multiple TiDB Operators
schedule the same Pod in different phases.
You can execute the following command to verify whether there is more than one
TiDB Operator deployed. If more than one record is returned, delete the extra TiDB
Operator to resolve the scheduling conflict.
kubectl get deployment --all-namespaces | grep tidb-scheduler

568

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/

9.8 How does TiDB ensure data safety and reliability?

To ensure persistent storage of data, TiDB clusters deployed by TiDB Operator use
Persistent Volume provided by Kubernetes cluster as the storage.

To ensure data safety in case one node is down, PD and TiKV use Raft Consistency
Algorithm to replicate the stored data as multiple replicas across nodes.

In the bottom layer, TiKV replicates data using the log replication and State Machine
model. For write requests, data is written to the Leader node first, and then the Leader
node replicates the command to its Follower nodes as a log. When most of the Follower
nodes in the cluster receive this log from the Leader node, the log is committed and the
State Machine changes accordingly.

9.9 If the Ready field of a TidbCluster is false, does it mean that
the corresponding TiDBCluster is unavailable?

After you execute the kubectl get tc command, if the output shows that the Ready
field of a TiDBCluster is false, it does not mean that the corresponding TiDBCluster is
unavailable, because the cluster might be in any of the following status:

• Upgrading
• Scaling
• Any Pod of PD, TiDB, TiKV, TiFlash, or TiProxy is not Ready

To check whether a TiDB cluster is unavailable, you can try connecting to TiDB. If the
connection fails, it means that the corresponding TiDBCluster is unavailable.

9.10 After the configuration of a component is modified, why does
the new configuration not take effect?

By default, after the configuration is modified, the cluster is not rolling updated and
the new configuration does not take effect. To enable the automatic configuration up-
date, you need to set spec.configUpdateStrategy: RollingUpdate. For details, refer
to configUpdateStrategy.

10 Reference

10.1 Architecture

10.1.1 TiDB Operator Architecture

This document describes the architecture of TiDB Operator and how it works.

569

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://raft.github.io/
https://raft.github.io/

10.1.1.1 Architecture
The following diagram is an overview of the architecture of TiDB Operator.

Figure 11: TiDB Operator Overview

TidbCluster, TidbMonitor, TidbInitializer, Backup, Restore, BackupSchedule,
and TidbClusterAutoScaler are custom resources defined by CRD (CustomResourceDefinition
↪→).

• TidbCluster describes the desired state of the TiDB cluster.
• TidbMonitor describes the monitoring components of the TiDB cluster.
• TidbInitializer describes the desired initialization Job of the TiDB cluster.
• Backup describes the desired backup of the TiDB cluster.
• Restore describes the desired restoration of the TiDB cluster.
• BackupSchedule describes the scheduled backup of the TiDB cluster.
• TidbClusterAutoScaler describes the automatic scaling of the TiDB cluster.

The following components are responsible for the orchestration and scheduling logic in
a TiDB cluster:

570

• tidb-controller-manager is a set of custom controllers in Kubernetes. These con-
trollers constantly compare the desired state recorded in the TidbCluster object with
the actual state of the TiDB cluster. They adjust the resources in Kubernetes to drive
the TiDB cluster to meet the desired state and complete the corresponding control
logic according to other CRs;

• tidb-scheduler is a Kubernetes scheduler extension that injects the TiDB specific
scheduling policies to the Kubernetes scheduler;

• tidb-admission-webhook is a dynamic admission controller in Kubernetes, which com-
pletes the modification, verification, operation, and maintenance of Pod, StatefulSet,
and other related resources.

• discovery is a service for inter-components discovery. Each TiDB cluster contains a
discovery Pod which is used for the components to discover other existing components
in the same cluster.

Note:
tidb-scheduler is not mandatory. Refer to tidb-scheduler and default-
scheduler for details.

10.1.1.2 Control flow
The following diagram is the analysis of the control flow of TiDB Operator. Starting

from TiDB Operator v1.1, the TiDB cluster, monitoring, initialization, backup, and other
components are deployed and managed using CR.

Figure 12: TiDB Operator Control Flow

571

The overall control flow is described as follows:

1. The user creates a TidbCluster object and other CR objects through kubectl, such as
TidbMonitor;

2. TiDB Operator watches TidbCluster and other related objects, and constantly ad-
just the StatefulSet, Deployment, Service, and other objects of PD, TiKV, TiDB,
Monitor or other components based on the actual state of the cluster;

3. Kubernetes’ native controllers create, update, or delete the corresponding Pod based
on objects such as StatefulSet, Deployment, and Job;

4. If you configure the components to use tidb-scheduler in the TidbCluster CR, the
Pod declaration of PD, TiKV, and TiDB specifies tidb-scheduler as the scheduler.
tidb-scheduler applies the specific scheduling logic of TiDB when scheduling the
corresponding Pod.

Based on the above declarative control flow, TiDB Operator automatically performs
health check and fault recovery for the cluster nodes. You can easily modify the TidbCluster
object declaration to perform operations such as deployment, upgrade, and scaling.

10.1.2 TiDB Scheduler

TiDB Scheduler is a TiDB implementation of Kubernetes scheduler extender. TiDB
Scheduler is used to add new scheduling rules to Kubernetes. This document introduces
these new scheduling rules and how TiDB Scheduler works.

Note:
Starting from TiDB Operator v1.6, it is not recommended to deploy TiDB
Scheduler.

10.1.2.1 tidb-scheduler and default-scheduler
A kube-scheduler is deployed by default in the Kubernetes cluster for Pod scheduling.

The default scheduler name is default-scheduler.
In the early Kubernetes versions (< v1.16), the default-scheduler was not flexible

enough to support even scheduling for Pods. Therefore, to support even scheduling for the
TiDB cluster Pods, TiDB Operator uses a TiDB Scheduler (tidb-scheduler) to extend the
scheduling rules of the default-scheduler.

Starting from Kubernetes v1.16, the default-scheduler has introduced the
EvenPodsSpread feature. This feature controls how Pods are spread across your Ku-
bernetes cluster among failure-domains. It is in the beta phase in v1.18, and became
generally available in v1.19.

572

https://github.com/kubernetes/design-proposals-archive/blob/main/scheduling/scheduler_extender.md
https://kubernetes.io/zh/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/workloads/pods/pod-topology-spread-constraints/

Therefore, if the Kubernetes cluster meets one of the following conditions, you can
use default-scheduler directly instead of tidb-scheduler. You need to configure
topologySpreadConstraints to make Pods evenly spread in different topologies.

• The Kubernetes version is v1.18.x and the EvenPodsSpread feature gate is enabled.
• The Kubernetes version >= v1.19.

Note:
When you change an existing TiDB clusters from using tidb-scheduler to
using default-scheduler, it triggers the rolling update of the TiDB clusters.

10.1.2.2 TiDB cluster scheduling requirements
A TiDB cluster includes three key components: PD, TiKV, and TiDB. Each consists

of multiple nodes: PD is a Raft cluster, and TiKV is a multi-Raft group cluster. PD and
TiKV components are stateful. If the EvenPodsSpread feature gate is not enabled in the
Kubernetes cluster, the default scheduling rules of the Kubernetes scheduler cannot meet the
high availability scheduling requirements of the TiDB cluster, so the Kubernetes scheduling
rules need to be extended.

Currently, pods can be scheduled according to specific dimensions by modifying
metadata.annotations in TidbCluster, such as:
metadata:
annotations:
pingcap.com/ha-topology-key: kubernetes.io/hostname

The configuration above indicates scheduling by the node dimension (default). If you
want to schedule pods by other dimensions, such as pingcap.com/ha-topology-key: zone,
which means scheduling by zone, each node should also be labeled as follows:
kubectl label nodes node1 zone=zone1

Different nodes may have different labels or the same label, and if a node is not labeled,
the scheduler will not schedule any pod to that node.

TiDB Scheduler implements the following customized scheduling rules. The following
example is based on node scheduling, scheduling rules based on other dimensions are the
same.

10.1.2.2.1 PD component
Scheduling rule 1: Make sure that the number of PD instances scheduled on each node

is less than Replicas / 2. For example:

573

https://kubernetes.io/docs/reference/command-line-tools-reference/feature-gates/

PD cluster
size (Replicas)

Maximum
number of PD
instances that
can be
scheduled on
each node

1 1
2 1
3 1
4 1
5 2
…

10.1.2.2.2 TiKV component
Scheduling rule 2: If the number of Kubernetes nodes is less than three (in this case,

TiKV cannot achieve high availability), scheduling is not limited; otherwise, the number of
TiKV instances that can be scheduled on each node is no more than ceil(Replicas / 3).
For example:

TiKV cluster
size (Replicas)

Maximum
number of
TiKV
instances that
can be
scheduled on
each node

Best
scheduling
distribution

3 1 1,1,1
4 2 1,1,2
5 2 1,2,2
6 2 2,2,2
7 3 2,2,3
8 3 2,3,3
…

10.1.2.3 How TiDB Scheduler works

574

Figure 13: TiDB Scheduler Overview

TiDB Scheduler adds customized scheduling rules by implementing Kubernetes Scheduler
extender.

The TiDB Scheduler component is deployed as one or more Pods, though only one Pod
is working at the same time. Each Pod has two Containers inside: one Container is a
native kube-scheduler, and the other is a tidb-scheduler implemented as a Kubernetes
scheduler extender.

If you configure the cluster to use tidb-scheduler in the TidbCluster CR, the .spec
↪→ .schedulerName attribute of PD, TiDB, and TiKV Pods created by TiDB Operator is
set to tidb-scheduler. This means that the TiDB Scheduler is used for the scheduling.

The scheduling process of a Pod is as follows:

• First, kube-scheduler pulls all Pods whose .spec.schedulerName is tidb-scheduler
↪→ . And Each Pod is filtered using the default Kubernetes scheduling rules.

• Then, kube-scheduler sends a request to the tidb-scheduler service. Then tidb-
↪→ scheduler filters the sent nodes through the customized scheduling rules (as men-
tioned above), and returns schedulable nodes to kube-scheduler.

• Finally, kube-scheduler determines the nodes to be scheduled.

If a Pod cannot be scheduled, see the troubleshooting document to diagnose and solve
the issue.

575

https://github.com/kubernetes/design-proposals-archive/blob/main/scheduling/scheduler_extender.md
https://github.com/kubernetes/design-proposals-archive/blob/main/scheduling/scheduler_extender.md

10.1.3 Advanced StatefulSet Controller

Kubernetes has a built-in StatefulSet that allocates consecutive serial numbers to Pods.
For example, when there are three replicas, the Pods are named as pod-0, pod-1, and pod-2.
When scaling out or scaling in, you must add a Pod at the end or delete the last pod. For
example, when you scale out to four replicas, pod-3 is added. When you scale in to two
replicas, pod-2 is deleted.

When you use local storage, Pods are associated with the Nodes storage resources and
cannot be scheduled freely. If you want to delete one of the Pods in the middle to maintain
its Node but no other Nodes can be migrated, or if you want to delete a Pod that fails and
to create another Pod with a different serial number, you cannot implement such desired
function by the built-in StatefulSet.

The advanced StatefulSet controller is implemented based on the built-in StatefulSet
controller. It supports freely controlling the serial number of Pods. This document describes
how to use the advanced StatefulSet controller in TiDB Operator.

10.1.3.1 Enable

1. Load the Advanced StatefulSet CRD file:
kubectl apply -f https://raw.githubusercontent.com/pingcap/tidb-

↪→ operator/v1.6.1/manifests/advanced-statefulset-crd.v1.yaml

2. Enable the AdvancedStatefulSet feature in values.yaml of the TiDB Operator chart:
features:
- AdvancedStatefulSet=true
advancedStatefulset:
create: true

3. Upgrade TiDB Operator. For details, refer to Upgrade TiDB Operator.

4. After upgrading TiDB Operator, check the AdvancedStatefulSet Controller is deployed
by the following command:
kubectl get pods -n ${operator-ns} --selector app.kubernetes.io/

↪→ component=advanced-statefulset-controller

Expected output
NAME READY STATUS

↪→ RESTARTS AGE
advanced-statefulset-controller-67885c5dd9-f522h 1/1 Running 0

↪→ 10s

576

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://github.com/pingcap/advanced-statefulset

Note:
If the AdvancedStatefulSet feature is enabled, TiDB Operator con-
verts the current StatefulSet object into an AdvancedStatefulSet ob-
ject. However, after the AdvancedStatefulSet feature is disabled, the
AdvancedStatefulSet object cannot be automatically converted to the built-
in StatefulSet object of Kubernetes.

10.1.3.2 Usage
This section describes how to use the advanced StatefulSet controller.

10.1.3.2.1 View the AdvancedStatefulSet Object by kubectl
The data format of AdvancedStatefulSet is the same as that of StatefulSet, but

AdvancedStatefulSet is implemented based on CRD, with asts as the alias. You can view
the AdvancedStatefulSet object in the namespace by running the following command:
kubectl get -n ${namespace} asts

10.1.3.2.2 Specify the Pod to be scaled in
With the advanced StatefulSet controller, when scaling in TidbCluster, you can not only

reduce the number of replicas, but also specify the scaling in of any Pod in the PD, TiDB,
or TiKV components by configuring annotations.

For example:
apiVersion: pingcap.com/v1alpha1
kind: TidbCluster
metadata:
name: asts

spec:
version: v8.5.0
timezone: UTC
pvReclaimPolicy: Delete
pd:
baseImage: pingcap/pd
maxFailoverCount: 0
replicas: 3
requests:
storage: "1Gi"

config: {}

577

tikv:
baseImage: pingcap/tikv
maxFailoverCount: 0
replicas: 4
requests:
storage: "1Gi"

config: {}
tidb:
baseImage: pingcap/tidb
maxFailoverCount: 0
replicas: 2
service:
type: ClusterIP

config: {}

The above configuration deploys 4 TiKV instances, namely basic-tikv-0, basic-tikv
↪→ -1, …, basic-tikv-3. If you want to delete basic-tikv-1, set spec.tikv.replicas to
3 and configure the following annotations:
metadata:
annotations:
tikv.tidb.pingcap.com/delete-slots: '[1]'

Note:
When modifying replicas and delete-slots annotation, complete the
modification in the same operation; otherwise, the controller operates the
modification according to the general expectations.

The complete example is as follows:
apiVersion: pingcap.com/v1alpha1
kind: TidbCluster
metadata:
annotations:
tikv.tidb.pingcap.com/delete-slots: '[1]'

name: asts
spec:
version: v8.5.0
timezone: UTC
pvReclaimPolicy: Delete
pd:

578

baseImage: pingcap/pd
maxFailoverCount: 0
replicas: 3
requests:
storage: "1Gi"

config: {}
tikv:
baseImage: pingcap/tikv
maxFailoverCount: 0
replicas: 3
requests:
storage: "1Gi"

config: {}
tidb:
baseImage: pingcap/tidb
maxFailoverCount: 0
replicas: 2
service:
type: ClusterIP

config: {}

The supported annotations are as follows:

• pd.tidb.pingcap.com/delete-slots: Specifies the serial numbers of the Pods to be
deleted in the PD component.

• tidb.tidb.pingcap.com/delete-slots: Specifies the serial number of the Pods to
be deleted in the TiDB component.

• tikv.tidb.pingcap.com/delete-slots: Specifies the serial number of the Pods to
be deleted in the TiKV component.

The value of Annotation is an integer array of JSON, such as [0], [0,1], [1,3].

10.1.3.2.3 Specify the location to scale out
You can reverse the above operation of scaling in to restore basic-tikv-1.

Note:
The specified scaling out performed by the advanced StatefulSet controller
is the same as the regular StatefulSet scaling, which does not delete the
Persistent Volume Claims (PVCs) associated with the Pod. If you want to
avoid using the previous data, delete the associated PVCs before scaling out
at the original location.

579

For example:
apiVersion: pingcap.com/v1alpha1
kind: TidbCluster
metadata:
annotations:
tikv.tidb.pingcap.com/delete-slots: '[]'

name: asts
spec:
version: v8.5.0
timezone: UTC
pvReclaimPolicy: Delete
pd:
baseImage: pingcap/pd
maxFailoverCount: 0
replicas: 3
requests:
storage: "1Gi"

config: {}
tikv:
baseImage: pingcap/tikv
maxFailoverCount: 0
replicas: 4
requests:
storage: "1Gi"

config: {}
tidb:
baseImage: pingcap/tidb
maxFailoverCount: 0
replicas: 2
service:
type: ClusterIP

config: {}

The delete-slots annotations can be left empty or deleted completely.

10.1.4 Enable Admission Controller in TiDB Operator

Kubernetes v1.9 introduces the dynamic admission control to modify and validate re-
sources. TiDB Operator also supports the dynamic admission control to modify, validate,
and maintain resources. This document describes how to enable the admission controller
and introduces the functionality of the admission controller.

10.1.4.1 Prerequisites

580

https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/

Unlike those of most products on Kubernetes, the admission controller of TiDB Operator
consists of two mechanisms: extension API-server and Webhook Configuration.

To use the admission controller, you need to enable the aggregation layer feature of the
Kubernetes cluster. The feature is enabled by default. To check whether it is enabled, see
Enable Kubernetes Apiserver flags.

10.1.4.2 Enable the admission controller
With a default installation, TiDB Operator disables the admission controller. Take the

following steps to manually turn it on.

1. Edit the values.yaml file in TiDB Operator.
Enable the Operator Webhook feature:
admissionWebhook:
create: true

2. Configure the failure policy.
It is recommended to set the failurePolicy of TiDB Operator to Failure. The
exception occurs in admission webhook does not affect the whole cluster, because the
dynamic admission control supports the label-based filtering mechanism.
......
failurePolicy:

validation: Fail
mutation: Fail

3. Install or update TiDB Operator.
To install or update TiDB Operator, see Deploy TiDB Operator on Kubernetes.

10.1.4.3 Set the TLS certificate for the admission controller
By default, the admission controller and Kubernetes api-server skip the TLS verification.

To manually enable and configure the TLS verification between the admission controller and
Kubernetes api-server, take the following steps:

1. Generate the custom certificate.
To generate the custom CA (client auth) file, refer to Step 1 to Step 4 in Generate
certificates using cfssl.
Use the following configuration in ca-config.json:

581

https://kubernetes.io/docs/tasks/access-kubernetes-api/setup-extension-api-server/
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/#configure-admission-webhooks-on-the-fly
https://kubernetes.io/docs/tasks/extend-kubernetes/configure-aggregation-layer/#enable-kubernetes-apiserver-flags
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/#failure-policy
https://kubernetes.io/docs/tasks/access-kubernetes-api/configure-aggregation-layer/#contacting-the-extension-apiserver

{
"signing": {

"default": {
"expiry": "8760h"

},
"profiles": {

"server": {
"expiry": "8760h",
"usages": [

"signing",
"key encipherment",
"server auth"

]
}

}
}

}

After executing Step 4, run the ls command. The following files should be listed in
the cfssl folder:
ca-config.json ca-csr.json ca-key.pem ca.csr ca.pem

2. Generate the certificate for the admission controller.

1. Create the default webhook-server.json file:
cfssl print-defaults csr > webhook-server.json

2. Modify the webhook-server.json file as follows:
{

"CN": "TiDB Operator Webhook",
"hosts": [

"tidb-admission-webhook.<namespace>",
"tidb-admission-webhook.<namespace>.svc",
"tidb-admission-webhook.<namespace>.svc.cluster",
"tidb-admission-webhook.<namespace>.svc.cluster.local"

],
"key": {

"algo": "rsa",
"size": 2048

},
"names": [

{
"C": "US",

582

"L": "CA",
"O": "PingCAP",
"ST": "Beijing",
"OU": "TiDB"

}
]

}

<namespace> is the namespace which TiDB Operator is deployed in.
3. Generate the server-side certificate for TiDB Operator Webhook:

cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json
↪→ -profile=server webhook-server.json | cfssljson -bare
↪→ webhook-server

4. Run the ls | grep webhook-server command. The following files should be
listed:
webhook-server-key.pem
webhook-server.csr
webhook-server.json
webhook-server.pem

3. Create a secret in the Kubernetes cluster:
kubectl create secret generic <secret-name> --namespace=<namespace> --

↪→ from-file=tls.crt=~/cfssl/webhook-server.pem --from-file=tls.key
↪→ =~/cfssl/webhook-server-key.pem --from-file=ca.crt=~/cfssl/ca.pem

4. Modify values.yaml, and install or upgrade TiDB Operator.
Get the value of ca.crt:
kubectl get secret <secret-name> --namespace=<release-namespace> -o=

↪→ jsonpath='{.data.ca\.crt}'

Configure the items in values.yaml as described below:
admissionWebhook:
apiservice:
insecureSkipTLSVerify: false # Enable TLS verification
tlsSecret: "<secret-name>" # The name of the secret created in Step

↪→ 3
caBundle: "<caBundle>" # The value of `ca.crt` obtained in the

↪→ above step

After configuring the items, install or upgrade TiDB Operator. For installation, see
Deploy TiDB Operator. For upgrade, see Upgrade TiDB Operator.

583

10.1.4.4 Functionality of the admission controller
TiDB Operator implements many functions using the admission controller. This section

introduces the admission controller for each resource and its corresponding functions.

• Admission controller for StatefulSet validation
The admission controller for StatefulSet validation supports the gated launch of the
TiDB/TiKV component in a TiDB cluster. The component is disabled by default if
the admission controller is enabled.
admissionWebhook:
validation:
statefulSets: false

You can control the gated launch of the TiDB/TiKV component in a TiDB cluster
through two annotations, tidb.pingcap.com/tikv-partition and tidb.pingcap.
↪→ com/tidb-partition. To set the gated launch of the TiKV component in a TiDB
cluster, execute the following commands. The effect of partition=2 is the same as
that of StatefulSet Partitions.
kubectl annotate tidbcluster ${name} -n ${namespace} tidb.pingcap.com/

↪→ tikv-partition=2 &&
tidbcluster.pingcap.com/${name} annotated

Execute the following commands to unset the gated launch:
kubectl annotate tidbcluster ${name} -n ${namespace} tidb.pingcap.com/

↪→ tikv-partition- &&
tidbcluster.pingcap.com/${name} annotated

This also applies to the TiDB component.

• Admission controller for TiDB Operator resources validation
The admission controller for TiDB Operator resources validation supports validating
customized resources such as TidbCluster and TidbMonitor in TiDB Operator. The
component is disabled by default if the admission controller is enabled.
admissionWebhook:
validation:
pingcapResources: false

For example, regarding TidbCluster resources, the admission controller for TiDB
Operator resources validation checks the required fields of the spec field. When you
create or update TidbCluster, if the check is not passed (for example, neither of
the spec.pd.image filed and the spec.pd.baseImage field is defined), this admission
controller refuses the request.

584

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/#partitions

• Admission controller for TiDB Operator resources modification
The admission controller for TiDB Operator resources modification supports filling in
the default values of customized resources, such as TidbCluster and TidbMonitor in
TiDB Operator. The component is enabled by default if the admission controller is
enabled.
admissionWebhook:
mutation:
pingcapResources: true

10.2 TiDB on Kubernetes Sysbench Performance Test

Since the release of TiDB Operator GA, more users begin to deploy and manage the TiDB
cluster on Kubernetes using TiDB Operator. In this report, an in-depth and comprehensive
test of TiDB has been conducted on GKE, which offers insight into the influencing factors
that affect the performance of TiDB on Kubernetes.

10.2.1 Test purpose

• To test the performance of TiDB on a typical public cloud platform
• To test the influences that the public cloud platform, network, CPU and different Pod

networks have on the performance of TiDB

10.2.2 Test environment

10.2.2.1 Version and configuration
In this test:

• TiDB 3.0.1 and TiDB Operator 1.0.0 are used.
• Three instances are deployed for PD, TiDB, and TiKV respectively.
• Each component is configured as below. Components not configured use the default

values.

PD:
[log]
level = "info"
[replication]
location-labels = ["region", "zone", "rack", "host"]

TiDB:

585

https://pingcap.com/blog/database-cluster-deployment-and-management-made-easy-with-kubernetes/

[log]
level = "error"
[prepared-plan-cache]
enabled = true
[tikv-client]
max-batch-wait-time = 2000000

TiKV:
log-level = "error"
[server]
status-addr = "0.0.0.0:20180"
grpc-concurrency = 6
[readpool.storage]
normal-concurrency = 10
[rocksdb.defaultcf]
block-cache-size = "14GB"
[rocksdb.writecf]
block-cache-size = "8GB"
[rocksdb.lockcf]
block-cache-size = "1GB"
[raftstore]
apply-pool-size = 3
store-pool-size = 3

10.2.2.2 TiDB parameter configuration
set global tidb_hashagg_final_concurrency=1;
set global tidb_hashagg_partial_concurrency=1;
set global tidb_disable_txn_auto_retry=0;

10.2.2.3 Hardware recommendations

10.2.2.3.1 Machine types
For the test in single AZ (Available Zone), the following machine types are chosen:

Component Instance type Count
PD n1-standard-4 3
TiKV c2-standard-16 3
TiDB c2-standard-16 3
Sysbench c2-standard-30 1

586

For the test (2019.08) where the result in multiple AZs is compared with that in a single
AZ, the c2 machine is not simultaneously available in three AZs within the same Google
Cloud region, so the following machine types are chosen:

Component Instance type Count
PD n1-standard-4 3
TiKV n1-standard-16 3
TiDB n1-standard-16 3
Sysbench n1-standard-16 3

Sysbench, the pressure test platform, has a high demand on CPU in the high concurrency
read test. Therefore, it is recommended that you use machines with high configuration and
multiple cores so that the test platform does not become the bottleneck.

Note:
The usable machine types vary among Google Cloud regions. In the test, the
disk also performs differently. Therefore, only the machines in us-central1 are
applied for test.

10.2.2.3.2 Disk
The NVMe disks on GKE are still in the Alpha phase, so it requires special application

to use them and is not for general usage. In this test, the iSCSI interface type is used for all
local SSD disks. With reference to the official recommendations, the discard,nobarrier
option has been added to the mounting parameter. Below is a complete example:
sudo mount -o defaults,nodelalloc,noatime,discard,nobarrier /dev/[

↪→ LOCAL_SSD_ID] /mnt/disks/[MNT_DIR]

10.2.2.3.3 Network
GKE uses a more scalable and powerful VPC-Native mode as its network mode. In the

performance comparison, TiDB is tested with Kubernetes Pod and Host respectively.

10.2.2.3.4 CPU

• In the test on a single AZ cluster, the c2-standard-16 machine mode is chosen for
TiDB/TiKV.

• In the comparison test on a single AZ cluster and on multiple AZs cluster, the c2-
standard-16 machine type cannot be simultaneously adopted in three AZs within the
same Google Cloud region, so n1-standard-16 machine type is chosen.

587

https://cloud.google.com/compute/docs/disks/performance#optimize_local_ssd
https://cloud.google.com/kubernetes-engine/docs/how-to/alias-ips

10.2.2.4 Operation system and parameters
GKE supports two operating systems: COS (Container Optimized OS) and Ubuntu.

The Point Select test is conducted on both systems and the results are compared. Other
tests are only conducted on Ubuntu.

The core is configured as below:
sysctl net.core.somaxconn=32768
sysctl vm.swappiness=0
sysctl net.ipv4.tcp_syncookies=0

The maximum number of files is configured as 1000000.

10.2.2.5 Sysbench version and operating parameters
In this test, the version of sysbench is 1.0.17.
Before the test, the prewarm command of oltp_common is used to warm up data.

10.2.2.5.1 Initialization
sysbench \
--mysql-host=${tidb_host} \
--mysql-port=4000 \
--mysql-user=root \
--mysql-db=sbtest \
--time=600 \
--threads=16 \
--report-interval=10 \
--db-driver=mysql \
--rand-type=uniform \
--rand-seed=$RANDOM \
--tables=16 \
--table-size=10000000 \
oltp_common \
prepare

${tidb_host} is the address of the TiDB database, which is specified according to actual
test needs. For example, Pod IP, Service domain name, Host IP, and Load Balancer IP (the
same below).

10.2.2.5.2 Warming-up
sysbench \
--mysql-host=${tidb_host} \
--mysql-port=4000 \
--mysql-user=root \

588

--mysql-db=sbtest \
--time=600 \
--threads=16 \
--report-interval=10 \
--db-driver=mysql \
--rand-type=uniform \
--rand-seed=$RANDOM \
--tables=16 \
--table-size=10000000 \
oltp_common \
prewarm

10.2.2.5.3 Pressure test
sysbench \
--mysql-host=${tidb_host} \
--mysql-port=4000 \
--mysql-user=root \
--mysql-db=sbtest \
--time=600 \
--threads=${threads} \
--report-interval=10 \
--db-driver=mysql \
--rand-type=uniform \
--rand-seed=$RANDOM \
--tables=16 \
--table-size=10000000 \
${test} \
run

${test} is the test case of sysbench. In this test, oltp_point_select, oltp_update_index
↪→ , oltp_update_no_index, and oltp_read_write are chosen as ${test}.

10.2.3 Test report

10.2.3.1 In single AZ

10.2.3.1.1 Pod Network vs Host Network
Kubernetes allows Pods to run in Host network mode. This way of deployment is suitable

when a TiDB instance occupies the whole machine without causing any Pod conflict. The
Point Select test is conducted in both modes respectively.

In this test, the operating system is COS.
Pod Network:

589

Threads QPS 95% latency(ms)
150 246386.44 0.95
300 346557.39 1.55
600 396715.66 2.86
900 407437.96 4.18
1200 415138.00 5.47
1500 419034.43 6.91

Host Network:

Threads QPS 95% latency(ms)
150 255981.11 1.06
300 366482.22 1.50
600 421279.84 2.71
900 438730.81 3.96
1200 441084.13 5.28
1500 447659.15 6.67

QPS comparison:

Figure 14: Pod vs Host Network

590

Latency comparison:

Figure 15: Pod vs Host Network

From the images above, the performance in Host network mode is slightly better than
that in Pod network.

10.2.3.1.2 Ubuntu vs COS
GKE provides Ubuntu and COS for each node. In this test, the Point Select test of

TiDB is conducted on both systems.
The network mode is Host.
COS:

Threads QPS 95% latency(ms)
150 255981.11 1.06
300 366482.22 1.50
600 421279.84 2.71
900 438730.81 3.96
1200 441084.13 5.28
1500 447659.15 6.67

591

https://cloud.google.com/kubernetes-engine/docs/concepts/node-images

Ubuntu:

Threads QPS 95% latency(ms)
150 290690.51 0.74
300 422941.17 1.10
600 476663.44 2.14
900 484405.99 3.25
1200 489220.93 4.33
1500 489988.97 5.47

QPS comparison:

Figure 16: COS vs Ubuntu

Latency comparison:

592

Figure 17: COS vs Ubuntu

From the images above, TiDB performs better on Ubuntu than on COS in the Point
Select test.

Note:

• This test is conducted only for the single test case and indicates that
the performance might be affected by different operating systems, differ-
ent optimization, and default settings. Therefore, PingCAP makes no
recommendation for the operating system.

• COS is officially recommended by GKE, because it is optimized for con-
tainers and improved substantially on security and disk performance.

10.2.3.1.3 Kubernetes Service vs Google Cloud LoadBalancer
After TiDB is deployed on Kubernetes, there are two ways of accessing TiDB: via Ku-

bernetes Service inside the cluster, or via Load Balancer IP outside the cluster. TiDB is
tested in both ways.

593

In this test, the operating system is Ubuntu and the network mode is Host.
Service:

Threads QPS 95% latency(ms)
150 290690.51 0.74
300 422941.17 1.10
600 476663.44 2.14
900 484405.99 3.25
1200 489220.93 4.33
1500 489988.97 5.47

Load Balancer:

Threads QPS 95% latency(ms)
150 255981.11 1.06
300 366482.22 1.50
600 421279.84 2.71
900 438730.81 3.96
1200 441084.13 5.28
1500 447659.15 6.67

QPS comparison:

594

Figure 18: Service vs Load Balancer

Latency comparison:

595

Figure 19: Service vs Load Balancer

From the images above, TiDB performs better when accessed via Kubernetes Service
than accessed via Google Cloud Load Balancer in the Point Select test.

10.2.3.1.4 n1-standard-16 vs c2-standard-16
In the Point Select read test, TiDB’s CPU usage exceeds 1400% (16 cores) while TiKV’s

CPU usage is about 1000% (16 cores).
The test compares the TiDB performance on general machine types with that on ma-

chines which are optimized for computing. In this performance comparison, the frequency
of n1-standard-16 is about 2.3G, and the frequency of c2-standard-16 is about 3.1G.

In this test, the operating system is Ubuntu and the Pod network is Host. TiDB is
accessed via Kubernetes Service.

n1-standard-16:

Threads QPS 95% latency(ms)
150 203879.49 1.37
300 272175.71 2.3
600 287805.13 4.1
900 295871.31 6.21

596

Threads QPS 95% latency(ms)
1200 294765.83 8.43
1500 298619.31 10.27

c2-standard-16:

Threads QPS 95% latency(ms)
150 290690.51 0.74
300 422941.17 1.10
600 476663.44 2.14
900 484405.99 3.25
1200 489220.93 4.33
1500 489988.97 5.47

QPS comparison:

Figure 20: n1-standard-16 vs c2-standard-16

Latency comparison:

597

Figure 21: n1-standard-16 vs c2-standard-16

10.2.3.2 OLTP and other tests
The Point Select test is conducted on different operating systems and in different network

modes, and the test results are compared. In addition, other tests in the OLTP test set are
also conducted on Ubuntu in Host network mode where the TiDB cluster is accessed via
Kubernetes Service.

10.2.3.2.1 OLTP Update Index

Threads QPS 95% latency(ms)
150 6726.59 30.26
300 11067.55 36.24
600 17358.46 48.34
900 21025.23 64.47
1200 22121.87 90.78
1500 22650.13 118.92

598

10.2.3.2.2 OLTP Update Non Index

599

Threads QPS 95% latency(ms)
150 9230.60 23.95
300 16543.63 54.83
600 23551.01 61.08
900 31100.10 65.65
1200 33942.60 54.83
1500 42603.13 125.52

600

10.2.3.2.3 OLTP Read Write

601

Threads QPS 95% latency(ms)
150 60732.84 69.29
300 91005.98 90.78
600 110517.67 167.44
900 119866.38 235.74
1200 125615.89 282.25
1500 128501.34 344.082

602

10.2.3.3 Performance comparison between single AZ and multiple AZs
The network latency on communication across multiple AZs in Google Cloud is slightly

higher than that within the same zone. In this test, machines of the same configuration are

603

used in different deployment plans under the same standard. The purpose is to learn how
the latency across multiple AZs might affect the performance of TiDB.

Single AZ:

Threads QPS 95% latency(ms)
150 203879.49 1.37
300 272175.71 2.30
600 287805.13 4.10
900 295871.31 6.21
1200 294765.83 8.43
1500 298619.31 10.27

Multiple AZs:

Threads QPS 95% latency(ms)
150 141027.10 1.93
300 220205.85 2.91
600 250464.34 5.47
900 257717.41 7.70
1200 258835.24 10.09
1500 280114.00 12.75

QPS comparison:

604

Figure 22: Single Zonal vs Regional

Latency comparison:

605

Figure 23: Single Zonal vs Regional

From the images above, the impact of network latency goes down as the concurrency pres-
sure increases. In this situation, the extra network latency is no longer the main bottleneck
of performance.

10.2.4 Conclusion

This is a test of TiDB using sysbench running on Kubernetes deployed on a typical public
cloud platform. The purpose is to learn how different factors might affect the performance
of TiDB. On the whole, these influencing factors include the following items:

• In the VPC-Native mode, TiDB performs slightly better in Host network than in Pod
network. (The difference, ~7%, is measured in QPS. Performance differences caused
by the factors below are also measured by QPS.)

• In Host network, TiDB performs better (~9%) in the read test on Ubuntu provided by
Google Cloud than on COS.

• The TiDB performance is slightly lower (~5%) if it is accessed outside the cluster via
Load Balancer.

• Increased latency among nodes in multiple AZs has a certain impact on the TiDB
performance (30% ~ 6%; the impact diminishes as the concurrent number increases).

606

• The QPS performance is greatly improved (50% ~ 60%) if the Point Select read test
is conducted on machines of computing type (compared with general types), because
the test mainly consumes CPU resources.

Note:

• The factors above might change over time. The TiDB performance might
vary on different cloud platforms. In the future, more tests will be
conducted on more dimensions.

• The sysbench test case cannot fully represent the actual business scenar-
ios. It is recommended that you simulate the actual business for test
and make consideration based on all the costs behind (machines, the
difference between operating systems, the limit of Host network, and so
on).

10.3 API References

10.4 Command Cheat Sheet for TiDB Cluster Management

This document is an overview of the commands used for TiDB cluster management.

10.4.1 kubectl

10.4.1.1 View resources

• View CRD:
kubectl get crd

• View TidbCluster:
kubectl -n ${namespace} get tc ${name}

• View TidbMonitor:
kubectl -n ${namespace} get tidbmonitor ${name}

• View Backup:
kubectl -n ${namespace} get bk ${name}

607

https://github.com/pingcap/tidb-operator/blob/v1.6.1/docs/api-references/docs.md

• View BackupSchedule:
kubectl -n ${namespace} get bks ${name}

• View Restore:
kubectl -n ${namespace} get restore ${name}

• View TidbClusterAutoScaler:
kubectl -n ${namespace} get tidbclusterautoscaler ${name}

• View TidbInitializer:
kubectl -n ${namespace} get tidbinitializer ${name}

• View Advanced StatefulSet:
kubectl -n ${namespace} get asts ${name}

• View a Pod:
kubectl -n ${namespace} get pod ${name}

View a TiKV Pod:
kubectl -n ${namespace} get pod -l app.kubernetes.io/component=tikv

View the continuous status change of a Pod:
watch kubectl -n ${namespace} get pod

View the detailed information of a Pod:
kubectl -n ${namespace} describe pod ${name}

• View the node on which Pods are located:
kubectl -n ${namespace} get pods -l "app.kubernetes.io/component=tidb,

↪→ app.kubernetes.io/instance=${cluster_name}" -ojsonpath="{range .
↪→ items[*]}{.spec.nodeName}{'\n'}{end}"

• View Service:
kubectl -n ${namespace} get service ${name}

• View ConfigMap:
kubectl -n ${namespace} get cm ${name}

608

• View a PersistentVolume (PV):
kubectl -n ${namespace} get pv ${name}

View the PV used by the cluster:
kubectl get pv -l app.kubernetes.io/namespace=${namespace},app.

↪→ kubernetes.io/managed-by=tidb-operator,app.kubernetes.io/instance
↪→ =${cluster_name}

• View a PersistentVolumeClaim (PVC):
kubectl -n ${namespace} get pvc ${name}

• View StorageClass:
kubectl -n ${namespace} get sc

• View StatefulSet:
kubectl -n ${namespace} get sts ${name}

View the detailed information of StatefulSet:
kubectl -n ${namespace} describe sts ${name}

10.4.1.2 Update resources

• Add an annotation for TiDBCluster:
kubectl -n ${namespace} annotate tc ${cluster_name} ${key}=${value}

Add a force-upgrade annotation for TiDBCluster:
kubectl -n ${namespace} annotate --overwrite tc ${cluster_name} tidb.

↪→ pingcap.com/force-upgrade=true

Delete a force-upgrade annotation for TiDBCluster:
kubectl -n ${namespace} annotate tc ${cluster_name} tidb.pingcap.com/

↪→ force-upgrade-

Enable the debug mode for Pods:
kubectl -n ${namespace} annotate pod ${pod_name} runmode=debug

609

10.4.1.3 Edit resources

• Edit TidbCluster:
kubectl -n ${namespace} edit tc ${name}

10.4.1.4 Patch Resources

• Patch TidbCluster:
kubectl -n ${namespace} patch tc ${name} --type merge -p '${json_path}'

• Patch PV ReclaimPolicy:
kubectl patch pv ${name} -p '{"spec":{"persistentVolumeReclaimPolicy":"

↪→ Delete"}}'

• Patch a PVC:
kubectl -n ${namespace} patch pvc ${name} -p '{"spec": {"resources": {"

↪→ requests": {"storage": "100Gi"}}}'

• Patch StorageClass:
kubectl patch storageclass ${name} -p '{"allowVolumeExpansion": true}'

10.4.1.5 Create resources

• Create a cluster using the YAML file:
kubectl -n ${namespace} apply -f ${file}

• Create Namespace:
kubectl create ns ${namespace}

• Create Secret:
Create Secret of the certificate:
kubectl -n ${namespace} create secret generic ${secret_name} --from-

↪→ file=tls.crt=${cert_path} --from-file=tls.key=${key_path} --from-
↪→ file=ca.crt=${ca_path}

Create Secret of the user id and password:
kubectl -n ${namespace} create secret generic ${secret_name} --from-

↪→ literal=user=${user} --from-literal=password=${password}

610

10.4.1.6 Interact with running Pods

• View the PD configuration file:
kubectl -n ${namespace} -it exec ${pod_name} -- cat /etc/pd/pd.toml

• View the TiDB configuration file:
kubectl -n ${namespace} -it exec ${pod_name} -- cat /etc/tidb/tidb.toml

• View the TiKV configuration file:
kubectl -n ${namespace} -it exec ${pod_name} -- cat /etc/tikv/tikv.toml

• View Pod logs:
kubectl -n ${namespace} logs ${pod_name} -f

View logs of the previous container:
kubectl -n ${namespace} logs ${pod_name} -p

If there are multiple containers in a Pod, view logs of one container:
kubectl -n ${namespace} logs ${pod_name} -c ${container_name}

• Expose services:
kubectl -n ${namespace} port-forward svc/${service_name} ${local_port}:

↪→ ${port_in_pod}

Expose PD services:
kubectl -n ${namespace} port-forward svc/${cluster_name}-pd 2379:2379

10.4.1.7 Interact with nodes

• Mark the node as non-schedulable:
kubectl cordon ${node_name}

• Mark the node as schedulable:
kubectl uncordon ${node_name}

611

10.4.1.8 Delete resources

• Delete a Pod:
kubectl delete -n ${namespace} pod ${pod_name}

• Delete a PVC:
kubectl delete -n ${namespace} pvc ${pvc_name}

• Delete TidbCluster:
kubectl delete -n ${namespace} tc ${tc_name}

• Delete TidbMonitor:
kubectl delete -n ${namespace} tidbmonitor ${tidb_monitor_name}

• Delete TidbClusterAutoScaler:
kubectl -n ${namespace} delete tidbclusterautoscaler ${name}

10.4.1.9 More
See kubectl Cheat Sheet for more kubectl usage.

10.4.2 Helm

10.4.2.1 Add Helm repository
helm repo add pingcap https://charts.pingcap.org/

10.4.2.2 Update Helm repository
helm repo update

10.4.2.3 View available Helm chart

• View charts in Helm Hub:
helm search hub ${chart_name}

For example:
helm search hub mysql

612

https://kubernetes.io/docs/reference/kubectl/cheatsheet/

• View charts in other repositories:
helm search repo ${chart_name} -l --devel

For example:
helm search repo tidb-operator -l --devel

10.4.2.4 Get the default values.yaml of the Helm chart
helm inspect values ${chart_name} --version=${chart_version} > values.yaml

For example:
helm inspect values pingcap/tidb-operator --version=v1.6.1 > values-tidb-

↪→ operator.yaml

10.4.2.5 Deploy using Helm chart
helm install ${name} ${chart_name} --namespace=${namespace} --version=${

↪→ chart_version} -f ${values_file}

For example:
helm install tidb-operator pingcap/tidb-operator --namespace=tidb-admin --

↪→ version=v1.6.1 -f values-tidb-operator.yaml

10.4.2.6 View the deployed Helm release
helm ls

10.4.2.7 Update Helm release
helm upgrade ${name} ${chart_name} --version=${chart_version} -f ${

↪→ values_file}

For example:
helm upgrade tidb-operator pingcap/tidb-operator --version=v1.6.1 -f values-

↪→ tidb-operator.yaml

10.4.2.8 Delete Helm release
helm uninstall ${name} -n ${namespace}

For example:
helm uninstall tidb-operator -n tidb-admin

613

10.4.2.9 More
See Helm Commands for more Helm usage.

10.5 RBAC rules required by TiDB Operator

The role-based access control (RBAC) rules implemented on Kubernetes use Role or
ClusterRole for management, and use RoleBinding or ClusterRoleBinding to grant permis-
sions to a user or a group of users.

10.5.1 Manage TiDB clusters at the cluster level

If the default setting clusterScoped=true is unchanged during the TiDB Operator
deployment, TiDB Operator manages all TiDB clusters within a Kubernetes cluster.

To check the ClusterRole created for TiDB Operator, run the following command:
kubectl get clusterrole | grep tidb

The example output is as follows:
tidb-operator:tidb-controller-manager 2021-05-04T13

↪→ :08:55Z
tidb-operator:tidb-scheduler 2021-05-04T13

↪→ :08:55Z

In the output above:

• tidb-operator:tidb-controller-manager is the ClusterRole created for the tidb-
↪→ controller-manager Pod.

• tidb-operator:tidb-scheduler is the ClusterRole created for the tidb-scheduler
Pod.

10.5.1.1 tidb-controller-manager ClusterRole permissions
The following table lists the permissions corresponding to the tidb-controller-

↪→ manager ClusterRole.

Resource

Non-
resource
URLs Resource name Action Explanation

events - - [*] Exports
event
informa-
tion

614

https://helm.sh/docs/helm/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/

Resource

Non-
resource
URLs Resource name Action Explanation

services - - [*] Control
the
access
of the
service
re-
sources

statefulsets.apps.pingcap.com/status- - [*] Control
the
access
of the
State-
fulSet
resource
when
AdvancedStatefulSet
↪→ =
↪→ true
↪→ .
For
more
informa-
tion,
see Ad-
vanced
State-
fulSet
Con-
troller.

615

Resource

Non-
resource
URLs Resource name Action Explanation

statefulsets.apps.pingcap.com- - [*] Control
the
access
of the
State-
fulSet
resource
when
AdvancedStatefulSet
↪→ =
↪→ true
↪→ .
For
more
informa-
tion,
see Ad-
vanced
State-
fulSet
Con-
troller.

controllerrevisions.apps- - [*] Control
the
version
of
Kuber-
netes
State-
fulSet/-
Dae-
monset

deployments.apps- - [*] Control
the
access
of the
Deploy-
ment
resource

616

Resource

Non-
resource
URLs Resource name Action Explanation

statefulsets.apps- - [*] Control
the
access
of the
State-
fulset
resource

ingresses.extensions- - [*] Control
the
access
of the
Ingress
resource
for the
moni-
toring
system

.pingcap.com- - [] Control
the
access
of all
cus-
tomized
re-
sources
under
ping-
cap.com

configmaps - - [create get list
watch update
delete]

Control
the
access
of the
Con-
figMap
resource

617

Resource

Non-
resource
URLs Resource name Action Explanation

endpoints - - [create get list
watch update
delete]

Control
the
access
of the
End-
points
resource

serviceaccounts- - [create get
update delete]

Create
Ser-
viceAc-
count
for the
Tidb-
Moni-
tor/Dis-
covery
service

clusterrolebindings.rbac.authorization.k8s.io- - [create get
update delete]

Create
Cluster-
RoleBind-
ing for
the
Tidb-
Monitor
service

rolebindings.rbac.authorization.k8s.io- - [create get
update delete]

Create
RoleBind-
ing for
the
Tidb-
Moni-
tor/Dis-
covery
service

secrets - - [create update
get list watch
delete]

Control
the
access
of the
Secret
resource

618

Resource

Non-
resource
URLs Resource name Action Explanation

clusterroles.rbac.authorization.k8s.io- - [escalate
create get
update delete]

Create
Cluster-
Role for
the
Tidb-
Monitor
service

roles.rbac.authorization.k8s.io- - [escalate
create get
update delete]

Create
Role for
the
Tidb-
Moni-
tor/Dis-
covery
service

persistentvolumeclaims- - [get list watch
create update
delete patch]

Control
the
access
of the
PVC
resource

jobs.batch - - [get list watch
create update
delete]

Use
jobs to
perform
TiDB
cluster
initial-
ization,
backup,
and
restore
opera-
tions

619

Resource

Non-
resource
URLs Resource name Action Explanation

persistentvolumes- - [get list watch
patch update]

Perform
opera-
tions
such as
adding
labels
related
to
cluster
informa-
tion for
PV and
modify-
ing
persistentVolumeReclaimPolicy
↪→

pods - - [get list watch
update delete]

Control
the
access
of the
Pod
resource

nodes - - [get list watch] Read
node
labels
and set
store
labels
for
TiKV
and
TiFlash
accord-
ingly

620

Resource

Non-
resource
URLs Resource name Action Explanation

storageclasses.storage.k8s.io- - [get list watch] Verify
whether
Storage-
Class
sup-
ports
VolumeExpansion
↪→
before
expand-
ing
PVC
storage

- [/metrics] - [get] Read
moni-
toring
metrics

Note:

• In the Non-resource URLs column, - indicates that the item does not
have non-resource URLs.

• In the Resource name column, - indicates that the item does not have
a resource name.

• In the Actions column, * indicates that the resource supports all actions
that can be performed on a Kubernetes cluster.

10.5.1.2 tidb-scheduler ClusterRole permissions
The following table lists the permissions corresponding to the tidb-scheduler Cluster-

Role.

621

Resource
Non-resource
URLs

Resource
name Action Explanation

leases.coordination.k8s.io- - [create] Create
lease
resource
locks
for
leader
election

endpoints - - [delete
get
patch
up-
date]

Control
the
access
of the
End-
points
resource

persistentvolumeclaims- - [get
list
up-
date]

Read
PVC
informa-
tion of
PD/TiKV
and
update
the
schedul-
ing
informa-
tion to
the
PVC
label

configmaps - - [get
list
watch]

Read
the
Con-
figMap
resource

pods - - [get
list
watch]

Read
Pod
informa-
tion

nodes - - [get
list]

Read
node
informa-
tion

622

Resource
Non-resource
URLs

Resource
name Action Explanation

leases.coordination.k8s.io- [tidb-
scheduler]

[get
up-
date]

Read
and
update
lease
resource
locks
for
leader
election

tidbclusters.pingcap.com- - [get] Read
Tidb-
cluster
informa-
tion

Note:

• In the Non-resource URLs column, - indicates that the item does not
have non-resource URLs.

• In the Resource name column, - indicates that the item does not have
a resource name.

10.5.2 Manage TiDB clusters at the namespace level

If clusterScoped=false is set during the TiDB Operator deployment, TiDB Operator
manages TiDB clusters at the Namespace level.

• To check the ClusterRole created for TiDB Operator, run the following command:
kubectl get clusterrole | grep tidb

The output is as follows:
tidb-operator:tidb-controller-manager

↪→ 2021-05-04T13:08:55Z

tidb-operator:tidb-controller-manager is the ClusterRole created for the tidb-
↪→ controller-manager Pod.

623

Note:
During the TiDB Operator deployment, if controllerManager
↪→ .clusterPermissions.nodes, controllerManager.
↪→ clusterPermissions.persistentvolumes, controllerManager.
↪→ clusterPermissions.storageclasses are all set to false, TiDB
operator will not create this ClusterRole.

• To check the roles created for TiDB Operator, run the following command:
kubectl get role -n tidb-admin

The example output is as follows:
tidb-admin tidb-operator:tidb-controller-manager 2021-05-04T13

↪→ :08:55Z
tidb-admin tidb-operator:tidb-scheduler 2021-05-04T13

↪→ :08:55Z

In the output:

– tidb-operator:tidb-controller-manager is the role created for the tidb-
↪→ controller-manager Pod.

– tidb-operator:tidb-scheduler is the role created for the tidb-scheduler
Pod.

10.5.2.1 tidb-controller-manager ClusterRole permissions
The following table lists the permissions corresponding to the tidb-controller-

↪→ manager ClusterRole.

624

Resource
Non-resource
URLs

Resource
name Action Explanation

persistentvolumes- - [get
list
watch
patch
up-
date]

Perform
opera-
tions
such as
adding
labels
related
to
cluster
informa-
tion for
PV and
modify-
ing
persistentVolumeReclaimPolicy
↪→

nodes - - [get
list
watch]

Read
node
Labels
and set
store
Labels
for
TiKV
and
TiFlash
accord-
ingly

storageclasses.storage.k8s.io- - [get
list
watch]

Verify
whether
Storage-
Class
sup-
ports
VolumeExpansion
↪→
before
expand-
ing
PVC
storage

625

Note:

• In the Non-resource URLs column, - indicates that the item does not
have non-resource URLs.

• In the Resource name column, - indicates that the item does not have
a resource name.

10.5.2.2 tidb-controller-manager Role permissions
The following table lists the permissions corresponding to the tidb-controller-

↪→ manager Role.

Resource
Non-resource
URLs

Resource
name Action Explanation

events - - [*] Export
event
informa-
tion

services - - [*] Control
the
access
of the
service
re-
sources

626

Resource
Non-resource
URLs

Resource
name Action Explanation

statefulsets.apps.pingcap.com/status- - [*] Control
the
access
of the
State-
fulSet
resource
when
AdvancedStatefulSet
↪→ =
↪→ true
↪→ .
For
more
informa-
tion,
see Ad-
vanced
State-
fulSet
Con-
troller.

627

Resource
Non-resource
URLs

Resource
name Action Explanation

statefulsets.apps.pingcap.com- - [*] Control
the
access
of the
State-
fulSet
resource
when
AdvancedStatefulSet
↪→ =
↪→ true
↪→ .
For
more
informa-
tion,
see Ad-
vanced
State-
fulSet
Con-
troller.

controllerrevisions.apps- - [*] Control
the
version
of
Kuber-
netes
State-
fulSet/-
Dae-
monset

deployments.apps- - [*] Control
the
access
of the
Deploy-
ment
resource

628

Resource
Non-resource
URLs

Resource
name Action Explanation

statefulsets.apps- - [*] Control
the
access
of the
State-
fulset
resource

ingresses.extensions- - [*] Control
the
access
of the
Ingress
resource
for the
moni-
toring
system

.pingcap.com- - [] Control
the
access
of all
cus-
tomized
re-
sources
under
ping-
cap.com

configmaps - - [create
get
list
watch
up-
date
delete]

Control
the
access
of the
Con-
figMap
resource

endpoints - - [create
get
list
watch
up-
date
delete]

Control
the
access
of the
End-
points
resource

629

Resource
Non-resource
URLs

Resource
name Action Explanation

serviceaccounts- - [create
get
up-
date
delete]

Create
Ser-
viceAc-
count
for the
Tidb-
Moni-
tor/Dis-
covery
service

rolebindings.rbac.authorization.k8s.io- - [create
get
up-
date
delete]

Create
Cluster-
RoleBind-
ing for
the
Tidb-
Monitor
service

secrets - - [create
up-
date
get
list
watch
delete]

Control
the
access
of the
Secret
resource

roles.rbac.authorization.k8s.io- - [escalate
cre-
ate
get
up-
date
delete]

Create
Role for
the
Tidb-
Moni-
tor/Dis-
covery
service

persistentvolumeclaims- - [get
list
watch
cre-
ate
up-
date
delete
patch]

Control
the
access
of the
PVC
resource

630

Resource
Non-resource
URLs

Resource
name Action Explanation

jobs.batch - - [get
list
watch
cre-
ate
up-
date
delete]

Use
jobs to
perform
TiDB
cluster
initial-
ization,
backup,
and
restore
opera-
tions

pods - - [get
list
watch
up-
date
delete]

Control
the
access
of the
Pod
resource

Note:

• In the Non-resource URLs column, - indicates that the item does not
have non-resource URLs.

• In the Resource names column, - indicates that the item does not
have a resource name.

• In the Actions column, * indicates that the resource supports all actions
that can be performed on a Kubernetes cluster.

10.5.2.3 tidb-scheduler Role permissions
The following table lists the permissions corresponding to the tidb-scheduler Role.

631

Resource
Non-resource
URLs

Resource
name Action Explanation

leases.coordination.k8s.io- - [create] Create
lease
resource
locks
for
leader
election

endpoints - - [delete
get
patch
up-
date]

Control
the
access
of the
End-
points
resource

persistentvolumeclaims- - [get
list
up-
date]

Read
PVC
informa-
tion of
PD/TiKV
and
update
the
schedul-
ing
informa-
tion to
the
PVC
label

configmaps - - [get
list
watch]

Read
the
Con-
figMap
resource

pods - - [get
list
watch]

Read
pod
informa-
tion

nodes - - [get
list]

Read
node
informa-
tion

632

Resource
Non-resource
URLs

Resource
name Action Explanation

leases.coordination.k8s.io- [tidb-
scheduler]

[get
up-
date]

Read
and
update
lease
resource
locks
for
leader
election

tidbclusters.pingcap.com- - [get] Read
Tidb-
cluster
informa-
tion

Note:

• In the Non-resource URLs column, - indicates that the item does not
have non-resource URLs.

• In the Resource name column, - indicates that the item does not have
a resource name.

10.6 Tools

10.6.1 Tools on Kubernetes

Operations on TiDB on Kubernetes require some open source tools. In the meantime,
there are some special requirements for operations using TiDB tools in the Kubernetes
environment. This documents introduces in details the related operation tools for TiDB on
Kubernetes.

10.6.1.1 Use PD Control on Kubernetes
PD Control is the command-line tool for PD (Placement Driver). To use PD Control to

operate on TiDB clusters on Kubernetes, firstly you need to establish the connection from
local to the PD service using kubectl port-forward:
kubectl port-forward -n ${namespace} svc/${cluster_name}-pd 2379:2379 &>/tmp

↪→ /portforward-pd.log &

633

https://docs.pingcap.com/tidb/stable/pd-control

After the above command is executed, you can access the PD service via 127.0.0.1:2379
↪→ , and then use the default parameters of pd-ctl to operate. For example:
pd-ctl -d config show

Assume that your local port 2379 has been occupied and you want to switch to another
port:
kubectl port-forward -n ${namespace} svc/${cluster_name}-pd ${local_port

↪→ }:2379 &>/tmp/portforward-pd.log &

Then you need to explicitly assign a PD port for pd-ctl:
pd-ctl -u 127.0.0.1:${local_port} -d config show

10.6.1.2 Use TiKV Control on Kubernetes
TiKV Control is the command-line tool for TiKV. When using TiKV Control for TiDB

clusters on Kubernetes, be aware that each operation mode involves different steps, as de-
scribed below:

• Remote Mode: In this mode, tikv-ctl accesses the TiKV service or the PD service
through network. Firstly you need to establish the connection from local to the PD
service and the target TiKV node using kubectl port-forward:
kubectl port-forward -n ${namespace} svc/${cluster_name}-pd 2379:2379

↪→ &>/tmp/portforward-pd.log &

kubectl port-forward -n ${namespace} ${pod_name} 20160:20160 &>/tmp/
↪→ portforward-tikv.log &

After the connection is established, you can access the PD service and the TiKV node
via the corresponding port in local:
tikv-ctl --host 127.0.0.1:20160 ${subcommands}

tikv-ctl --pd 127.0.0.1:2379 compact-cluster

• Local Mode：In this mode, tikv-ctl accesses data files of TiKV, and the running
TiKV instances must be stopped. To operate in the local mode, first you need to
enter the Debug Mode to turn off automatic re-starting for the TiKV instance, stop
the TiKV process, and enter the target TiKV Pod and use tikv-ctl to perform the
operation. The steps are as follows:

1. Enter the debug mode:
kubectl annotate pod ${pod_name} -n ${namespace} runmode=debug

634

https://docs.pingcap.com/tidb/stable/tikv-control

2. Stop the TiKV process:
kubectl exec ${pod_name} -n ${namespace} -c tikv -- kill -s TERM 1

3. Wait for the TiKV container to restart, and enter the container:
kubectl exec -it ${pod_name} -n ${namespace} -- sh

4. Start using tikv-ctl in local mode. The default db path in the TiKV container
is /var/lib/tikv/db:
./tikv-ctl --data-dir /var/lib/tikv size -r 2

10.6.1.3 Use TiDB Control on Kubernetes
TiDB Control is the command-line tool for TiDB. To use TiDB Control on Kubernetes,

you need to access the TiDB node and the PD service from local. It is suggested you turn
on the connection from local to the TiDB node and the PD service using kubectl port-
↪→ forward:
kubectl port-forward -n ${namespace} svc/${cluster_name}-pd 2379:2379 &>/tmp

↪→ /portforward-pd.log &

kubectl port-forward -n ${namespace} ${pod_name} 10080:10080 &>/tmp/
↪→ portforward-tidb.log &

Then you can use the tidb-ctl:
tidb-ctl schema in mysql

10.6.1.4 Use Helm
Helm is a package management tool for Kubernetes. The installation steps are as follows:

10.6.1.4.1 Install the Helm client
Refer to Helm official documentation to install the Helm client.
If the server does not have access to the Internet, you need to download Helm on a

machine with Internet access, and then copy it to the server. Here is an example of installing
the Helm client 3.4.1:
wget https://get.helm.sh/helm-v3.4.1-linux-amd64.tar.gz
tar zxvf helm-v3.4.1-linux-amd64.tar.gz

After decompression, you can see the following files:

635

https://docs.pingcap.com/tidb/stable/tidb-control
https://helm.sh/
https://helm.sh/docs/intro/install/

linux-amd64/
linux-amd64/README.md
linux-amd64/helm
linux-amd64/LICENSE

Copy the linux-amd64/helm file to the server and place it under the /usr/local/bin/
directory.

Then execute helm version. If the command outputs normally, the Helm installation
is successful:
helm version

version.BuildInfo{Version:"v3.4.1", GitCommit:"
↪→ c4e74854886b2efe3321e185578e6db9be0a6e29", GitTreeState:"clean",
↪→ GoVersion:"go1.14.11"}

10.6.1.4.2 Configure the Helm repo
Kubernetes applications are packed as charts in Helm. PingCAP provides the following

Helm charts for TiDB on Kubernetes:

• tidb-operator: used to deploy TiDB Operator;
• tidb-lightning: used to import data into a TiDB cluster;

These charts are hosted in the Helm chart repository https://charts.pingcap.org/
maintained by PingCAP. You can add this repository to your local server or computer using
the following command:
helm repo add pingcap https://charts.pingcap.org/

Then you can search the chart provided by PingCAP using the following command:
helm search repo pingcap

NAME CHART VERSION APP VERSION DESCRIPTION
pingcap/tidb-lightning v1.6.1 A Helm chart for TiDB

↪→ Lightning
pingcap/tidb-operator v1.6.1 v1.6.1 tidb-operator Helm chart

↪→ for Kubernetes

When a new version of chart has been released, you can use helm repo update to update
the repository cached locally:
helm repo update

636

10.6.1.4.3 Helm common operations
Common Helm operations include helm install, helm upgrade, and helm uninstall.

Helm chart usually contains many configurable parameters which could be tedious to con-
figure manually. For convenience, it is recommended that you configure using a YAML file.
Based on the conventions in the Helm community, the YAML file used for Helm configuration
is named values.yaml in this document.

Before performing the deploy, upgrade and deploy, you can view the deployed applica-
tions via helm ls:
helm ls

When performing a deployment or upgrade, you must specify the chart name (chart-
↪→ name) and the name for the deployed application (release-name). You can also specify
one or multiple values.yaml files to configure charts. In addition, you can use chart-
↪→ version to specify the chart version (by default the latest GA is used). The steps in
command line are as follows:

• Install:
helm install ${release_name} ${chart_name} --namespace=${namespace} --

↪→ version=${chart_version} -f ${values_file}

• Upgrade (the upgrade can be either modifying the chart-version to upgrade to the
latest chart version, or editing the values.yaml file to update the configuration):
helm upgrade ${release_name} ${chart_name} --version=${chart_version} -

↪→ f ${values_file}

• Delete:
To delete the application deployed by Helm, run the following command:
helm uninstall ${release_name} -n ${namespace}

For more information on Helm, refer to Helm Documentation.

10.6.1.4.4 Use Helm chart offline
If the server has no Internet access, you cannot configure the Helm repo to install the

TiDB Operator component and other applications. At this time, you need to download the
chart file needed for cluster installation on a machine with Internet access, and then copy it
to the server.

Use the following command to download the chart file required for cluster installation:
wget http://charts.pingcap.org/tidb-operator-v1.6.1.tgz
wget http://charts.pingcap.org/tidb-lightning-v1.6.1.tgz

637

https://helm.sh/docs/

Copy these chart files to the server and decompress them. You can use these charts
to install the corresponding components by running the helm install command. Take
tidb-operator as an example:
tar zxvf tidb-operator.v1.6.1.tgz
helm install ${release_name} ./tidb-operator --namespace=${namespace}

10.6.1.5 Use Terraform
Terraform is a Infrastructure as Code management tool. It enables users to define their

own infrastructure in a manifestation style, based on which execution plans are generated
to create or schedule real world compute resources. TiDB on Kubernetes use Terraform to
create and manage TiDB clusters on public clouds.

Follow the steps in Terraform Documentation to install Terraform.

10.7 Configure

10.7.1 TiDB Binlog Drainer Configurations on Kubernetes

This document introduces the configuration parameters for a TiDB Binlog drainer on
Kubernetes.

Warning:
Starting from TiDB v7.5.0, TiDB Binlog replication is deprecated. Starting
from v8.3.0, TiDB Binlog is fully deprecated, with removal planned for a
future release. For incremental data replication, use TiCDC instead. For
point-in-time recovery (PITR), use PITR.

10.7.1.1 Configuration parameters
The following table contains all configuration parameters available for the tidb-drainer

chart. Refer to Use Helm to learn how to configure these parameters.

ParameterDescription
Default
Value

timezone
↪→

Timezone
config-
ura-
tion

UTC

638

https://www.terraform.io/
https://www.terraform.io/downloads.html

ParameterDescription
Default
Value

drainerName
↪→

The
name
of
Statefulset
↪→

""

clusterName
↪→

The
name
of the
source
TiDB
clus-
ter

demo

clusterVersion
↪→

The
ver-
sion
of the
source
TiDB
clus-
ter

v3.0.1

baseImage
↪→

The
base
image
of
TiDB
Bin-
log

pingcap
↪→ /
↪→ tidb
↪→ -
↪→ binlog
↪→

imagePullPolicy
↪→

The
pulling
policy
of the
image

IfNotPresent
↪→

logLevel
↪→

The
log
level
of the
drainer
pro-
cess

info

639

ParameterDescription
Default
Value

storageClassName
↪→

storageClass
↪→
used
by the
drainer.
storageClassName
↪→
refers
to a
type
of
stor-
age
pro-
vided
by the
Ku-
ber-
netes
clus-
ter,
which
might
map
to a
level
of ser-
vice
qual-
ity, a
backup
pol-
icy, or
to any
policy
deter-
mined
by the
clus-
ter
ad-
minis-
tra-
tor.
De-
tailed
refer-
ence:
storage-
classes

local-
↪→ storage
↪→

640

https://kubernetes.io/docs/concepts/storage/storage-classes
https://kubernetes.io/docs/concepts/storage/storage-classes

ParameterDescription
Default
Value

storage
↪→

The
stor-
age
limit
of the
drainer
Pod.
Note
that
you
should
set a
larger
size if
db-
↪→ type
↪→ is
set to
pb

10Gi

disableDetect
↪→

Determines
whether
to dis-
able
casu-
alty
detec-
tion

false

641

ParameterDescription
Default
Value

initialCommitTs
↪→

Used
to ini-
tialize
a
check-
point
if the
drainer
does
not
have
one.
The
value
is a
string
type,
such
as
"424364429251444742"
↪→

"-1"

tlsCluster
↪→ .
↪→ enabled
↪→

Whether
or not
to
enable
TLS
be-
tween
clus-
ters

false

642

ParameterDescription
Default
Value

config The
config-
ura-
tion
file
passed
to the
drainer.
De-
tailed
refer-
ence:
drainer.toml

(see
below)

resources
↪→

The
re-
source
limits
and
re-
quests
of the
drainer
Pod

{}

643

https://github.com/pingcap/tidb-binlog/blob/master/cmd/drainer/drainer.toml

ParameterDescription
Default
Value

nodeSelector
↪→

Ensures
that
the
drainer
Pod is
only
sched-
uled
to the
node
with
the
spe-
cific
key-
value
pair
as the
label.
De-
tailed
refer-
ence:
nodeselector
↪→

{}

644

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector

ParameterDescription
Default
Value

tolerations
↪→

Applies
to
drainer
Pods,
allow-
ing
the
Pods
to be
sched-
uled
to the
nodes
with
speci-
fied
taints.
De-
tailed
refer-
ence:
taint-
and-
toleration

{}

645

https://kubernetes.io/docs/concepts/configuration/taint-and-toleration
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration
https://kubernetes.io/docs/concepts/configuration/taint-and-toleration

ParameterDescription
Default
Value

affinity
↪→

Defines
schedul-
ing
poli-
cies
and
prefer-
ences
of the
drainer
Pod.
De-
tailed
refer-
ence:
affinity-
and-
anti-
affinity

{}

The default value of config is:
detect-interval = 10
compressor = ""
[syncer]
worker-count = 16
disable-dispatch = false
ignore-schemas = "INFORMATION_SCHEMA,PERFORMANCE_SCHEMA,mysql"
safe-mode = false
txn-batch = 20
db-type = "file"
[syncer.to]
dir = "/data/pb"

10.8 TiDB Log Collection on Kubernetes

The system and application logs can be useful for troubleshooting issues and automating
operations. This article briefly introduces the methods of collecting logs of TiDB and its
related components.

646

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity

10.8.1 Collect logs of TiDB and Kubernetes components

The TiDB components deployed by TiDB Operator output the logs in the stdout and
stderr of the container by default. For Kubernetes, these logs are stored in the host’s /
↪→ var/log/containers directory, and the file name contains information such as the Pod
name and the container name. For this reason, you can collect the logs of the application in
the container directly on the host.

If you already have a system for collecting logs in your existing infrastructure, you only
need to add the /var/log/containers/*.log file on the host in which Kubernetes is located
in the collection scope by common methods; if there is no available log collection system,
or you want to deploy a separate system for collecting relevant logs, you are free to use any
system or solution that you are familiar with.

Common open source tools that can be used to collect Kubernetes logs are:

• Fluentd
• Fluent-bit
• Filebeat
• Logstash

Collected Logs can usually be aggregated and stored on a specific server or in a dedicated
storage and analysis system such as ElasticSearch.

Some cloud service providers or specialized performance monitoring service providers
also have their own free or charged log collection options that you can choose from.

10.8.2 Collect system logs

System logs can be collected on Kubernetes hosts in the usual way. If you already have
a system for collecting logs in your existing infrastructure, you only need to add the relevant
servers and log files in the collection scope by conventional means; if there is no available
log collection system, or you want to deploy a separate set of systems for collecting relevant
logs, you are free to use any system or solution that you are familiar with.

All of the common log collection tools mentioned above support collecting system logs.
Some cloud service providers or specialized performance monitoring service providers also
have their own free or charged log collection options that you can choose from.

10.9 Monitoring and Alerts on Kubernetes

This document describes how to monitor a Kubernetes cluster and configure alerts for
the cluster.

647

https://www.fluentd.org/
https://fluentbit.io/
https://www.elastic.co/products/beats/filebeat
https://www.elastic.co/logstash/

10.9.1 Monitor the Kubernetes cluster

The TiDB monitoring system deployed with the cluster only focuses on the operation
of the TiDB components themselves, and does not include the monitoring of container re-
sources, hosts, Kubernetes components, or TiDB Operator. To monitor these components
or resources, you need to deploy a monitoring system across the entire Kubernetes cluster.

10.9.1.1 Monitor the host
Monitoring the host and its resources works in the same way as monitoring physical

resources of a traditional server.
If you already have a monitoring system for your physical server in your existing infras-

tructure, you only need to add the host that holds Kubernetes to the existing monitoring
system by conventional means; if there is no monitoring system available, or if you want to
deploy a separate monitoring system to monitor the host that holds Kubernetes, then you
can use any monitoring system that you are familiar with.

The newly deployed monitoring system can run on a separate server, directly on the host
that holds Kubernetes, or in a Kubernetes cluster. Different deployment methods might have
differences in the deployment configuration and resource utilization, but there are no major
differences in usage.

Some common open source monitoring systems that can be used to monitor server re-
sources are:

• CollectD
• Nagios
• Prometheus & node_exporter
• Zabbix

Some cloud service providers or specialized performance monitoring service providers
also have their own free or chargeable monitoring solutions that you can choose from.

It is recommended to deploy a host monitoring system in the Kubernetes cluster via
Prometheus Operator based on Node Exporter and Prometheus. This solution can also be
compatible with and used for monitoring the Kubernetes’ own components.

10.9.1.2 Monitor Kubernetes components
For monitoring Kubernetes components, you can refer to the solutions provided in the

Kubernetes official documentation or use other Kubernetes-compatible monitoring systems.
Some cloud service providers may provide their own solutions for monitoring Kubernetes

components. Some specialized performance monitoring service providers have their own
Kubernetes integration solutions that you can choose from.

648

https://collectd.org/
https://www.nagios.org/
https://prometheus.io/
https://github.com/prometheus/node_exporter
https://www.zabbix.com/
https://github.com/coreos/prometheus-operator
https://github.com/prometheus/node_exporter
https://kubernetes.io/docs/tasks/debug/debug-cluster/resource-usage-monitoring/

TiDB Operator is actually a container running in Kubernetes. For this reason, you can
monitor TiDB Operator by choosing any monitoring system that can monitor the status and
resources of a Kubernetes container without deploying additional monitoring components.

It is recommended to deploy a host monitoring system via Prometheus Operator based
on Node Exporter and Prometheus. This solution can also be compatible with and used for
monitoring host resources.

10.9.1.3 Alerts on Kubernetes
If you deploy a monitoring system for Kubernetes hosts and services using Prometheus

Operator, some alert rules are configured by default, and an AlertManager service is de-
ployed. For details, see kube-prometheus.

If you monitor Kubernetes hosts and services by using other tools or services, you can
consult the corresponding information provided by the tool or service provider.

10.10 PingCAP Clinic Diagnostic Data

PingCAP Clinic Diagnostic Service (PingCAP Clinic) collects diagnostic data from TiDB
clusters that are deployed using TiDB Operator. This document lists the types of data
collected and their corresponding parameters.

When you collect data using Diag client (Diag), you can add the required parameters to
the command according to your needs.

The diagnostic data collected by PingCAP Clinic is only used for troubleshooting cluster
problems.

Clinic Server is a diagnostic service deployed in the cloud. There are two independent
services based on different storage locations:

• Clinic Server for international users: If you upload the collected data to Clinic Server
for international users, the data will be stored in the Amazon S3 set up by PingCAP
in AWS US regions. PingCAP strictly controls permissions for data and only allows
authorized internal technical support staff to access the data.

• Clinic Server for users in the Chinese mainland: If you upload the collected data to
Clinic Server for users in the Chinese mainland, the data will be stored in the Amazon
S3 set up by PingCAP in AWS China (Beijing) regions. PingCAP strictly controls
permissions for data and only allows authorized internal technical support staff to
access the data.

10.10.1 TiDB cluster information

649

https://github.com/coreos/prometheus-operator
https://github.com/prometheus/node_exporter
https://github.com/coreos/kube-prometheus
https://clinic.pingcap.com
https://clinic.pingcap.com.cn

Data
type

Exported
file

Parameter
for
PingCAP
Clinic

Basic
informa-
tion of
the
cluster,
includ-
ing the
cluster
ID

cluster
↪→ .
↪→ json
↪→

The data
is
collected
per run
by
default.

Detailed
informa-
tion of
the
cluster

tidbcluster
↪→ .
↪→ json
↪→

The data
is
collected
per run
by
default.

10.10.2 TiDB diagnostic data

Data type Exported file Parameter for PingCAP Clinic
Real-time configuration config.json collectors:config

10.10.3 TiKV diagnostic data

Data type Exported file Parameter for PingCAP Clinic
Real-time configuration config.json collectors:config

10.10.4 PD diagnostic data

Data
type

Exported
file

Parameter
for
PingCAP
Clinic

Real-
time
configu-
ration

config
↪→ .
↪→ json
↪→

collectors
↪→ :
↪→ config
↪→

650

Data
type

Exported
file

Parameter
for
PingCAP
Clinic

Outputs
of the
com-
mand
tiup
↪→ ctl
↪→ pd
↪→ -u
↪→
↪→ http
↪→ ://
↪→ ${
↪→ pd
↪→ IP
↪→ }:$
↪→ {
↪→ PORT
↪→ }
↪→ store
↪→

store.
↪→ json
↪→

collectors
↪→ :
↪→ config
↪→

651

Data
type

Exported
file

Parameter
for
PingCAP
Clinic

Outputs
of the
com-
mand
tiup
↪→ ctl
↪→ pd
↪→ -u
↪→
↪→ http
↪→ ://
↪→ ${
↪→ pd
↪→ IP
↪→ }:$
↪→ {
↪→ PORT
↪→ }
↪→ config
↪→
↪→ placement
↪→ -
↪→ rules
↪→
↪→ show
↪→

placement
↪→ -
↪→ rule
↪→ .
↪→ json
↪→

collectors
↪→ :
↪→ config
↪→

10.10.5 TiFlash diagnostic data

Data type Exported file Parameter for PingCAP Clinic
Real-time configuration config.json collectors:config

10.10.6 TiCDC diagnostic data

652

Data
type

Exported
file

Parameter
for
PingCAP
Clinic

Real-
time
configu-
ration

config
↪→ .
↪→ json
↪→

collectors
↪→ :
↪→ config
↪→

Debug
data

info.
↪→ txt,
status
↪→ .
↪→ txt,
changefeeds
↪→ .
↪→ txt,
captures
↪→ .
↪→ txt,
processors
↪→ .
↪→ txt

collectors
↪→ :
↪→ debug
(Diag
does not
collect
this data
type by
default)

10.10.7 Prometheus monitoring data

Data type Exported file Parameter for PingCAP Clinic
All Metrics data {metric_name}.json collectors:monitor
Alert configuration alerts.json collectors:monitor

11 Release Notes

11.1 v1.6

11.1.1 TiDB Operator 1.6.1 Release Notes

Release date: December 25, 2024
TiDB Operator version: 1.6.1

11.1.1.1 New features

653

• Support authentication for backup and restore operations using Azure Blob Storage
Shared Access Signature (SAS) tokens (#5720, [@tennix](https://github.com/tennix))

• The VolumeReplace feature supports the TiFlash component (#5685, [@rajsu-
variya](https://github.com/rajsuvariya))

• Add a more straightforward interface for Log Backup that supports pausing and re-
suming backup tasks (#5710, [@RidRisR](https://github.com/RidRisR))

• Support deleting Log Backup tasks by removing their associated Backup custom re-
source (CR) (#5754, [@RidRisR](https://github.com/RidRisR))

• The VolumeModify feature supports modifying Azure Premium SSD v2 disks. To use
this feature, you need to grant the tidb-controller-manager permission to operate Azure
disk through a node or Pod. (#5958, [@handlerww](https://github.com/handlerww))

11.1.1.2 Improvements

• The VolumeModify feature no longer performs leader eviction for TiKV, reducing mod-
ification time (#5826, [@csuzhangxc](https://github.com/csuzhangxc))

• Support specifying the minimum wait time during PD Pod rolling updates by using
annotations (#5827, [@csuzhangxc](https://github.com/csuzhangxc))

• The VolumeReplace feature supports customizing the number of spare replicas for PD
and TiKV (#5666, [@anish-db](https://github.com/anish-db))

• The VolumeReplace feature can be enabled for specific TiDB clusters (#5670, [@raj-
suvariya](https://github.com/rajsuvariya))

• Optimize the primary transfer logic of the PD microservice to reduce the
number of primary transfer operations during component updates (#5643,
[@HuSharp](https://github.com/HuSharp))

• Support setting LoadBalancerClass for the TiDB service (#5964, [@csuzhangxc](https://github.com/csuzhangxc))

11.1.1.3 Bug fixes

• Fix the issue that EBS snapshot restore incorrectly succeeds when no TiKV instances
are configured or TiKV replica is set to 0 (#5659, [@BornChanger](https://github.com/BornChanger))

• Fix the issue that ClusterRole and ClusterRoleBinding resources are not properly
cleaned up when you delete a TidbMonitor that monitors multiple TiDB clusters
across namespaces (#5956, [@csuzhangxc](https://github.com/csuzhangxc))

• Fix a type mismatch issue in the .spec.prometheus.remoteWrite.remoteTimeout
field of TidbMonitor (#5734, [@IMMORTALxJO](https://github.com/IMMORTALxJO))

11.1.2 TiDB Operator 1.6.0 Release Notes

Release date: May 28, 2024
TiDB Operator version: 1.6.0

654

https://github.com/pingcap/tidb-operator/pull/5720
https://github.com/pingcap/tidb-operator/pull/5685
https://github.com/pingcap/tidb-operator/pull/5710
https://github.com/pingcap/tidb-operator/pull/5754
https://github.com/pingcap/tidb-operator/pull/5958
https://github.com/pingcap/tidb-operator/pull/5826
https://github.com/pingcap/tidb-operator/pull/5827
https://github.com/pingcap/tidb-operator/pull/5666
https://github.com/pingcap/tidb-operator/pull/5670
https://github.com/pingcap/tidb-operator/pull/5643
https://github.com/pingcap/tidb-operator/pull/5964
https://github.com/pingcap/tidb-operator/pull/5659
https://github.com/pingcap/tidb-operator/pull/5956
https://github.com/pingcap/tidb-operator/pull/5734

11.1.2.1 New features

• Support setting maxSkew, minDomains, and nodeAffinityPolicy in topologySpreadConstraints
↪→ for components of a TiDB cluster (#5617, [@csuzhangxc](https://github.com/csuzhangxc))

• Support setting additional command-line arguments for TiDB components (#5624,
[@csuzhangxc](https://github.com/csuzhangxc))

• Support setting nodeSelector for the TidbInitializer component (#5594, [@csuzhangxc](https://github.com/csuzhangxc))

11.1.2.2 Improvements

• Support automatically setting location labels for TiProxy (#5649, [@djshow832](https://github.com/djshow832))
• Support retrying leader eviction during TiKV rolling restart (#5613, [@csuzhangxc](https://github.com/csuzhangxc))
• Support setting the advertise-addr command-line argument for the TiProxy compo-

nent (#5608, [@djshow832](https://github.com/djshow832))

11.1.2.3 Bug fixes

• Fix the issue that modifying the storage size of components might cause them to restart
when configUpdateStrategy is set to InPlace (#5602, [@ideascf](https://github.com/ideascf))

• Fix the issue that recreating the TiKV StatefulSet might cause TiKV to enter the
Upgrading phase (#5551, [@ideascf](https://github.com/ideascf))

11.1.3 TiDB Operator 1.6.0-beta.1 Release Notes

Release date: March 27, 2024
TiDB Operator version: 1.6.0-beta.1

11.1.3.1 New features

• Support deploying PD v8.0.0 and later versions in microservice mode (experimental)
(#5398, [@HuSharp](https://github.com/HuSharp))

• Support scaling out or in TiDB components in parallel (#5570, [@csuzhangxc](https://github.com/csuzhangxc))
• Support setting livenessProbe and readinessProbe for the Discovery component

(#5565, [@csuzhangxc](https://github.com/csuzhangxc))
• Support setting startupProbe for TiDB components (#5588, [@fgksgf](https://github.com/fgksgf))

11.1.3.2 Improvements

• Upgrade Kubernetes dependency to v1.28, and it is not recommended to deploy tidb-
scheduler (#5495, [@csuzhangxc](https://github.com/csuzhangxc))

655

https://github.com/pingcap/tidb-operator/pull/5617
https://github.com/pingcap/tidb-operator/pull/5624
https://github.com/pingcap/tidb-operator/pull/5594
https://github.com/pingcap/tidb-operator/pull/5649
https://github.com/pingcap/tidb-operator/pull/5613
https://github.com/pingcap/tidb-operator/pull/5608
https://github.com/pingcap/tidb-operator/pull/5602
https://github.com/pingcap/tidb-operator/pull/5551
https://docs.pingcap.com/tidb/dev/pd-microservices
https://github.com/pingcap/tidb-operator/pull/5398
https://github.com/pingcap/tidb-operator/pull/5570
https://github.com/pingcap/tidb-operator/pull/5565
https://github.com/pingcap/tidb-operator/pull/5588
https://github.com/pingcap/tidb-operator/pull/5495

• When deploying using Helm chart, support setting lock resource used by tidb-controller-
manager for leader election, with the default value of .Values.controllerManager
↪→ .leaderResourceLock: leases. When upgrading from versions before v1.6
to v1.6.0-beta.1 and later versions, it is recommended to first set .Values.
↪→ controllerManager.leaderResourceLock: endpointsleases and wait for
the new tidb-controller-manager to run normally before setting it to .Values.
↪→ controllerManager.leaderResourceLock: leases to update the deployment
(#5450, [@csuzhangxc](https://github.com/csuzhangxc))

• Support for TiFlash to directly mount ConfigMap without relying on an InitContainer
to process configuration files (#5552, [@ideascf](https://github.com/ideascf))

• Add check for resources.request.storage in the storageClaims configuration of
TiFlash (#5489, [@unw9527](https://github.com/unw9527))

11.1.3.3 Bug fixes

• Fix the issue that the tikv-min-ready-seconds check is not performed on the last
TiKV Pod during a rolling restart of TiKV (#5544, [@wangz1x](https://github.com/wangz1x))

• Fix the issue that the TiDB cluster cannot start when only non-cluster.local cluster-
Domain TLS certificates are available (#5560, [@csuzhangxc](https://github.com/csuzhangxc))

11.2 v1.5

11.2.1 TiDB Operator 1.5.5 Release Notes

Release date: January 21, 2025
TiDB Operator version: 1.5.5

11.2.1.1 New features

• Add a more straightforward interface for Log Backup that supports pausing and re-
suming backup tasks (#5710, [@RidRisR](https://github.com/RidRisR))

• Support deleting Log Backup tasks by removing their associated Backup custom re-
source (CR) (#5754, [@RidRisR](https://github.com/RidRisR))

11.2.1.2 Improvements

• The VolumeModify feature no longer performs leader eviction for TiKV, reducing mod-
ification time (#5826, [@csuzhangxc](https://github.com/csuzhangxc))

• Support specifying the minimum wait time during PD Pod rolling updates by using
annotations (#5827, [@csuzhangxc](https://github.com/csuzhangxc))

656

https://github.com/pingcap/tidb-operator/pull/5450
https://github.com/pingcap/tidb-operator/pull/5552
https://github.com/pingcap/tidb-operator/pull/5489
https://github.com/pingcap/tidb-operator/pull/5544
https://github.com/pingcap/tidb-operator/pull/5560
https://github.com/pingcap/tidb-operator/pull/5710
https://github.com/pingcap/tidb-operator/pull/5754
https://github.com/pingcap/tidb-operator/pull/5826
https://github.com/pingcap/tidb-operator/pull/5827

11.2.2 TiDB Operator 1.5.4 Release Notes

Release date: September 13, 2024
TiDB Operator version: 1.5.4

11.2.2.1 Improvements

• The VolumeReplace feature supports customizing the number of spare replicas for PD
and TiKV (#5666, [@anish-db](https://github.com/anish-db))

• The VolumeReplace feature can be enabled for specific TiDB clusters (#5670, [@raj-
suvariya](https://github.com/rajsuvariya))

• EBS snapshot restore supports configuring whether to terminate the entire restore task
immediately if volume warmup fails (#5622, [@michaelmdeng](https://github.com/michaelmdeng))

• When using the check-wal-only warmup strategy, EBS snapshot restore marks the en-
tire restore task as failed if warmup fails (#5621, [@michaelmdeng](https://github.com/michaelmdeng))

11.2.2.2 Bug fixes

• Fix the issue that tidb-backup-manager cannot parse backup file size in BR backup-
meta v2 (#5411, [@Leavrth](https://github.com/Leavrth))

• Fix a potential EBS volume leak issue that occurs when EBS snapshot restore fails
(#5634, [@WangLe1321](https://github.com/WangLe1321))

• Fix the issue that metrics are not properly initialized after federated manager restarts
(#5637, [@wxiaomou](https://github.com/wxiaomou))

• Fix the issue that EBS snapshot restore incorrectly succeeds when no TiKV instances
are configured or TiKV replica is set to 0 (#5659, [@BornChanger](https://github.com/BornChanger))

11.2.3 TiDB Operator 1.5.3 Release Notes

Release date: April 18, 2024
TiDB Operator version: 1.5.3

11.2.3.1 New features

• Support setting livenessProbe and readinessProbe for the Discovery component
(#5565, [@csuzhangxc](https://github.com/csuzhangxc))

• Support setting nodeSelector for the TidbInitializer component (#5594, [@csuzhangxc](https://github.com/csuzhangxc))

657

https://github.com/pingcap/tidb-operator/pull/5666
https://github.com/pingcap/tidb-operator/pull/5670
https://github.com/pingcap/tidb-operator/pull/5622
https://github.com/pingcap/tidb-operator/pull/5621
https://github.com/pingcap/tidb-operator/pull/5411
https://github.com/pingcap/tidb-operator/pull/5634
https://github.com/pingcap/tidb-operator/pull/5637
https://github.com/pingcap/tidb-operator/pull/5659
https://github.com/pingcap/tidb-operator/pull/5565
https://github.com/pingcap/tidb-operator/pull/5594

11.2.3.2 Bug fixes

• Fix the issue that modifying the storage size of components might cause them to restart
when configUpdateStrategy is set to InPlace (#5602, [@ideascf](https://github.com/ideascf))

• Fix the issue that the tikv-min-ready-seconds check is not performed on the last
TiKV Pod during a rolling restart of TiKV (#5544, [@wangz1x](https://github.com/wangz1x))

• Fix the issue that the TiDB cluster cannot start when only non-cluster.local cluster-
Domain TLS certificates are available (#5560, [@csuzhangxc](https://github.com/csuzhangxc))

11.2.4 TiDB Operator 1.5.2 Release Notes

Release date: January 19, 2024
TiDB Operator version: 1.5.2

11.2.4.1 New features
Starting from v1.5.2, TiDB Operator supports backing up and restoring the data

of a TiDB cluster deployed across multiple AWS Kubernetes clusters to AWS storage
using EBS volume snapshots. For more information, refer to Back up Data Using EBS
Snapshots across Multiple Kubernetes and Restore Data Using EBS Snapshots across
Multiple Kubernetes. (#5003, [@BornChanger](https://github.com/BornChanger), [@Wan-
gLe1321](https://github.com/WangLe1321), [@YuJuncen](https://github.com/YuJuncen),
[@csuzhangxc](https://github.com/csuzhangxc))

11.2.4.2 Improvements

• startScriptVersion: v2 supports waiting for Pod IP to match the one published to
external DNS before starting a PD or TiKV to better support scenarios such as Stale
Read (#5381, [@smineyev81](https://github.com/smineyev81))

• startScriptVersion: v2 supports explicitly specifying PD addresses to better
support scenarios where a TiDB cluster is deployed across Kubernetes (#5400,
[@smineyev81](https://github.com/smineyev81))

• tidb-operator Helm Chart supports specifying resource lock for leader election when de-
ploying Advanced StatefulSet (#5448, [@csuzhangxc](https://github.com/csuzhangxc))

11.2.4.3 Bug fixes

• Fix the issue that changing meta information such as annotations and replacing vol-
umes at the same time might cause a deadlock for TiDB Operator reconcile (#5382,
[@anish-db](https://github.com/anish-db))

• Fix the issue that the PD member might be set to the wrong label when replacing
volumes (#5393, [@anish-db](https://github.com/anish-db))

658

https://github.com/pingcap/tidb-operator/pull/5602
https://github.com/pingcap/tidb-operator/pull/5544
https://github.com/pingcap/tidb-operator/pull/5560
https://github.com/pingcap/tidb-operator/pull/5003
https://github.com/pingcap/tidb-operator/pull/5381
https://github.com/pingcap/tidb-operator/pull/5400
https://github.com/pingcap/tidb-operator/pull/5448
https://github.com/pingcap/tidb-operator/pull/5382
https://github.com/pingcap/tidb-operator/pull/5393

11.2.5 TiDB Operator 1.5.1 Release Notes

Release date: October 20, 2023
TiDB Operator version: 1.5.1

11.2.5.1 New features

• Support replacing volumes for PD, TiKV, and TiDB (#5150, [@anish-db](https://github.com/anish-
db))

11.2.5.2 Improvements

11.2.5.3 Bug fixes

• Fix errors from PVC modifier when a manual TiKV eviction is requested (#5302,
[@anish-db](https://github.com/anish-db))

• Fix a deadlock issue in TiDB Operator caused by the TiKV eviction when a volume
replacement is ongoing (#5301, [@anish-db](https://github.com/anish-db))

• Fix the issue that TidbCluster may be able to roll back during the upgrade process
(#5345, [@anish-db](https://github.com/anish-db))

• Fix the issue that the MaxReservedTime option does not work for scheduled backup
(#5148, [@BornChanger](https://github.com/BornChanger))

11.2.6 TiDB Operator 1.5.0 Release Notes

Release date: August 4, 2023
TiDB Operator version: 1.5.0

11.2.6.1 Rolling update changes
If TiFlash is deployed in a TiDB cluster that is v7.1.0 or later, the TiFlash component

will be rolling updated after TiDB Operator is upgraded to v1.5.0 due to #5075.

11.2.6.2 New features

• Add the BR Federation Manager component to orchestrate Backup and Restore cus-
tom resources (CR) across multiple Kubernetes clusters (#4996, [@csuzhangxc](https://github.com/csuzhangxc))

• Support using the VolumeBackup CR to back up a TiDB cluster deployed
across multiple Kubernetes clusters based on EBS snapshots (#5013, [@Wan-
gLe1321](https://github.com/WangLe1321))

659

https://github.com/pingcap/tidb-operator/pull/5150
https://github.com/pingcap/tidb-operator/pull/5302
https://github.com/pingcap/tidb-operator/pull/5301
https://github.com/pingcap/tidb-operator/pull/5345
https://github.com/pingcap/tidb-operator/pull/5148
https://github.com/pingcap/tidb-operator/pull/5075
https://github.com/pingcap/tidb-operator/pull/4996
https://github.com/pingcap/tidb-operator/pull/5013

• Support using the VolumeRestore CR to restore a TiDB cluster deployed
across multiple Kubernetes clusters based on EBS snapshots (#5039, [@Wan-
gLe1321](https://github.com/WangLe1321))

• Support using the VolumeBackupSchedule CR to automatically back up a TiDB clus-
ter deployed across multiple Kubernetes clusters based on EBS snapshots (#5036,
[@BornChanger](https://github.com/BornChanger))

• Support backing up CRs related to TidbCluster when backing up a TiDB clus-
ter deployed across multiple Kubernetes based on EBS snapshots (#5207, [@Wan-
gLe1321](https://github.com/WangLe1321))

11.2.6.3 Improvements

• Add the startUpScriptVersion field for DM master to specify the version of the
startup script (#4971, [@hanlins](https://github.com/hanlins))

• Support spec.preferIPv6 for DmCluster, TidbDashboard, TidbMonitor, and Tidb-
NGMonitoring (#4977, [@KanShiori](https://github.com/KanShiori))

• Support setting expiration time for TiKV leader eviction and PD leader transfer
(#4997, [@Tema](https://github.com/Tema))

• Support setting toleration for TidbInitializer (#5047, [@csuzhangxc](https://github.com/csuzhangxc))
• Support configuring the timeout for PD start (#5071, [@oliviachenairbnb](https://github.com/oliviachenairbnb))
• Skip evicting leaders for TiKV when changing PVC size to avoid leader eviction blocked

caused by low disk space (#5101, [@csuzhangxc](https://github.com/csuzhangxc))
• Support updating annotations and labels in services for PD, TiKV, TiFlash, TiProxy,

DM-master, and DM-worker (#4973, [@wxiaomou](https://github.com/wxiaomou))
• Enable volume resizing by default for PV expansion (#5167, [@liubog2008](https://github.com/liubog2008))

11.2.6.4 Bug fixes

• Fix the quorum loss issue during TiKV upgrade due to some TiKV stores going down
(#4979, [@Tema](https://github.com/Tema))

• Fix the quorum loss issue during PD upgrade due to some members going down (#4995,
[@Tema](https://github.com/Tema))

• Fix the issue that TiDB Operator panics when no Kubernetes cluster-level permission
is configured (#5058, [@liubog2008](https://github.com/liubog2008))

• Fix the issue that TiDB Operator might panic when AdditionalVolumeMounts is set
for the TidbCluster CR (#5058, [@liubog2008](https://github.com/liubog2008))

• Fix the issue that baseImage for the TidbDashboard CR is parsed incorrectly when cus-
tom image registry is used (#5014, [@linkinghack](https://github.com/linkinghack))

11.2.7 TiDB Operator 1.5.0-beta.1 Release Notes

Release date: April 11, 2023
TiDB Operator version: 1.5.0-beta.1

660

https://github.com/pingcap/tidb-operator/pull/5039
https://github.com/pingcap/tidb-operator/pull/5036
https://github.com/pingcap/tidb-operator/pull/5207
https://github.com/pingcap/tidb-operator/pull/4971
https://github.com/pingcap/tidb-operator/pull/4977
https://github.com/pingcap/tidb-operator/pull/4997
https://github.com/pingcap/tidb-operator/pull/5047
https://github.com/pingcap/tidb-operator/pull/5071
https://github.com/pingcap/tidb-operator/pull/5101
https://github.com/pingcap/tidb-operator/pull/4973
https://github.com/pingcap/tidb-operator/pull/5167
https://github.com/pingcap/tidb-operator/pull/4979
https://github.com/pingcap/tidb-operator/pull/4995
https://github.com/pingcap/tidb-operator/pull/5058
https://github.com/pingcap/tidb-operator/pull/5058
https://github.com/pingcap/tidb-operator/pull/5014

11.2.7.1 New Feature

• Support using the tidb.pingcap.com/pd-transfer-leader annotation to restart PD
Pod gracefully (#4896, [@luohao](https://github.com/luohao))

• Support using the tidb.pingcap.com/tidb-graceful-shutdown annotation to
restart TiDB Pod gracefully (#4948, [@wxiaomou](https://github.com/wxiaomou))

• Support managing TiCDC with Advanced StatefulSet (#4881, [@charleszheng44](https://github.com/charleszheng44))

• Support managing TiProxy with Advanced StatefulSet (#4917, [@xhebox](https://github.com/xhebox))

• Add a new field bootstrapSQLConfigMapName in the TiDB spec to specify an initializa-
tion SQL file on TiDB’s first bootstrap (#4862, [@fgksgf](https://github.com/fgksgf))

• Allow users to define a strategy to restart failed backup jobs, enhancing backup sta-
bility (#4883, [@WizardXiao](https://github.com/WizardXiao)) (#4925, [@WizardX-
iao](https://github.com/WizardXiao))

11.2.7.2 Improvements

• Upgrade Kubernetes dependencies to v1.20 (#4954, [@KanShiori](https://github.com/KanShiori))

• Add the metrics for the reconciler and worker queue to improve observability (#4882,
[@hanlins](https://github.com/hanlins))

• When rolling upgrade TiKV Pods, TiDB Operator will wait for the leader to
transfer back to the upgraded Pod before upgrading the next TiKV pod. This
helps to reduce performance degradation during rolling upgrade (#4863, [@KanSh-
iori](https://github.com/KanShiori))

• Allow users to customize Prometheus scraping settings (#4846, [@coderplay](https://github.com/coderplay))

• Support sharing some of TiDB’s certificates with TiProxy (#4880, [@xhebox](https://github.com/xhebox))

• Configure the field ipFamilyPolicy as PreferDualStack for all components’ Services
when spec.preferIPv6 is set to true (#4959, [@KanShiori](https://github.com/KanShiori))

• Add the metrics for counting errors about the reconciliation to improve observability
(#4952, [@coderplay](https://github.com/coderplay))

11.2.7.3 Bug fixes

• Fix the issue that pprof endpoint is not reachable because the route conflicts with the
metrics endpoint (#4874, [@hanlins](https://github.com/hanlins))

661

https://github.com/pingcap/tidb-operator/pull/4896
https://github.com/pingcap/tidb-operator/pull/4948
https://github.com/pingcap/tidb-operator/pull/4881
https://github.com/pingcap/tidb-operator/pull/4917
https://github.com/pingcap/tidb-operator/pull/4862
https://github.com/pingcap/tidb-operator/pull/4883
https://github.com/pingcap/tidb-operator/pull/4925
https://github.com/pingcap/tidb-operator/pull/4954
https://github.com/pingcap/tidb-operator/pull/4882
https://github.com/pingcap/tidb-operator/pull/4863
https://github.com/pingcap/tidb-operator/pull/4846
https://github.com/pingcap/tidb-operator/pull/4880
https://github.com/pingcap/tidb-operator/pull/4959
https://github.com/pingcap/tidb-operator/pull/4952
https://github.com/pingcap/tidb-operator/pull/4874

11.3 v1.4

11.3.1 TiDB Operator 1.4.7 Release Notes

Release date: July 26, 2023
TiDB Operator version: 1.4.7

11.3.1.1 Bug fixes

• Make logBackupTemplate optional in BackupSchedule CR (#5190, [@Ehco1996](https://github.com/Ehco1996))

11.3.2 TiDB Operator 1.4.6 Release Notes

Release date: July 19, 2023
TiDB Operator version: 1.4.6

11.3.2.1 Improvements

• Enable volume resizing by default (#5167, [@liubog2008](https://github.com/liubog2008))

11.3.2.2 Bug fixes

• Fix the issue of Error loading shared library libresolv.so.2 when executing
backup and restore with BR >=v6.6.0 (#4935, [@Ehco1996](https://github.com/Ehco1996))

• Fix the issue that graceful drain for TiCDC does not work if a non-SemVer image tag
is used for TiCDC (#5173, [@csuzhangxc](https://github.com/csuzhangxc))

11.3.3 TiDB Operator 1.4.5 Release Notes

Release date: June 26, 2023
TiDB Operator version: 1.4.5

11.3.3.1 Improvements

• Add the metrics for fine-grained TidbCluster reconcile errors (#4952, [@coder-
play](https://github.com/coderplay))

• Add the metrics for the reconciler and worker queue to improve observability (#4882,
[@hanlins](https://github.com/hanlins))

• Introduce startUpScriptVersion field for DM master to specify the startup script
version (#4971, [@hanlins](https://github.com/hanlins))

• Add support for rolling restart and scaling-in of TiCDC clusters when deploying TiCDC
across multiple kubernetes clusters (#5040, [@charleszheng44](https://github.com/charleszheng44))

662

https://github.com/pingcap/tidb-operator/pull/5190
https://github.com/pingcap/tidb-operator/pull/5167
https://github.com/pingcap/tidb-operator/pull/4935
https://github.com/pingcap/tidb-operator/pull/5173
https://github.com/pingcap/tidb-operator/pull/4952
https://github.com/pingcap/tidb-operator/pull/4882
https://github.com/pingcap/tidb-operator/pull/4971
https://github.com/pingcap/tidb-operator/pull/5040

11.3.3.2 Bug fixes

• Suppress GC when scheduled backup is newly created (#4940, [@oliviachenairbnb](https://github.com/oliviachenairbnb))
• Make backupTemplate optional in backup CR (#4956, [@Ehco1996](https://github.com/Ehco1996))
• Fix the issue that TiDB Operator panics if no Kubernetes cluster-level permission is

configured (#5058, [@liubog2008](https://github.com/liubog2008))
• Fix the issue that TiDB Operator might panic if AdditionalVolumeMounts is set for

TidbCluster (#5058, [@liubog2008](https://github.com/liubog2008))

11.3.4 TiDB Operator 1.4.4 Release Notes

Release date: March 13, 2023
TiDB Operator version: 1.4.4

11.3.4.1 New features

• Support using volume-snapshot backup and restore on a TiDB cluster with TiFlash
(#4812, [@fengou1](https://github.com/fengou1))

• Show an accurate backup size in the volume-snapshot backup by calculating the backup
size from snapshot storage usage (#4819, [@fengou1](https://github.com/fengou1))

• Support retries for snapshot backups in case of unexpected failures caused by Kuber-
netes job or pod issues (#4895, [@WizardXiao](https://github.com/WizardXiao))

• Support integrated management of log backup and snapshot backup in the
BackupSchedule CR (#4904, [@WizardXiao](https://github.com/WizardXiao))

11.3.4.2 Bug fixes

• Fix the issue that sync fails when using a custom build of TiDB with image version
which is not in semantic version format (#4920, [@sunxiaoguang](https://github.com/sunxiaoguang))

• Fix the issue that TiDB Operator cannot restore the volume-snapshot backup
data for scale-in clusters by ensuring sequential PVC names (#4888, [@Wan-
gLe1321](https://github.com/WangLe1321))

• Fix the issue that volume-snapshot backup might lead to a panic when there is no block
change between two snapshots (#4922, [@fengou1](https://github.com/fengou1))

• Fix the potential issue of volume-snapshot failure during the final stage of restore by
adding a new check for encryption (#4914, [@fengou1](https://github.com/fengou1))

663

https://github.com/pingcap/tidb-operator/pull/4940
https://github.com/pingcap/tidb-operator/pull/4956
https://github.com/pingcap/tidb-operator/pull/5058
https://github.com/pingcap/tidb-operator/pull/5058
https://github.com/pingcap/tidb-operator/pull/4812
https://github.com/pingcap/tidb-operator/pull/4819
https://github.com/pingcap/tidb-operator/pull/4895
https://github.com/pingcap/tidb-operator/pull/4904
https://github.com/pingcap/tidb-operator/pull/4920
https://github.com/pingcap/tidb-operator/pull/4888
https://github.com/pingcap/tidb-operator/pull/4922
https://github.com/pingcap/tidb-operator/pull/4914

11.3.5 TiDB Operator 1.4.3 Release Notes

Release date: February 24, 2023
TiDB Operator version: 1.4.3

11.3.5.1 Bug fixes

• Fix the issue that the TiFlash metric server does not listen on correct IPv6
addresses when the preferIPv6 configuration is enabled (#4850, [@KanSh-
iori](https://github.com/KanShiori))

• Fix the issue that TiDB Operator keeps modifying EBS disks in AWS when the feature
gate VolumeModifying is enabled and EBS parameters are missing in StorageClass
(#4850, [@liubog2008](https://github.com/liubog2008))

11.3.6 TiDB Operator 1.4.2 Release Notes

Release date: February 3, 2023
TiDB Operator version: 1.4.2

11.3.6.1 Bug fix

• Fix the issue that TiFlash does not listen on IPv6 addresses when the preferIPv6
configuration is enabled (#4850, [@KanShiori](https://github.com/KanShiori))

11.3.7 TiDB Operator 1.4.1 Release Notes

Release date: January 13, 2023
TiDB Operator version: 1.4.1

11.3.7.1 New features

• Support cleaning up failed instances of PD, TiKV and TiFlash components by removing
the failed Pods and PVCs to handle unplanned failures of Kubernetes nodes in auto
failure recovery feature (#4824, [@lalitkfk](https://github.com/lalitkfk))

– To enable this feature, you need to configure controllerManager.detectNodeFailure
↪→ in TiDB Operator Helm chart and configure the app.kubernetes.io/auto-
↪→ failure-recovery: "true" annotation in the TidbCluster CR.

664

https://github.com/pingcap/tidb-operator/pull/4889
https://github.com/pingcap/tidb-operator/pull/4892
https://github.com/pingcap/tidb-operator/pull/4850
https://github.com/pingcap/tidb-operator/pull/4824

11.3.7.2 Improvements

• Support configuring controllerManager.kubeClientQPS and controllerManager
↪→ .kubeClientBurst in TiDB Operator Helm chart to set QPS and Burst for the Ku-
bernetes client in TiDB Controller Manager (#4830，[@Thearas](https://github.com/Thearas))

11.3.7.3 Bug fixes

• Fix the issue that TiDB Controller Manager panics without PV permission (#4837,
[@csuzhangxc](https://github.com/csuzhangxc))

11.3.8 TiDB Operator 1.4.0 Release Notes

Release date: December 29, 2022
TiDB Operator version: 1.4.0

11.3.8.1 New features

• Support managing TiDB Dashboard in a separate TidbDashboard CRD (#4787,
[@SabaPing](https://github.com/SabaPing))

• Support configuring Readiness Probe for TiKV and PD (#4763, [@mikecheng-
wei](https://github.com/mikechengwei))

• Support backup and restore based on Amazon EBS volume-snapshot (#4698，
[@gozssky](https://github.com/gozssky))

11.3.8.2 Improvements

• Support configuring .spec.preferIPv6: true for compatibility with IPv6 network
environments (#4811，[@KanShiori](https://github.com/KanShiori))

11.3.8.3 Bug fixes

• Fix the issue that the backup based on EBS snapshot cannot be restored to a different
namespace (#4795, [@fengou1](https://github.com/fengou1))

• Fix the issue that when the log backup stops occupying the Complete state, the caller
mistakenly believes that the log backup CR has been completed, so that the log backup
cannot be truncated (#4810, [@WizardXiao](https://github.com/WizardXiao))

11.3.9 TiDB Operator 1.4.0-beta.3 Release Notes

Release date: December 2, 2022
TiDB Operator version: 1.4.0-beta.3

665

https://github.com/pingcap/tidb-operator/pull/4830
https://github.com/pingcap/tidb-operator/pull/4837
https://github.com/pingcap/tidb-dashboard
https://github.com/pingcap/tidb-operator/pull/4787
https://github.com/pingcap/tidb-operator/pull/4763
https://github.com/pingcap/tidb-operator/pull/4698
https://github.com/pingcap/tidb-operator/pull/4811
https://github.com/pingcap/tidb-operator/pull/4795
https://github.com/pingcap/tidb-operator/pull/4810

11.3.9.1 New Feature

• Add experimental support for TiProxy (#4693), [@xhebox](https://github.com/xhebox)

• Snapshot backup and restore based on Amazon EBS becomes GA (#4784, [@fen-
gou1](https://github.com/fengou1)). This feature has the following benefits:

– Reduce the impact of backup on QPS to less than 5%
– Back up and restore data in a short time. For example, finish backup within 1

hour and restore in 2 hours.

11.3.9.2 Bug fixes

• Fix typo in error messages (#4773, [@dveeden](https://github.com/dveeden))

• Fix the issue of volume-snapshot backup cleanup failure (#4783, [@fengou1](https://github.com/fengou1))

• Fix backup failure when the TiDB cluster has massive TiKV nodes (40+) (#4784,
[@fengou1](https://github.com/fengou1))

11.3.10 TiDB Operator 1.4.0-beta.2 Release Notes

Release date: November 11, 2022
TiDB Operator version: 1.4.0-beta.2

11.3.10.1 Bug fixes

• Fix the issue that BackupSchedule does not set prefix when using Azure Blob Storage
(#4767, [@WizardXiao](https://github.com/WizardXiao))

• Upgrade AWS SDK to v1.44.72 to support the Asia Pacific (Jakarta) region (ap-
↪→ southeast-3) in AWS (#4771, [@WizardXiao](https://github.com/WizardXiao))

11.3.11 TiDB Operator 1.4.0-beta.1 Release Notes

Release date: October 27, 2022
TiDB Operator version: 1.4.0-beta.1

11.3.11.1 New Feature

• TiDB Operator supports snapshot backup and restore based on Amazon EBS (ex-
perimental) (#4698, [@gozssky](https://github.com/gozssky)). This feature has the
following benefits:

– Reduce the impact of backup on QPS to less than 5%
– Shorten the backup and restore time

666

https://github.com/pingcap/tidb-operator/pull/4693
https://github.com/pingcap/tidb-operator/pull/4784
https://github.com/pingcap/tidb-operator/pull/4773
https://github.com/pingcap/tidb-operator/pull/4783
https://github.com/pingcap/tidb-operator/pull/4784
https://github.com/pingcap/tidb-operator/pull/4767
https://github.com/pingcap/tidb-operator/pull/4771
https://github.com/pingcap/tidb-operator/pull/4698

11.3.11.2 Bug fixes

• Fix the issue that the log backup checkpoint ts will not be updated after TiDB Operator
restarts (#4746, [@WizardXiao](https://github.com/WizardXiao))

• Fix the issue that log backup checkpoint ts will not be updated when TLS is enabled
for the TiDB cluster (#4716, [@WizardXiao](https://github.com/WizardXiao))

11.3.12 TiDB Operator 1.4.0-alpha.1 Release Notes

Release date: September 26, 2022
TiDB Operator version: 1.4.0-alpha.1

11.3.12.1 Compatibility Change

• Due to changes in #4683, the volume modification feature is change to be disabled by
default. If you want to resize PVCs of a component, you need to manually enable this
feature.

11.3.12.2 Rolling Update Changes

• Due to changes in #4494, if you deploy TiCDC without setting the log-file con-
figuration item, upgrading TiDB Operator to v1.4.0-alpha.1 causes TiCDC to rolling
upgrade.

11.3.12.3 New Feature

• Support setting location labels for tidb-server automatically (#4663, [@glorv](https://github.com/glorv))

• Add new fields spec.tikv.scalePolicy and spec.tiflash.scalePolicy to scale
multiple TiFlash and TiKV Pods simultaneously (#3881, [@lizhemingi](https://github.com/lizhemingi))

• Add a new field startScriptVersion to choose start script for all components (#4505,
[@KanShiori](https://github.com/KanShiori))

• Allow to use shortened label names to refer to some well-known Kubernetes labels in
PD’s location labels (#4688, [@glorv](https://github.com/glorv))

• Support point-in-time recovery from a snapshot backup and a log backup (#4648
#4682 #4694 #4695, [@WizardXiao](https://github.com/WizardXiao))

• Add a new feature gate VolumeModifying to enable the volume modification feature,
and the feature is disable by default (#4683, [@liubog2008](https://github.com/liubog2008))

667

https://github.com/pingcap/tidb-operator/pull/4746
https://github.com/pingcap/tidb-operator/pull/4716
https://github.com/pingcap/tidb-operator/pull/4683
https://github.com/pingcap/tidb-operator/pull/4494
https://github.com/pingcap/tidb-operator/pull/4663
https://github.com/pingcap/tidb-operator/pull/3881
https://github.com/pingcap/tidb-operator/pull/4505
https://github.com/pingcap/tidb-operator/pull/4688
https://github.com/pingcap/tidb-operator/pull/4648
https://github.com/pingcap/tidb-operator/pull/4682
https://github.com/pingcap/tidb-operator/pull/4694
https://github.com/pingcap/tidb-operator/pull/4695
https://github.com/pingcap/tidb-operator/pull/4683

• Support changing the StorageClass of a TidbCluster component to modify the
IOPS and throughput for AWS EBS volumes used by a cluster (#4683, [@li-
ubog2008](https://github.com/liubog2008))

• Support setting the --check-requirements argument for BR (#4631, [@KanSh-
iori](https://github.com/KanShiori))

• Support using the field additionalContainers to customize pod container configu-
ration. If the container names in this field match with the ones generated by TiDB
Operator, the container configurations will be merged into the default configuration.
(#4530, [@mikechengwei](https://github.com/mikechengwei))

11.3.12.4 Improvements

• Optimize prometheus remoteWrite configuration for TidbMonitor (#4247, [@mikecheng-
wei](https://github.com/mikechengwei))

• Add metrics port for TiFlash Service (#4470, [@mikechengwei](https://github.com/mikechengwei))

• Update the default value of the log-file configuration item for TiCDC to avoid
overwriting /dev/stderr (#4494, [@KanShiori](https://github.com/KanShiori))

11.3.12.5 Bug fixes

• Fix the issue that cluster sync gets stuck caused by suspending a cluster when scaling
(#4679, [@KanShiori](https://github.com/KanShiori))

• Fix the issue that TiDB Operator panics if PD spec is nil (#4679, [@KanSh-
iori](https://github.com/mahjonp))

11.4 v1.3

11.4.1 TiDB Operator 1.3.10 Release Notes

Release date: February 24, 2023
TiDB Operator version: 1.3.10

11.4.1.1 Improvement

• Bump Go version to 1.19 to fix security vulnerabilities

11.4.2 TiDB Operator 1.3.9 Release Notes

Release date: October 10, 2022
TiDB Operator version: 1.3.9

668

https://github.com/pingcap/tidb-operator/pull/4683
https://github.com/pingcap/tidb-operator/pull/4631
https://github.com/pingcap/tidb-operator/pull/4530
https://github.com/pingcap/tidb-operator/pull/4247
https://github.com/pingcap/tidb-operator/pull/4470
https://github.com/pingcap/tidb-operator/pull/4494
https://github.com/pingcap/tidb-operator/pull/4679
https://github.com/pingcap/tidb-operator/pull/4691

11.4.2.1 Bug fix

• Fix the issue that PD upgrade will get stuck if the acrossK8s field is set but the
clusterDomain field is not set (#4522, [@liubog2008](https://github.com/liubog2008))

11.4.3 TiDB Operator 1.3.8 Release Notes

Release date: September 13, 2022
TiDB Operator version: 1.3.8

11.4.3.1 New Feature

• Add some special annotations for TidbCluster to configure the minimum ready duration
for TiDB, TiKV, and TiFlash. The minimum ready duration specifies the minimum
number of seconds that a newly created Pod takes to be ready during a rolling upgrade
(#4675, [@liubog2008](https://github.com/liubog2008))

11.4.3.2 Improvement

• Support graceful upgrade of a TiCDC Pod if the Pod version is v6.3.0 or later versions
(#4697, [@overvenus](https://github.com/overvenus))

11.4.4 TiDB Operator 1.3.7 Release Notes

Release date: August 1, 2022
TiDB Operator version: 1.3.7

11.4.4.1 New Features

• Add the suspendAction field to suspend any component. If a component is
suspended, the StatefulSet of the component will be deleted. (#4640, [@KanSh-
iori](https://github.com/KanShiori))

11.4.4.2 Improvement

• After all PVCs are scaled up, recreate the StatefulSet of a component so that new
PVCs use the desired storage size (#4620, [@KanShiori](https://github.com/KanShiori))

• To avoid the TiKV PVC scale-up process getting stuck, continue scale-up if a leader
eviction times out (#4625, [@KanShiori](https://github.com/KanShiori))

669

https://github.com/pingcap/tidb-operator/pull/4721
https://github.com/pingcap/tidb-operator/pull/4675
https://github.com/pingcap/tidb-operator/pull/4697
https://github.com/pingcap/tidb-operator/pull/4640
https://github.com/pingcap/tidb-operator/pull/4620
https://github.com/pingcap/tidb-operator/pull/4625

11.4.4.3 Bug fixes

• Fix the issue that TiKV cannot be upgraded when using local storage (#4615, [@Kan-
Shiori](https://github.com/KanShiori))

• Fix the issue that backup files may leak after cleanup (#4617, [@KanShiori](https://github.com/KanShiori))

11.4.5 TiDB Operator 1.3.6 Release Notes

Release date: July 5, 2022
TiDB Operator version: 1.3.6

11.4.5.1 Improvement

• To reduce the impact of PVC scale-up on cluster performance, scale up PVCs pod by
pod and evict TiKV leader before resizing PVCs of TiKV (#4609, #4604, [@KanSh-
iori](https://github.com/KanShiori))

11.4.6 TiDB Operator 1.3.5 Release Notes

Release date: June 29, 2022
TiDB Operator version: 1.3.5

11.4.6.1 New Features

• Support backing up data to and restoring data from Azure Blob Storage (#4534,
[@xu21yingan](https://github.com/xu21yingan))

11.4.7 TiDB Operator 1.3.4 Release Notes

Release date: June 22, 2022
TiDB Operator version: 1.3.4

11.4.7.1 Improvement

• Add the volumes field in the status information of each component to show the volume
status (#4540, [@KanShiori](https://github.com/KanShiori))

11.4.8 TiDB Operator 1.3.3 Release Notes

Release date: May 17, 2022
TiDB Operator version: 1.3.3

670

https://github.com/pingcap/tidb-operator/pull/4615
https://github.com/pingcap/tidb-operator/pull/4617
https://github.com/pingcap/tidb-operator/pull/4609
https://github.com/pingcap/tidb-operator/pull/4604
https://github.com/pingcap/tidb-operator/pull/4534
https://github.com/pingcap/tidb-operator/pull/4540

11.4.8.1 New Feature

• Add a new field spec.tidb.service.port to customize the tidb service port (#4512,
[@KanShiori](https://github.com/KanShiori))

11.4.8.2 Bug fixes

• Fix the issue that evict leader scheduler may leak during cluster upgrade (#4522,
[@KanShiori](https://github.com/KanShiori))

• Update the base image of tidb-backup-manager to fix incompatibility with ARM
architecture (#4490, [@better0332](https://github.com/better0332))

• Fix the issue that TiDB Operator may panic when tidb Service does not have any
Endpoints (#4500, [@mikechengwei](https://github.com/mikechengwei))

• Fix the issue that Labels and Annotations of the component Pods may be lost af-
ter TiDB Operator fails to access the Kubernetes server and retries (#4498, [@dudu-
ainankai](https://github.com/duduainankai))

11.4.9 TiDB Operator 1.3.2 Release Notes

Release date: March 18, 2022
TiDB Operator version: 1.3.2

11.4.9.1 Improvements

• Support for TiDB to run on Istio-enabled kubernetes clusters (#4445, [@rahilsh](https://github.com/rahilsh))

• Support multi-arch docker image (#4469, [@better0332](https://github.com/better0332))

11.4.10 TiDB Operator 1.3.1 Release Notes

Release date: February 24, 2022
TiDB Operator version: 1.3.1

11.4.10.1 Compatibility Change

• Due to the issues in #4434 and #4435, if you have deployed TiFlash v5.4.0 or later
versions when using TiDB Operator v1.3.0 or v1.3.0-beta.1, you must upgrade TiDB
Operator by taking the following steps to avoid TiFlash losing metadata.

671

https://github.com/pingcap/tidb-operator/pull/4512
https://github.com/pingcap/tidb-operator/pull/4522
https://github.com/pingcap/tidb-operator/pull/4490
https://github.com/pingcap/tidb-operator/pull/4500
https://github.com/pingcap/tidb-operator/pull/4498
https://github.com/pingcap/tidb-operator/pull/4445
https://github.com/pingcap/tidb-operator/pull/4469
https://github.com/pingcap/tidb-operator/pull/4434
https://github.com/pingcap/tidb-operator/pull/4435

1. In TidbCluster spec, if the storage.rafe.dir and raft.kvstore_path fields in
TiFlash’s config spec.tiflash.config.config are not explicitly configured, you
need to add the storage.raft.dir field. If storage.main.dir is not explicitly
configured, you need to add the field.
spec:
...
tiflash:
config:
config: |
...
[storage]
[storage.main]
dir = ["/data0/db"]

[storage.raft]
dir = ["/data0/db/kvstore/"]

2. Upgrade TiDB Operator.

11.4.10.2 New Feature

• Add a new field spec.dnsPolicy to support configuring DNSPolicy for Pods (#4420,
[@handlerww](https://github.com/handlerww))

11.4.10.3 Improvement

• tidb-lightning Helm chart uses local backend as the default backend (#4426,
[@KanShiori](https://github.com/KanShiori))

11.4.10.4 Bug fixes

• Fix the issue that if the raft.kvstore_path field or the storage.raft.dir field is
not set in TiFlash’s config, TiFlash will lose metadata after upgrading TiFlash to
v5.4.0 or later versions when using TiDB Operator v1.3.0 or v1.3.0-beta.1 (#4430,
[@KanShiori](https://github.com/KanShiori))

• Fix the issue that TiFlash v5.4.0 or later versions does not work if the tmp_path field is
not set in TiFlash’s config when using TiDB Operator v1.3.0 or v1.3.0-beta.1 (#4430,
[@KanShiori](https://github.com/KanShiori))

• Fix the issue that TiDB cluster’s PD components failed to start due to discovery service
errors (#4440, [@liubog2008](https://github.com/liubog2008))

672

https://github.com/pingcap/tidb-operator/pull/4420
https://github.com/pingcap/tidb-operator/pull/4426
https://github.com/pingcap/tidb-operator/pull/4430
https://github.com/pingcap/tidb-operator/pull/4430
https://github.com/pingcap/tidb-operator/pull/4440

11.4.11 TiDB Operator 1.3.0 Release Notes

Release date: February 15, 2022
TiDB Operator version: 1.3.0

11.4.11.1 Compatibility Change

• Due to changes in #4400, if a TiDB cluster is deployed across multiple Kubernetes
clusters by TiDB Operator (<= v1.3.0-beta.1), upgrading TiDB Operator to v1.3.0
directly will cause failed rolling upgrade. You have to upgrade TiDB Operator by the
following steps:

1. Update CRD.
2. Add a new spec.acrossK8s field in TidbCluster spec and set it to true.
3. Upgrade TiDB Operator.

• Due to the issue in #4434, if you upgrade TiFlash to v5.4.0 or later when using v1.3.0
TiDB Operator, TiFlash might lose metadata and not work. If TiFlash is deployed
in your cluster, it is recommended that you upgrade TiDB Operator to v1.3.1 or later
versions before upgrading TiFlash.

• Due to the issue in #4435, when using TiDB Operator v1.3.0, you must set the
tmp_path field in TiFlash’s config to use TiFlash v5.4.0 or later versions. It is rec-
ommended that you upgrade TiDB Operator to v1.3.1 or later versions before you
deploy TiFlash.

11.4.11.2 New Features

• Add a new field spec.tidb.tlsClient.skipInternalClientCA to skip server certifi-
cate verification when internal components access TiDB (#4388, [@just1900](https://github.com/just1900))

• Support configuring DNS config for Pods of all components (#4394, [@han-
dlerww](https://github.com/handlerww))

• Add a new field spec.tidb.initializer.createPassword to support setting a
random password for TiDB when deploying a new cluster (#4328, [@mikecheng-
wei](https://github.com/mikechengwei))

• Add a new field failover.recoverByUID to support one-time recover for TiKV/Ti-
Flash/DM Worker (#4373, [@better0332](https://github.com/better0332))

• Add a new field spec.pd.startUpScriptVersion to use the dig command in-
stead of nslookup to lookup domain in the startup script of PD (#4379,
[@july2993](https://github.com/july2993))

673

https://github.com/pingcap/tidb-operator/pull/4400
https://github.com/pingcap/tidb-operator/pull/4434
https://github.com/pingcap/tidb-operator/pull/4435
https://github.com/pingcap/tidb-operator/pull/4388
https://github.com/pingcap/tidb-operator/pull/4394
https://github.com/pingcap/tidb-operator/pull/4328
https://github.com/pingcap/tidb-operator/pull/4373
https://github.com/pingcap/tidb-operator/pull/4379

11.4.11.3 Improvements

• Pre-check whether VolumeMount exists when the StatefuleSet of components is de-
ployed or updated to avoid failed rolling upgrade (#4369, [@july2993](https://github.com/july2993))

• Enhance the feature of deploying a TiDB cluster across Kubernetes clusters:

– Add a new field spec.acrossK8s to indicate deploying a TiDB cluster across
Kubernetes clusters (#4400, [@KanShiori](https://github.com/KanShiori))

– Support deploying heterogeneous TiDB cluster across Kubernetes clusters
(#4387, [@KanShiori](https://github.com/KanShiori))

– The field spec.clusterDomain is not required when TiDB cluster is deployed
across Kubernetes clusters. The field is only used for addresses accessed between
components (#4408, [@KanShiori](https://github.com/KanShiori))

– Fix the issue that in cross-Kubernetes deployment, Pump becomes abnormal when
all PDs of one Kubernetes cluster are down (#4377, [@just1900](https://github.com/just1900))

11.4.11.4 Bug fixes

• Fix the issue that tidb scheduler cannot be deployed on Kubernetes v1.23 or later
versions (#4386, [@just1900](https://github.com/just1900))

11.4.12 TiDB Operator 1.3.0-beta.1 Release Notes

Release date: January 12, 2022
TiDB Operator version: 1.3.0-beta.1

11.4.12.1 Compatibility Change

• Due to changes in #4209, if Webhook is deployed, and ValidatingWebhook and
MutatingWebhook of Pods are enabled with TiDB Operator v1.2 or earlier ver-
sions, upgrading TiDB Operator to v1.3.0-beta.1 will cause ValidatingWebhook and
MutatingWebhook to be deleted. But this has no impact on TiDB cluster management.

• Due to changes in #4151, if you deploy v1 CRD, TiDB Operator >= v1.3.0-beta.1
sets the default baseImage field of all components. If you set the component image
using the image field instead of the baseImage field, upgrading TiDB Operator to
v1.3.0-beta.1 will change the image in use, cause the TiDB cluster to rolling update or
even fail to run. To avoid such situations, you must upgrade TiDB Operator by the
following steps:

1. Use the baseImage and version fields to replace the image field. For details,
refer to Configure TiDB deployment.

2. Upgrade TiDB Operator.

674

https://github.com/pingcap/tidb-operator/pull/4369
https://github.com/pingcap/tidb-operator/pull/4400
https://github.com/pingcap/tidb-operator/pull/4387
https://github.com/pingcap/tidb-operator/pull/4408
https://github.com/pingcap/tidb-operator/pull/4377
https://github.com/pingcap/tidb-operator/pull/4386
https://github.com/pingcap/tidb-operator/pull/4209
https://github.com/pingcap/tidb-operator/pull/4151

• Due to the issue in #4434, if you upgrade TiFlash to v5.4.0 or later when using
v1.3.0-beta.1 TiDB Operator, TiFlash might lose metadata and not work. If TiFlash
is deployed in your cluster, it is recommended that you upgrade TiDB Operator to
v1.3.1 or later versions before upgrading TiFlash.

• Due to the issue in #4435, when using TiDB Operator v1.3.0-beta.1, you must set
the tmp_path field in TiFlash’s config to use TiFlash v5.4.0 or later versions. It is
recommended that you upgrade TiDB Operator to v1.3.1 or later versions before you
deploy TiFlash.

11.4.12.2 Rolling Update Changes

• Due to changes in #4358, if the TiDB cluster (>= v5.4) is deployed by TiDB Operator
v1.2, upgrading TiDB Operator to v1.3.0-beta.1 causes TiFlash to rolling upgrade. It
is recommended to upgrade TiDB Operator to v1.3 before upgrading the TiDB cluster
to v5.4.0 or later versions.

• Due to changes in #4169 , for TiDB clusters >= v5.0, if spec.tikv.separateRocksDBLog
↪→ : true or spec.tikv.separateRaftLog: true is configured, upgrading TiDB
Operator to v1.3.0-beta.1 causes TiKV to rolling upgrade.

• Due to changes in #4198, upgrading TiDB Operator causes the recreation of Tidb-
Monitor Pod.

11.4.12.3 New Features

• Support configuring the resource usage for the init container of TiFlash (#4304, [@Kan-
Shiori](https://github.com/KanShiori))

• Support enabling continuous profiling for the TiDB cluster (#4287, [@KanSh-
iori](https://github.com/KanShiori))

• Support gracefully restarting TiKV through annotations (#4279, [@july2993](https://github.com/july2993))
• Support PodSecurityContext and other configurations for Discovery (#4259,

[@csuzhangxc](https://github.com/csuzhangxc), #4208, [@KanShiori](https://github.com/KanShiori))
• Support configuring PodManagementPolicy in TidbCluster CR (#4211, [@mi-

anhk](https://github.com/mianhk))
• Support configuring Prometheus shards in TidbMonitor CR (#4198, [@mikecheng-

wei](https://github.com/mikechengwei))
• Support deploying TiDB Operator on Kubernetes v1.22 or later versions (#4195,

#4202, [@KanShiori](https://github.com/KanShiori))
• Generate v1 CRD to support deploying on Kubernetes v1.22 or later versions (#4151,

[@KanShiori](https://github.com/KanShiori))

11.4.12.4 Improvements

675

https://github.com/pingcap/tidb-operator/pull/4434
https://github.com/pingcap/tidb-operator/pull/4435
https://github.com/pingcap/tidb-operator/pull/4358
https://github.com/pingcap/tidb-operator/pull/4169
https://github.com/pingcap/tidb-operator/pull/4198
https://github.com/pingcap/tidb-operator/pull/4304
https://github.com/pingcap/tidb-operator/pull/4287
https://github.com/pingcap/tidb-operator/pull/4279
https://github.com/pingcap/tidb-operator/pull/4259
https://github.com/pingcap/tidb-operator/pull/4208
https://github.com/pingcap/tidb-operator/pull/4211
https://github.com/pingcap/tidb-operator/pull/4198
https://github.com/pingcap/tidb-operator/pull/4195
https://github.com/pingcap/tidb-operator/pull/4202
https://github.com/pingcap/tidb-operator/pull/4151

• Remove and change some default configurations for TiFlash due to configuration
changes in TiFlash v5.4.0. If the TiDB cluster (>= v5.4) is deployed by TiDB Opera-
tor v1.2, upgrading TiDB Operator to v1.3.0-beta.1 causes TiFlash to rolling upgrade.
(#4358, [@KanShiori](https://github.com/KanShiori))

• Improve advanced deployment example of TidbMonitor. (#4242, [@mianhk](https://github.com/mianhk))
• Optimize the user experience of heterogenous clusters by displaying the metrics for

one TiDB cluster and its heterogeneous clusters in the same dashboards. (#4210,
[@mikechengwei](https://github.com/mikechengwei))

• Use secretRef to obtain Grafana password in TidbMonitor to avoid using plaintext
password. (#4135, [@mianhk](https://github.com/mianhk))

• Optimize the upgrade process for PD and TiKV components with fewer than two repli-
cas, and force the upgrade of PD and TiKV components by default to avoid the upgrade
process from taking too long (#4107, #4091, [@mianhk](https://github.com/mianhk))

• Update Grafana images in examples to 7.5.11 to enhance security (#4212, [@makocchi-
git](https://github.com/makocchi-git))

• Deprecate Pod validating and mutating webhook (#4209, [@mianhk](https://github.com/mianhk))
• Support configuring the number of tidb-controller-manager workers in Helm chart

(#4111, [@mianhk](https://github.com/mianhk))

11.5 v1.2

11.5.1 TiDB Operator 1.2.7 Release Notes

Release date: February 17, 2022
TiDB Operator version: 1.2.7

11.5.1.1 New Features

• Add a new field spec.pd.startUpScriptVersion to use the dig command in-
stead of nslookup to lookup domain in the startup script of PD (#4379,
[@july2993](https://github.com/july2993))

11.5.1.2 Improvements

• Pre-check whether VolumeMount exists when the StatefuleSet of components is de-
ployed or updated to avoid failed rolling upgrade (#4369, [@july2993](https://github.com/july2993))

11.5.2 TiDB Operator 1.2.6 Release Notes

Release date: January 4, 2022
TiDB Operator version: 1.2.6

676

https://github.com/pingcap/tidb-operator/pull/4358
https://github.com/pingcap/tidb-operator/pull/4242
https://github.com/pingcap/tidb-operator/pull/4210
https://github.com/pingcap/tidb-operator/pull/4135
https://github.com/pingcap/tidb-operator/pull/4107
https://github.com/pingcap/tidb-operator/pull/4091
https://github.com/pingcap/tidb-operator/pull/4212
https://github.com/pingcap/tidb-operator/pull/4209
https://github.com/pingcap/tidb-operator/pull/4111
https://github.com/pingcap/tidb-operator/pull/4379
https://github.com/pingcap/tidb-operator/pull/4369

11.5.2.1 Improvements

• Refine retry logic when updating the status of the Backup and Restore CR (#4337,
[@just1900](https://github.com/just1900))

11.5.3 TiDB Operator 1.2.5 Release Notes

Release date: December 27, 2021
TiDB Operator version: 1.2.5

11.5.3.1 Improvements

• Support configuring all fields in ComponentSpec for DM to control component behavior
more finely (#4313, [@csuzhangxc](https://github.com/csuzhangxc))

• Support configuring init container resources for TiFlash (#4304, [@KanSh-
iori](https://github.com/KanShiori))

• Support configuring the ssl-ca parameter for TiDB via TiDBTLSClient to disable
client authentication (#4270, [@just1900](https://github.com/just1900))

• Add a ready field to TiCDC captures to show its readiness status (#4273, [@KanSh-
iori](https://github.com/KanShiori))

11.5.3.2 Bug fixes

• Fix the issue that PD, TiKV, and TiDB cannot roll update after the component startup
script is updated (#4248, [@KanShiori](https://github.com/KanShiori))

• Fix the issue that the TidbCluster spec is updated automatically after TLS is enabled
(#4306, [@KanShiori](https://github.com/KanShiori))

• Fix a potential goroutine leak when TiDB Operator checks the Region leader count of
TiKV (#4291, [@DanielZhangQD](https://github.com/DanielZhangQD))

• Fix some high-level security issues (#4240, [@KanShiori](https://github.com/KanShiori))

11.5.4 TiDB Operator 1.2.4 Release Notes

Release date: October 21, 2021
TiDB Operator version: 1.2.4

11.5.4.1 Rolling update changes

• Upgrading TiDB Operator will cause the recreation of the TiDBMonitor Pod due to
#4180

677

https://github.com/pingcap/tidb-operator/pull/4337
https://github.com/pingcap/tidb-operator/pull/4313
https://github.com/pingcap/tidb-operator/pull/4304
https://github.com/pingcap/tidb-operator/pull/4270
https://github.com/pingcap/tidb-operator/pull/4273
https://github.com/pingcap/tidb-operator/pull/4248
https://github.com/pingcap/tidb-operator/pull/4306
https://github.com/pingcap/tidb-operator/pull/4291
https://github.com/pingcap/tidb-operator/pull/4240
https://github.com/pingcap/tidb-operator/pull/4180

11.5.4.2 New features

• TidbMonitor supports customizing prometheus rules and reloading configurations dy-
namically (#4180, [@mikechengwei](https://github.com/mikechengwei))

• TidbMonitor supports the enableRules field. When AlertManager is not configured,
you can configure this field to true to add Prometheus rules (#4115, [@mikecheng-
wei](https://github.com/mikechengwei))

11.5.4.3 Improvements

• Optimize TiFlash rolling upgrade process (#4193, [@KanShiori](https://github.com/KanShiori))
• Support deleting backup data in batches (#4095, [@KanShiori](https://github.com/KanShiori))

11.5.4.4 Bug fixes

• Fix the security vulnerabilities in the tidb-backup-manager and tidb-operator im-
ages (#4217, [@KanShiori](https://github.com/KanShiori))

• Fix the issue that some backup data might retain if the Backup CR is deleted when
the Backup job is running (#4133, [@KanShiori](https://github.com/KanShiori))

11.5.5 TiDB Operator 1.2.3 Release Notes

Release date: September 7, 2021
TiDB Operator version: 1.2.3

11.5.5.1 Bug fixes

• Fix the TiFlash Pod rolling recreation issue after TiDB Operator is upgraded to v1.2.2
(#4181, [@KanShiori](https://github.com/KanShiori))

11.5.6 TiDB Operator 1.2.2 Release Notes

Release date: September 3, 2021
TiDB Operator version: 1.2.2

11.5.6.1 Rolling update changes

• Upgrading TiDB Operator will cause the recreation of the TiDBMonitor Pod due to
#4158

• Upgrading TiDB Operator will cause the recreation of the TiFlash Pod due to #4152

678

https://github.com/pingcap/tidb-operator/pull/4180
https://github.com/pingcap/tidb-operator/pull/4115
https://github.com/pingcap/tidb-operator/pull/4193
https://github.com/pingcap/tidb-operator/pull/4095
https://github.com/pingcap/tidb-operator/pull/4217
https://github.com/pingcap/tidb-operator/pull/4133
https://github.com/pingcap/tidb-operator/pull/4181
https://github.com/pingcap/tidb-operator/pull/4158
https://github.com/pingcap/tidb-operator/pull/4152

11.5.6.2 New features

• TiDBMonitor supports reloading configurations dynamically (#4158, [@mikecheng-
wei](https://github.com/mikechengwei))

11.5.6.3 Bug fixes

• Fix upgrade failures of TiCDC from an earlier version to v5.2.0 (#4171, [@KanSh-
iori](https://github.com/KanShiori))

11.5.7 TiDB Operator 1.2.1 Release Notes

Release date: August 18, 2021
TiDB Operator version: 1.2.1

11.5.7.1 Rolling update changes

• If hostNetwork is enabled for TiCDC, upgrading TiDB Operator will cause the recre-
ation of the TiCDC Pod due to #4141

11.5.7.2 Improvements

• Support configuring hostNetwork for all components in TidbCluster so that all compo-
nents can use host network (#4141, [@DanielZhangQD](https://github.com/DanielZhangQD))

11.5.8 TiDB Operator 1.2.0 Release Notes

Release date: July 29, 2021
TiDB Operator version: 1.2.0

11.5.8.1 Rolling update changes

• Upgrading TiDB Operator will cause the recreation of the TidbMonitor Pod due to
#4085

11.5.8.2 New features

• Support setting Prometheus retentionTime, which is more fine-grained than
reserveDays, and only retentionTime takes effect if both are configured (#4085,
[@better0332](https://github.com/better0332))

• Support setting priorityClassName in the Backup CR to specify the priority of the
backup job (#4078, [@mikechengwei](https://github.com/mikechengwei))

679

https://github.com/pingcap/tidb-operator/pull/4158
https://github.com/pingcap/tidb-operator/pull/4171
https://github.com/pingcap/tidb-operator/pull/4141
https://github.com/pingcap/tidb-operator/pull/4141
https://github.com/pingcap/tidb-operator/pull/4085
https://github.com/pingcap/tidb-operator/pull/4085
https://github.com/pingcap/tidb-operator/pull/4078

11.5.8.3 Improvements

• Changes the default Region leader eviction timeout of TiKV to 1500 minutes. The
change prevents the Pod from being deleted when the Region leaders are not trans-
ferred completely to the other stores, which will cause data corruption (#4071, [@Kan-
Shiori](https://github.com/KanShiori))

11.5.8.4 Bug fixes

• Fix the issue that the URL in Prometheus.RemoteWrite may be parsed incorrectly in
TiDBMonitor (#4087, [@better0332](https://github.com/better0332))

11.5.9 TiDB Operator 1.2.0-rc.2 Release Notes

Release date: July 2, 2021
TiDB Operator version: 1.2.0-rc.2

11.5.9.1 New features

• Support passing raw TOML config for TiCDC (#4010, [@july2993](https://github.com/july2993))
• Support setting StorageVolumes, AdditionalVolumes, and AdditionalVolumeMounts

↪→ for TiCDC (#4004, [@csuzhangxc](https://github.com/csuzhangxc))
• Support setting custom labels and annotations for Discovery, TidbMonitor, and

TidbInitializer (#4029, [@csuzhangxc](https://github.com/csuzhangxc))
• Support modifying Grafana dashboard (#4035, [@mikechengwei](https://github.com/mikechengwei))

11.5.9.2 Improvements

• Support using the TiKV version as the tag for BR toolImage if no tag is specified
(#4048, [@KanShiori](https://github.com/KanShiori))

• Support handling PVC during scaling of TiDB (#4033, [@csuzhangxc](https://github.com/csuzhangxc))
• Add the liveness and readiness probes for TiDB Operator to check the TiDB Operator

status (#4002, [@mikechengwei](https://github.com/mikechengwei))

11.5.9.3 Bug fixes

• Fix the issue that TiDB Operator may panic during the deployment of het-
erogeneous clusters (#4054 #3965, [@KanShiori](https://github.com/KanShiori)
[@july2993](https://github.com/july2993))

• Fix the issue that the status of TiDB service and TidbCluster are updated
continuously even when no change is made to the TidbCluster spec (#4008,
[@july2993](https://github.com/july2993))

680

https://github.com/pingcap/tidb-operator/pull/4071
https://github.com/pingcap/tidb-operator/pull/4087
https://github.com/pingcap/tidb-operator/pull/4010
https://github.com/pingcap/tidb-operator/pull/4004
https://github.com/pingcap/tidb-operator/pull/4029
https://github.com/pingcap/tidb-operator/pull/4035
https://github.com/pingcap/tidb-operator/pull/4048
https://github.com/pingcap/tidb-operator/pull/4033
https://github.com/pingcap/tidb-operator/pull/4002
https://github.com/pingcap/tidb-operator/pull/4054
https://github.com/pingcap/tidb-operator/pull/3965
https://github.com/pingcap/tidb-operator/pull/4008

11.5.10 TiDB Operator 1.2.0-rc.1 Release Notes

Release date: May 28, 2021
TiDB Operator version: 1.2.0-rc.1

11.5.10.1 Rolling update changes

• Upgrading TiDB Operator will cause the recreation of the Pump Pod due to #3973

11.5.10.2 New features

• Support customized labels for TidbCluster Pods and services (#3892, [@SabaP-
ing](https://github.com/SabaPing) [@july2993](https://github.com/july2993))

• Support full lifecycle management for Pump (#3973, [@july2993](https://github.com/july2993))

11.5.10.3 Improvements

• Mask the backup password in logging (#3979, [@dveeden](https://github.com/dveeden))
• Add an additional volumeMounts field for Grafana (#3960, [@mikechengwei](https://github.com/mikechengwei))
• Add several useful additional printout columns for TidbMonitor (#3958, [@mikecheng-

wei](https://github.com/mikechengwei))
• TidbMonitor supports writing monitor configuration to PD etcd directly (#3924,

[@mikechengwei](https://github.com/mikechengwei))

11.5.10.4 Bug fixes

• Fix the issue that TidbMonitor may not work for DmCluster with TLS enabled (#3991,
[@csuzhangxc](https://github.com/csuzhangxc))

• Fix the wrong count of PDmembers when scaling out PD (#3940, [@cvvz](https://github.com/cvvz))
• Fix the issue that DM-master might fail to restart (#3972, [@csuzhangxc](https://github.com/csuzhangxc))
• Fix the issue that rolling update might happen after changing configUpdateStrategy

from InPlace to RollingUpdate (#3970, [@cvvz](https://github.com/cvvz))
• Fix the issue that backup using Dumpling might fail (#3986, [@liubog2008](https://github.com/liubog2008))

11.5.11 TiDB Operator 1.2.0-beta.2 Release Notes

Release date: April 29, 2021
TiDB Operator version: 1.2.0-beta.2

681

https://github.com/pingcap/tidb-operator/pull/3973
https://github.com/pingcap/tidb-operator/pull/3892
https://github.com/pingcap/tidb-operator/pull/3973
https://github.com/pingcap/tidb-operator/pull/3979
https://github.com/pingcap/tidb-operator/pull/3960
https://github.com/pingcap/tidb-operator/pull/3958
https://github.com/pingcap/tidb-operator/pull/3924
https://github.com/pingcap/tidb-operator/pull/3991
https://github.com/pingcap/tidb-operator/pull/3940
https://github.com/pingcap/tidb-operator/pull/3972
https://github.com/pingcap/tidb-operator/pull/3970
https://github.com/pingcap/tidb-operator/pull/3986

11.5.11.1 Rolling update changes

• Upgrading TiDB Operator will cause the recreation of the TidbMonitor Pod due to
#3943

• Upgrading TiDB Operator will cause the recreation of the DM-master Pod due to
#3914

11.5.11.2 New features

• TidbMonitor supports monitoring multiple TidbClusters with TLS enabled (#3867,
[@mikechengwei](https://github.com/mikechengwei))

• Support configuring podSecurityContext for all TiDB components (#3909, [@li-
ubog2008](https://github.com/liubog2008))

• Support configuring topologySpreadConstraints for all TiDB components (#3937,
[@liubog2008](https://github.com/liubog2008))

• Support deploying a DmCluster in a different namespace than a TidbCluster (#3914,
[@csuzhangxc](https://github.com/csuzhangxc))

• Support installing TiDB Operator with only namespace-scoped permissions (#3896,
[@csuzhangxc](https://github.com/csuzhangxc))

11.5.11.3 Improvements

• Add the readiness probe for the TidbMonitor Pod (#3943, [@mikechengwei](https://github.com/mikechengwei))
• Optimize TidbMonitor for DmCluster with TLS enabled (#3942, [@mikecheng-

wei](https://github.com/mikechengwei))
• TidbMonitor supports not generating Prometheus alert rules (#3932, [@mikecheng-

wei](https://github.com/mikechengwei))

11.5.11.4 Bug fixes

• Fix the issue that TiDB instances are kept in TiDB Dashboard after being scaled in
(#3929, [@july2993](https://github.com/july2993))

• Fix the useless sync of TidbCluster CR caused by the update of lastHeartbeatTime in
status.tikv.stores (#3886, [@songjiansuper](https://github.com/songjiansuper))

11.5.12 TiDB Operator 1.2.0-beta.1 Release Notes

Release date: April 7, 2021
TiDB Operator version: 1.2.0-beta.1

682

https://github.com/pingcap/tidb-operator/pull/3943
https://github.com/pingcap/tidb-operator/pull/3914
https://github.com/pingcap/tidb-operator/pull/3867
https://github.com/pingcap/tidb-operator/pull/3909
https://github.com/pingcap/tidb-operator/pull/3937
https://github.com/pingcap/tidb-operator/pull/3914
https://github.com/pingcap/tidb-operator/pull/3896
https://github.com/pingcap/tidb-operator/pull/3943
https://github.com/pingcap/tidb-operator/pull/3942
https://github.com/pingcap/tidb-operator/pull/3932
https://github.com/pingcap/tidb-operator/pull/3929
https://github.com/pingcap/tidb-operator/pull/3886

11.5.12.1 Compatibility Changes

• Due to the changes of #3638, the apiVersion of ClusterRoleBinding, ClusterRole,
RoleBinding, and Role created in the TiDB Operator chart is changed from rbac
↪→ .authorization .k8s.io/v1beta1 to rbac.authorization.k8s.io/v1. In this
case, upgrading TiDB Operator through helm upgrade may report the following error:
Error: UPGRADE FAILED: rendered manifests contain a new resource that
↪→ already exists. Unable to continue with update: existing resource
↪→ conflict: namespace:, name: tidb-operator:tidb-controller-manager
↪→ , existing_kind: rbac.authorization.k8s.io/ v1, Kind=ClusterRole,
↪→ new_kind: rbac.authorization.k8s.io/v1, Kind=ClusterRole
For details, refer to helm/helm#7697. In this case, you need to delete TiDB Operator
through helm uninstall and then reinstall it (deleting TiDB Operator will not affect
the current TiDB clusters).

11.5.12.2 Rolling Update Changes

• Upgrading TiDB Operator will cause the recreation of the TidbMonitor Pod due to
#3785

11.5.12.3 New Features

• Support setting customized environment variables for backup and restore job containers
(#3833, [@dragonly](https://github.com/dragonly))

• Add additional volume and volumeMount configurations to TidbMonitor(#3855,
[@mikechengwei](https://github.com/mikechengwei))

• Support affinity and tolerations in backup/restore CR (#3835, [@dragonly](https://github.com/dragonly))
• The resources in the tidb-operator chart use the new service account when

appendReleaseSuffix is set to true (#3819, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Support configuring durations for leader election (#3794, [@july2993](https://github.com/july2993))
• Add the tidb_cluster label for the scrape jobs in TidbMonitor to support monitoring

multiple clusters (#3750, [@mikechengwei](https://github.com/mikechengwei))
• Support setting customized store labels according to the node labels (#3784,

[@L3T](https://github.com/L3T))
• Support customizing the storage config for TiDB slow log (#3731, [@BinChenn](https://github.com/BinChenn))
• TidbMonitor supports remotewrite configuration (#3679, [@mikechengwei](https://github.com/mikechengwei))
• Support configuring init containers for components in the TiDB cluster (#3713, [@han-

dlerww](https://github.com/handlerww))

11.5.12.4 Improvements

• Add retry for DNS lookup failure exception in TiDBInitializer (#3884, [@han-
dlerww](https://github.com/handlerww))

683

https://github.com/pingcap/tidb-operator/pull/3638
https://github.com/helm/helm/issues/7697
https://github.com/pingcap/tidb-operator/pull/3785
https://github.com/pingcap/tidb-operator/pull/3833
https://github.com/pingcap/tidb-operator/pull/3855
https://github.com/pingcap/tidb-operator/pull/3835
https://github.com/pingcap/tidb-operator/pull/3819
https://github.com/pingcap/tidb-operator/pull/3794
https://github.com/pingcap/tidb-operator/pull/3750
https://github.com/pingcap/tidb-operator/pull/3784
https://github.com/pingcap/tidb-operator/pull/3731
https://github.com/pingcap/tidb-operator/pull/3679
https://github.com/pingcap/tidb-operator/pull/3713
https://github.com/pingcap/tidb-operator/pull/3884

• Optimize thanos example yaml files (#3726, [@mikechengwei](https://github.com/mikechengwei))
• Delete the evict leader scheduler after TiKV Pod is recreated during the rolling update

(#3724, [@handlerww](https://github.com/handlerww))
• Support multiple PVCs for PD during scaling and failover (#3820, [@drag-

only](https://github.com/dragonly))
• Support multiple PVCs for TiKV during scaling (#3816, [@dragonly](https://github.com/dragonly))
• Support PVC resizing for TiDB (#3891, [@dragonly](https://github.com/dragonly))
• Add TiFlash rolling upgrade logic to avoid all TiFlash stores being unavailable at the

same time during the upgrade (#3789, [@handlerww](https://github.com/handlerww))
• Retrieve the region leader count from TiKV Pod directly instead of from PD to get the

accurate count (#3801, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Print RocksDB and Raft logs to stdout to support collecting and querying the logs in

Grafana (#3768, [@baurine](https://github.com/baurine))

11.5.12.5 Bug Fixes

• Fix the issue that PVCs will be set to incorrect size if multiple PVCs are configured
for PD/TiKV (#3858, [@dragonly](https://github.com/dragonly))

• Fix the panic issue when .spec.tidb is not set in the TidbCluster CR with TLS
enabled (#3852, [@dragonly](https://github.com/dragonly))

• Fix the issue that some unrecognized environment variables are included in the external
labels of the TidbMonitor (#3785, [@mikechengwei](https://github.com/mikechengwei))

• Fix the issue that after the Pod has been evicted or killed, the status of backup or re-
store is not updated to Failed (#3696, [@csuzhangxc](https://github.com/csuzhangxc))

• Fix the bug that if the advanced StatefulSet is enabled and delete-slots annotations
are added for PD or TiKV, the Pods whose ordinal is bigger than replicas - 1 will be
terminated directly without any pre-delete operations such as evicting leaders (#3702,
[@cvvz](https://github.com/cvvz))

• Fix the issue that when TLS is enabled for the TiDB cluster, if spec.from or
spec.to is not configured, backup and restore jobs with BR might fail (#3707,
[@BinChenn](https://github.com/BinChenn))

• Fix the issue that when the TiKV cluster is not bootstrapped due to incorrect con-
figuration, the TiKV component could not be recovered by editing TidbCluster CR
(#3694, [@cvvz](https://github.com/cvvz))

11.5.13 TiDB Operator 1.2.0-alpha.1 Release Notes

Release date: January 15, 2021
TiDB Operator version: 1.2.0-alpha.1

11.5.13.1 Rolling Update Changes

• Due to #3440, the Pod of TidbMonitor will be deleted and recreated after TiDB
Operator is upgraded to v1.2.0-alpha.1.

684

https://github.com/pingcap/tidb-operator/pull/3726
https://github.com/pingcap/tidb-operator/pull/3724
https://github.com/pingcap/tidb-operator/pull/3820
https://github.com/pingcap/tidb-operator/pull/3816
https://github.com/pingcap/tidb-operator/pull/3891
https://github.com/pingcap/tidb-operator/pull/3789
https://github.com/pingcap/tidb-operator/pull/3801
https://github.com/pingcap/tidb-operator/pull/3768
https://github.com/pingcap/tidb-operator/pull/3858
https://github.com/pingcap/tidb-operator/pull/3852
https://github.com/pingcap/tidb-operator/pull/3785
https://github.com/pingcap/tidb-operator/pull/3696
https://github.com/pingcap/tidb-operator/pull/3702
https://github.com/pingcap/tidb-operator/pull/3707
https://github.com/pingcap/tidb-operator/pull/3694
https://github.com/pingcap/tidb-operator/pull/3440

11.5.13.2 New Features

• Deploy one TiDB cluster across multiple Kubernetes clusters ([@L3T](https://github.com/L3T),
[@handlerww](https://github.com/handlerww))

• Support DM 2.0 in TiDB Operator ([@lichunzhu](https://github.com/lichunzhu),
[@BinChenn](https://github.com/BinChenn))

• Auto-Scaling with PD API ([@howardlau1999](https://github.com/howardlau1999))
• Canary Upgrade of TiDB Operator (#3548, [@shonge](https://github.com/shonge),

#3554, [@cvvz](https://github.com/cvvz))

11.5.13.3 Improvements

• Add local backend support for the TiDB Lightning chart (#3644, [@csuzhangxc](https://github.com/csuzhangxc))
• Add TLS support for the TiDB Lightning chart and TiKV Importer chart (#3598,

[@csuzhangxc](https://github.com/csuzhangxc))
• Support persisting checkpoint for TiDB Lightning helm chart (#3653, [@csuzhangxc](https://github.com/csuzhangxc))
• Support Thanos sidecar for monitoring multiple clusters (#3579, [@mikecheng-

wei](https://github.com/mikechengwei))
• Migrate from Deployment to StatefulSet for TidbMonitor (#3440, [@mikecheng-

wei](https://github.com/mikechengwei))

11.5.13.4 Other Notable Changes

• Optimize rate limiter intervals (#3700, [@dragonly](https://github.com/dragonly))
• Change the directory to save the customized alert rules in TidbMonitor from tidb:

↪→ ${tidb_image_version} to tidb:${initializer_image_version}. Please note
that if the spec.initializer.version in the TidbMonitor does not match with the
TiDB version in the TidbCluster, upgrading TiDB Operator will cause the re-creation
of the monitor Pod (#3684, [@BinChenn](https://github.com/BinChenn))

11.6 v1.1

11.6.1 TiDB Operator 1.1.15 Release Notes

Release date: February 17, 2022
TiDB Operator version: 1.1.15

11.6.1.1 Bug Fixes

• Fix a potential goroutine leak when TiDB Operator checks the Region leader count of
TiKV (#4291, [@DanielZhangQD](https://github.com/DanielZhangQD))

685

https://github.com/pingcap/tidb-operator/pull/3548
https://github.com/pingcap/tidb-operator/pull/3554
https://github.com/pingcap/tidb-operator/pull/3644
https://github.com/pingcap/tidb-operator/pull/3598
https://github.com/pingcap/tidb-operator/pull/3653
https://github.com/pingcap/tidb-operator/pull/3579
https://github.com/pingcap/tidb-operator/pull/3440
https://github.com/pingcap/tidb-operator/pull/3700
https://github.com/pingcap/tidb-operator/pull/3684
https://github.com/pingcap/tidb-operator/pull/4291

11.6.2 TiDB Operator 1.1.14 Release Notes

Release date: October 21, 2021
TiDB Operator version: 1.1.14

11.6.2.1 Bug Fixes

• Fix the security vulnerabilities in the tidb-backup-manager and tidb-operator im-
ages (#4217, [@KanShiori](https://github.com/KanShiori))

11.6.3 TiDB Operator 1.1.13 Release Notes

Release date: July 2, 2021
TiDB Operator version: 1.1.13

11.6.3.1 Improvements

• Support configuring TLS certificates for TiCDC sinks (#3926, [@handlerww](https://github.com/handlerww))
• Support using the TiKV version as the tag for BR toolImage if no tag is specified

(#4048, [@KanShiori](https://github.com/KanShiori))
• Support handling PVC during scaling of TiDB (#4033, [@csuzhangxc](https://github.com/csuzhangxc))
• Support masking the backup password in logging (#3979, [@dveeden](https://github.com/dveeden))

11.6.3.2 Bug Fixes

• Fix the issue that TiDB Operator may panic during the deployment of het-
erogeneous clusters (#4054 #3965, [@KanShiori](https://github.com/KanShiori)
[@july2993](https://github.com/july2993))

• Fix the issue that TiDB instances are kept in TiDB Dashboard after being scaled in
(#3929, [@july2993](https://github.com/july2993))

11.6.4 TiDB Operator 1.1.12 Release Notes

Release date: April 15, 2021
TiDB Operator version: 1.1.12

11.6.4.1 New Features

• Support setting customized environment variables for backup and restore job containers
(#3833, [@dragonly](https://github.com/dragonly))

• Add additional volume and volumeMount configurations to TidbMonitor (#3855,
[@mikechengwei](https://github.com/mikechengwei))

• The resources in the tidb-operator chart use the new service account when
appendReleaseSuffix is set to true (#3819, [@DanielZhangQD](https://github.com/DanielZhangQD))

686

https://github.com/pingcap/tidb-operator/pull/4217
https://github.com/pingcap/tidb-operator/pull/3926
https://github.com/pingcap/tidb-operator/pull/4048
https://github.com/pingcap/tidb-operator/pull/4033
https://github.com/pingcap/tidb-operator/pull/3979
https://github.com/pingcap/tidb-operator/pull/4054
https://github.com/pingcap/tidb-operator/pull/3965
https://github.com/pingcap/tidb-operator/pull/3929
https://github.com/pingcap/tidb-operator/pull/3833
https://github.com/pingcap/tidb-operator/pull/3855
https://github.com/pingcap/tidb-operator/pull/3819

11.6.4.2 Improvements

• Add retry for DNS lookup failure exception in TiDBInitializer (#3884, [@han-
dlerww](https://github.com/handlerww))

• Support multiple PVCs for PD during scaling and failover (#3820, [@drag-
only](https://github.com/dragonly))

• Optimize the PodsAreChanged function (#3901, [@shonge](https://github.com/shonge))

11.6.4.3 Bug Fixes

• Fix the issue that PVCs will be set to incorrect size if multiple PVCs are configured
for PD/TiKV (#3858, [@dragonly](https://github.com/dragonly))

• Fix the panic issue when .spec.tidb is not set in the TidbCluster CR with TLS
enabled (#3852, [@dragonly](https://github.com/dragonly))

• Fix the wrong PVC status in UnjoinedMembers for PD and DM (#3836, [@drag-
only](https://github.com/dragonly))

11.6.5 TiDB Operator 1.1.11 Release Notes

Release date: February 26, 2021
TiDB Operator version: 1.1.11

11.6.5.1 New Features

• Support configuring durations for leader election (#3794, [@july2993](https://github.com/july2993))
• Support setting customized store labels according to the node labels (#3784,

[@L3T](https://github.com/L3T))

11.6.5.2 Improvements

• Add TiFlash rolling upgrade logic to avoid all TiFlash stores being unavailable at the
same time during the upgrade (#3789, [@handlerww](https://github.com/handlerww))

• Retrieve the region leader count from TiKV Pod directly instead of from PD to get the
accurate count (#3801, [@DanielZhangQD](https://github.com/DanielZhangQD))

• Print RocksDB and Raft logs to stdout to support collecting and querying the logs in
Grafana (#3768, [@baurine](https://github.com/baurine))

11.6.6 TiDB Operator 1.1.10 Release Notes

Release date: January 28, 2021
TiDB Operator version: 1.1.10

687

https://github.com/pingcap/tidb-operator/pull/3884
https://github.com/pingcap/tidb-operator/pull/3820
https://github.com/pingcap/tidb-operator/pull/3901
https://github.com/pingcap/tidb-operator/pull/3858
https://github.com/pingcap/tidb-operator/pull/3852
https://github.com/pingcap/tidb-operator/pull/3836
https://github.com/pingcap/tidb-operator/pull/3794
https://github.com/pingcap/tidb-operator/pull/3784
https://github.com/pingcap/tidb-operator/pull/3789
https://github.com/pingcap/tidb-operator/pull/3801
https://github.com/pingcap/tidb-operator/pull/3768

11.6.6.1 Compatibility Changes

• Due to the changes of #3638, the apiVersion of ClusterRoleBinding, ClusterRole,
RoleBinding, and Role created in the TiDB Operator chart is changed from rbac
↪→ .authorization .k8s.io/v1beta1 to rbac.authorization.k8s.io/v1. In this
case, upgrading TiDB Operator through helm upgrade may report the following error:
Error: UPGRADE FAILED: rendered manifests contain a new resource that
↪→ already exists. Unable to continue with update: existing resource
↪→ conflict: namespace:, name: tidb-operator:tidb-controller-manager
↪→ , existing_kind: rbac.authorization.k8s.io/ v1, Kind=ClusterRole,
↪→ new_kind: rbac.authorization.k8s.io/v1, Kind=ClusterRole
For details, refer to helm/helm#7697. In this case, you need to delete TiDB Operator
through helm uninstall and then reinstall it (deleting TiDB Operator will not affect
the current TiDB clusters).

11.6.6.2 Rolling Update Changes

• Upgrading TiDB Operator will cause the recreation of the TidbMonitor Pod due to
#3684

11.6.6.3 New Features

• Support canary upgrade of TiDB Operator (#3548, [@shonge](https://github.com/shonge),
#3554, [@cvvz](https://github.com/cvvz))

• TidbMonitor supports remotewrite configuration (#3679, [@mikechengwei](https://github.com/mikechengwei))
• Support configuring init containers for components in the TiDB cluster (#3713, [@han-

dlerww](https://github.com/handlerww))
• Add local backend support to the TiDB Lightning chart (#3644, [@csuzhangxc](https://github.com/csuzhangxc))

11.6.6.4 Improvements

• Support customizing the storage config for TiDB slow log (#3731, [@BinChenn](https://github.com/BinChenn))
• Add the tidb_cluster label for the scrape jobs in TidbMonitor to support monitoring

multiple clusters (#3750, [@mikechengwei](https://github.com/mikechengwei))
• Supports persisting checkpoint for the TiDB Lightning helm chart (#3653,

[@csuzhangxc](https://github.com/csuzhangxc))
• Change the directory of the customized alert rules in TidbMonitor from tidb:${

↪→ tidb_image_version} to tidb:${initializer_image_version} so that when
the TiDB cluster is upgraded afterwards, the TidbMonitor Pod will not be recreated
(#3684, [@BinChenn](https://github.com/BinChenn))

688

https://github.com/pingcap/tidb-operator/pull/3638
https://github.com/helm/helm/issues/7697
https://github.com/pingcap/tidb-operator/pull/3684
https://github.com/pingcap/tidb-operator/pull/3548
https://github.com/pingcap/tidb-operator/pull/3554
https://github.com/pingcap/tidb-operator/pull/3679
https://github.com/pingcap/tidb-operator/pull/3713
https://github.com/pingcap/tidb-operator/pull/3644
https://github.com/pingcap/tidb-operator/pull/3731
https://github.com/pingcap/tidb-operator/pull/3750
https://github.com/pingcap/tidb-operator/pull/3653
https://github.com/pingcap/tidb-operator/pull/3684

11.6.6.5 Bug Fixes

• Fix the issue that when TLS is enabled for the TiDB cluster, if spec.from or
spec.to is not configured, backup and restore jobs with BR might fail (#3707,
[@BinChenn](https://github.com/BinChenn))

• Fix the bug that if the advanced StatefulSet is enabled and delete-slots annotations
are added for PD or TiKV, the Pods whose ordinal is bigger than replicas - 1 will be
terminated directly without any pre-delete operations such as evicting leaders (#3702,
[@cvvz](https://github.com/cvvz))

• Fix the issue that after the Pod has been evicted or killed, the status of backup or re-
store is not updated to Failed (#3696, [@csuzhangxc](https://github.com/csuzhangxc))

• Fix the issue that when the TiKV cluster is not bootstrapped due to incorrect con-
figuration, the TiKV component could not be recovered by editing TidbCluster CR
(#3694, [@cvvz](https://github.com/cvvz))

11.6.7 TiDB Operator 1.1.9 Release Notes

Release date: December 28, 2020
TiDB Operator version: 1.1.9

11.6.7.1 Improvements

• Support spec.toolImage for Backup& Restore to define the image used to provide the
Dumpling/TiDB Lightning binary executables (#3641, [@BinChenn](https://github.com/BinChenn))

11.6.7.2 Bug Fixes

• Fix the issue that Prometheus can’t pull metrics for TiKV Importer (#3631,
[@csuzhangxc](https://github.com/csuzhangxc))

• Fix the compatibility issue for using BR to back up/restore from/to GCS (#3654,
[@dragonly](https://github.com/dragonly))

11.6.8 TiDB Operator 1.1.8 Release Notes

Release date: December 21, 2020
TiDB Operator version: 1.1.8

11.6.8.1 New Features

• Support arbitrary Volume and VolumeMount for PD, TiDB, TiKV, TiFlash, Backup and
Restore, which enables using NFS or any other kubernetes supported volume source
for backup/restore workflow (#3517, [@dragonly](https://github.com/dragonly))

689

https://github.com/pingcap/tidb-operator/pull/3707
https://github.com/pingcap/tidb-operator/pull/3702
https://github.com/pingcap/tidb-operator/pull/3696
https://github.com/pingcap/tidb-operator/pull/3694
https://github.com/pingcap/tidb-operator/pull/3641
https://github.com/pingcap/tidb-operator/pull/3631
https://github.com/pingcap/tidb-operator/pull/3654
https://github.com/pingcap/tidb-operator/pull/3517

11.6.8.2 Improvements

• Support cluster and client TLS for tidb-lightning and tikv-importer helm charts
(#3598, [@csuzhangxc](https://github.com/csuzhangxc))

• Support setting additional ports for the TiDB service. Users can utilize this feature to
implement customized services, for example, additional health check (#3599, [@han-
dlerww](https://github.com/handlerww))

• Support skipping TLS when connecting TidbInitializer to TiDB Server (#3564,
[@LinuxGit](https://github.com/LinuxGit))

• Support tableFilters for restoring data using TiDB Lightning (#3521, [@sstubbs](https://github.com/sstubbs))

• Support Prometheus to scrape metrics data from multiple TiDB clusters (#3622,
[@mikechengwei](https://github.com/mikechengwei))
ACTION REQUIRED: If TidbMonitor CRs are deployed, update the spec.
↪→ initializer.version to v4.0.9 after upgrading TiDB Operator to v1.1.8, or
some metrics will not be shown correctly in the Grafana dashboards. Prometheus
crape job names are changed from ${component} to ${namespace}-${TidbCluster
↪→ Name}-${component}.

• component label is added to the scrape jobs of Prometheus in TidbMonitor (#3609,
[@mikechengwei](https://github.com/mikechengwei))

11.6.8.3 Bug Fixes

• Fix the issue that TiDB cluster fails to deploy if spec.tikv.storageVolumes is con-
figured (#3586, [@mikechengwei](https://github.com/mikechengwei))

• Fix codecs error for non-ASCII character password in the TidbInitializer job
(#3569, [@handlerww](https://github.com/handlerww))

• Fix the issue that TiFlash Pods are misrecognized as TiKV Pods. The original issue
can potentially cause TiDB Operator to scale in TiKV Pods to a number smaller than
tikv.replicas, when there are TiFlash Pods in the TidbCluster (#3514, [@han-
dlerww](https://github.com/handlerww))

• Fix the issue that deploying Backup CR without spec.from configured will crash tidb
↪→ -controller-manager Pod when TLS is enabled for TiDB client (#3535, [@drag-
only](https://github.com/dragonly))

• Fix the issue that TiDB Lightning doesn’t log to stdout (#3617, [@csuzhangxc](https://github.com/csuzhangxc))

11.6.9 TiDB Operator 1.1.7 Release Notes

Release date: November 13, 2020
TiDB Operator version: 1.1.7

690

https://github.com/pingcap/tidb-operator/pull/3598
https://github.com/pingcap/tidb-operator/pull/3599
https://github.com/pingcap/tidb-operator/pull/3564
https://github.com/pingcap/tidb-operator/pull/3521
https://github.com/pingcap/tidb-operator/pull/3622
https://github.com/pingcap/tidb-operator/pull/3609
https://github.com/pingcap/tidb-operator/pull/3586
https://github.com/pingcap/tidb-operator/pull/3569
https://github.com/pingcap/tidb-operator/pull/3514
https://github.com/pingcap/tidb-operator/pull/3535
https://github.com/pingcap/tidb-operator/pull/3617

11.6.9.1 Compatibility Changes

• The behavior of prometheus.spec.config.commandOptions has changed. Any
duplicated flags must be removed, or Prometheus will fail to start. (#3390,
[@mightyguava](https://github.com/mightyguava))
Flags that CANNOT be set are:

– --web.enable-admin-api
– --web.enable-lifecycle
– --config.file
– --storage.tsdb.path
– --storage.tsdb.retention

11.6.9.2 New Features

• Support spec.toolImage for the Backup and Restore CR with BR to define the image
used to provide the BR binary executables. Defaults to pingcap/br:${tikv_version}
(#3471, [@namco1992](https://github.com/namco1992))

• Add spec.tidb.storageVolumes, spec.tikv.storageVolumes, and spec.pd.
↪→ storageVolumes to support mounting multiple PVs for TiDB, TiKV, and PD
(#3425 #3444, [@mikechengwei](https://github.com/mikechengwei))

• Add spec.tidb.readinessProbe config to support requesting http://127.0.0.0:10080/
↪→ status for TiDB’s readiness probe, TiDB version >= v4.0.9 required (#3438,
[@july2993](https://github.com/july2993))

• Support PD leader transfer with advanced StatefulSet controller enabled (#3395,
[@tangwz](https://github.com/tangwz))

• Support setting OnDelete update strategies for the StatefulSets via spec.
↪→ statefulSetUpdateStrategy in the TidbCluster CR (#3408, [@cvvz](https://github.com/cvvz))

• Support HA scheduling when failover happens (#3419, [@cvvz](https://github.com/cvvz))
• Support smooth migration from TiDB clusters deployed using TiDB Ansible or

TiUP or deployed in the same Kubernetes cluster to a new TiDB cluster (#3226,
[@cvvz](https://github.com/cvvz))

• tidb-scheduler supports advanced StatefulSet (#3388, [@cvvz](https://github.com/cvvz))

11.6.9.3 Improvements

• Forbid to scale in TiKV when the number of UP stores is equal to or less than 3
(#3367, [@cvvz](https://github.com/cvvz))

• phase is added in BackupStatus and RestoreStatus, which will be in sync
with the latest condition type and shown when doing kubectl get (#3397,
[@namco1992](https://github.com/namco1992))

• Skip setting tikv_gc_life_time via SQL for backup and restore with BR when the
TiKV version >= v4.0.8 (#3443, [@namco1992](https://github.com/namco1992))

691

https://github.com/pingcap/tidb-operator/pull/3390
https://github.com/pingcap/tidb-operator/pull/3471
https://github.com/pingcap/tidb-operator/pull/3425
https://github.com/pingcap/tidb-operator/pull/3444
https://github.com/pingcap/tidb-operator/pull/3438
https://github.com/pingcap/tidb-operator/pull/3395
https://github.com/pingcap/tidb-operator/pull/3408
https://github.com/pingcap/tidb-operator/pull/3419
https://github.com/pingcap/tidb-operator/pull/3226
https://github.com/pingcap/tidb-operator/pull/3388
https://github.com/pingcap/tidb-operator/pull/3367
https://github.com/pingcap/tidb-operator/pull/3397
https://github.com/pingcap/tidb-operator/pull/3443

11.6.9.4 Bug Fixes

• Fix the issue that PD cannot scale in to zero if there are other PD members outside
of this TidbCluster (#3456, [@dragonly](https://github.com/dragonly))

11.6.10 TiDB Operator 1.1.6 Release Notes

Release date: October 16, 2020
TiDB Operator version: 1.1.6

11.6.10.1 Compatibility Changes

• With #3342, the spec.pd.config will be migrated from YAML format to TOML
format automatically; however, if the following parameters are configured in the spec.
↪→ pd.config, the migration cannot be done after upgrading TiDB Operator to v1.1.6.
Therefore, please edit the TidbCluster CR to change the value of the parameter from
string format to bool format, for example, from "true" to true.

– replication.strictly-match-label
– replication.enable-placement-rules
– schedule.disable-raft-learner
– schedule.disable-remove-down-replica
– schedule.disable-replace-offline-replica
– schedule.disable-make-up-replica
– schedule.disable-remove-extra-replica
– schedule.disable-location-replacement
– schedule.disable-namespace-relocation
– schedule.enable-one-way-merge
– schedule.enable-cross-table-merge
– pd-server.use-region-storage

11.6.10.2 Rolling Update Changes

• If tidb.pingcap.com/sysctl-init: "true" is set for spec.tidb.annotations or
spec.tikv.annotations, the TiDB or TiKV cluster will be rolling updated after
upgrading TiDB Operator to v1.1.6 due to #3305.

• If TiFlash is deployed, the TiFlash cluster will be rolling updated after upgrading TiDB
Operator to v1.1.6 due to #3345.

692

https://github.com/pingcap/tidb-operator/pull/3456
https://github.com/pingcap/tidb-operator/pull/3342
https://github.com/pingcap/tidb-operator/pull/3305
https://github.com/pingcap/tidb-operator/pull/3345

11.6.10.3 New Features

• Add spec.br.options to the Backup and Restore CR to support customizing argu-
ments for BR (#3360, [@lichunzhu](https://github.com/lichunzhu))

• Add spec.tikv.evictLeaderTimeout to TidbCluster CR to make TiKV evict leader
timeout configurable (#3344, [@lichunzhu](https://github.com/lichunzhu))

• Support monitoring multiple TiDB clusters with one TidbMonitor CR when
TLS is disabled. spec.clusterScoped is added to the TidbMonitor CR and
needs to be set to true to monitor multiple clusters (#3308, [@mikecheng-
wei](https://github.com/mikechengwei))

• Support specifying resources for all initcontainers (#3305, [@shonge](https://github.com/shonge))
• Support deploying heterogeneous TiDB clusters (#3003 #3009 #3113 #3155 #3253,

[@mikechengwei](https://github.com/mikechengwei))

11.6.10.4 Improvements

• Support passing raw TOML config for TiFlash (#3355, [@july2993](https://github.com/july2993))
• Support passing raw TOML config for TiKV/PD (#3342, [@july2993](https://github.com/july2993))
• Support passing raw TOML config for TiDB (#3327, [@july2993](https://github.com/july2993))
• Support passing raw TOML config for Pump (#3312, [@july2993](https://github.com/july2993))
• Print proxy log of TiFlash to stdout (#3345, [@lichunzhu](https://github.com/lichunzhu))
• Add timestamp to the prefix of scheduled backup on GCS (#3340, [@lichun-

zhu](https://github.com/lichunzhu))
• Remove the apiserver and related packages (#3298, [@lonng](https://github.com/lonng))
• Remove the PodRestarter controller and tidb.pingcap.com/pod-defer-deleting an-

notation (#3296, [@lonng](https://github.com/lonng))
• Use BRmetadata to get the total backup size (#3274, [@lichunzhu](https://github.com/lichunzhu))

11.6.10.5 Bug Fixes

• Fix the problem that may bootstrap multiple PD clusters (#3365, [@lichun-
zhu](https://github.com/lichunzhu))

11.6.11 TiDB Operator 1.1.5 Release Notes

Release date: September 18, 2020
TiDB Operator version: 1.1.5

11.6.11.1 Compatibility Changes

• If the TiFlash version is earlier than v4.0.5, please set spec.tiflash.config.config
↪→ .flash.service_addr: {clusterName}-tiflash-POD_NUM.{clusterName}-
↪→ tiflash-peer.{namespace}.svc:3930 in the TidbCluster CR ({clusterName}

693

https://github.com/pingcap/tidb-operator/pull/3360
https://github.com/pingcap/tidb-operator/pull/3344
https://github.com/pingcap/tidb-operator/pull/3308
https://github.com/pingcap/tidb-operator/pull/3305
https://github.com/pingcap/tidb-operator/pull/3003
https://github.com/pingcap/tidb-operator/pull/3009
https://github.com/pingcap/tidb-operator/pull/3113
https://github.com/pingcap/tidb-operator/pull/3155
https://github.com/pingcap/tidb-operator/pull/3253
https://github.com/pingcap/tidb-operator/pull/3355
https://github.com/pingcap/tidb-operator/pull/3342
https://github.com/pingcap/tidb-operator/pull/3327
https://github.com/pingcap/tidb-operator/pull/3312
https://github.com/pingcap/tidb-operator/pull/3345
https://github.com/pingcap/tidb-operator/pull/3340
https://github.com/pingcap/tidb-operator/pull/3298
https://github.com/pingcap/tidb-operator/pull/3296
https://github.com/pingcap/tidb-operator/pull/3274
https://github.com/pingcap/tidb-operator/pull/3365

and {namespace} need to be replaced with the real value) before upgrading
TiDB Operator to v1.1.5 or later versions. When TiFlash is going to be up-
graded to v4.0.5 or later versions, please remove spec.tiflash.config.config
↪→ .flash.service_addr in the TidbCluster CR at the same time (#3191,
[@DanielZhangQD](https://github.com/DanielZhangQD))

11.6.11.2 New Features

• Support configuring serviceAccount for TiDB/Pump/PD (#3246, [@july2993](https://github.com/july2993))
• Support configuring spec.tikv.config.log-format and spec.tikv.config.server

↪→ .max-grpc-send-msg-len (#3199, [@kolbe](https://github.com/kolbe))
• Support labels configuration for TiDB (#3188, [@howardlau1999](https://github.com/howardlau1999))
• Support recovery from failover for TiFlash and TiKV (#3189, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Add mountClusterClientSecret configuration for PD and TiKV. If the config is set to

true, TiDB Operator will mount the ${cluster_name}-cluster-client-secret to
the PD or TiKV containers (#3282, [@DanielZhangQD](https://github.com/DanielZhangQD))

11.6.11.3 Improvements

• Adapt TiDB/PD/TiKV configurations to v4.0.6 (#3180, [@lichunzhu](https://github.com/lichunzhu))
• Support mounting the cluster client certificate to PD pod (#3248, [@week-

face](https://github.com/weekface))
• Scaling takes precedence over upgrading for TiFlash/PD/TiDB. This is to

avoid that Pods cannot be scaled in case of upgrade failure (#3187, [@lichun-
zhu](https://github.com/lichunzhu))

• Support the imagePullSecrets configuration for Pump (#3214, [@weekface](https://github.com/weekface))
• Update the default configuration for TiFlash (#3191, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Remove ClusterRole from TidbMonitor CR (#3190, [@weekface](https://github.com/weekface))
• Drainer that are deployed by Helm and exits normally will no longer be restarted

(#3151, [@lichunzhu](https://github.com/lichunzhu))
• The tidb-scheduler HA strategy takes failover pods into consideration (#3171, [@co-

fyc](https://github.com/cofyc))

11.6.11.4 Bug Fixes

• Fix the problem that the Env settings are ignored for the Grafana container in the
TidbMonitor CR (#3237, [@tirsen](https://github.com/tirsen))

11.6.12 TiDB Operator 1.1.4 Release Notes

Release date: August 21, 2020
TiDB Operator version: 1.1.4

694

https://github.com/pingcap/tidb-operator/pull/3191
https://github.com/pingcap/tidb-operator/pull/3246
https://github.com/pingcap/tidb-operator/pull/3199
https://github.com/pingcap/tidb-operator/pull/3188
https://github.com/pingcap/tidb-operator/pull/3189
https://github.com/pingcap/tidb-operator/pull/3282
https://github.com/pingcap/tidb-operator/pull/3180
https://github.com/pingcap/tidb-operator/pull/3248
https://github.com/pingcap/tidb-operator/pull/3187
https://github.com/pingcap/tidb-operator/pull/3214
https://github.com/pingcap/tidb-operator/pull/3191
https://github.com/pingcap/tidb-operator/pull/3190
https://github.com/pingcap/tidb-operator/pull/3151
https://github.com/pingcap/tidb-operator/pull/3171
https://github.com/pingcap/tidb-operator/pull/3237

11.6.12.1 Notable changes

• TableFilter is added to the BackupSpec and RestoreSpec. TableFilter supports
backing up specific databases or tables with Dumpling or BR and supports restoring
specific databases or tables with BR.
BackupSpec.Dumpling.TableFilter is deprecated since v1.1.4. Please configure
BackupSpec.TableFilter instead.
Since TiDB v4.0.3, you can configure BackupSpec.TableFilter to replace the
BackupSpec.BR.DB and BackupSpec.BR.Table fields and configure RestoreSpec.
↪→ TableFilter to replace the RestoreSpec.BR.DB and RestoreSpec.BR.Table
fields (#3134, [@sstubbs](https://github.com/sstubbs))

• Update the version of TiDB and tools to v4.0.4 (#3135, [@lichunzhu](https://github.com/lichunzhu))

• Support customizing environment variables for the initializer container in the Tidb-
Monitor CR (#3109, [@kolbe](https://github.com/kolbe))

• Support patching PVCs when the storage request is increased (#3096, [@co-
fyc](https://github.com/cofyc))

• Support TLS for Backup & Restore with Dumpling & TiDB Lightning (#3100,
[@lichunzhu](https://github.com/lichunzhu))

• Support cert-allowed-cn for TiFlash (#3101, [@DanielZhangQD](https://github.com/DanielZhangQD))

• Add support for the max-index-length TiDB config option to the TidbCluster CRD
(#3076, [@kolbe](https://github.com/kolbe))

• Fix goroutine leak when TLS is enabled (#3081, [@DanielZhangQD](https://github.com/DanielZhangQD))

• Fix a memory leak issue caused by etcd client when TLS is enabled (#3064,
[@DanielZhangQD](https://github.com/DanielZhangQD))

• Support TLS for TiFlash (#3049, [@DanielZhangQD](https://github.com/DanielZhangQD))

• Configure TZ environment for admission webhook and advanced statefulset controller
deployed in tidb-operator chart (#3034, [@cofyc](https://github.com/cofyc))

11.6.13 TiDB Operator 1.1.3 Release Notes

Release date: July 27, 2020
TiDB Operator version: 1.1.3

695

https://github.com/pingcap/tidb-operator/pull/3134
https://github.com/pingcap/tidb-operator/pull/3135
https://github.com/pingcap/tidb-operator/pull/3109
https://github.com/pingcap/tidb-operator/pull/3096
https://github.com/pingcap/tidb-operator/pull/3100
https://github.com/pingcap/tidb-operator/pull/3101
https://docs.pingcap.com/tidb/stable/tidb-configuration-file#max-index-length
https://github.com/pingcap/tidb-operator/pull/3076
https://github.com/pingcap/tidb-operator/pull/3081
https://github.com/pingcap/tidb-operator/pull/3064
https://github.com/pingcap/tidb-operator/pull/3049
https://github.com/pingcap/tidb-operator/pull/3034

11.6.13.1 Action Required

• Add a field cleanPolicy in BackupSpec to denote the clean policy for backup
data when the Backup CR is deleted from the cluster (default to Retain
↪→). Note that before v1.1.3, TiDB Operator will clean the backup data
in the remote storage when the Backup CR is deleted, so if you want to
clean backup data as before, set spec.cleanPolicy in Backup CR or spec.
↪→ backupTemplate.cleanPolicy in BackupSchedule CR to Delete. (#3002,
[@lichunzhu](https://github.com/lichunzhu))

• Replace mydumper with dumpling for backup.
If spec.mydumper is configured in the Backup CR or spec.backupTemplate.mydumper
↪→ is configured in the BackupSchedule CR, migrate it to spec.dumpling or spec.
↪→ backupTemplate.dumpling. After you upgrade TiDB Operator to v1.1.3, note that
spec.mydumper or spec.backupTemplate.mydumper will be lost after the upgrade.
(#2870, [@lichunzhu](https://github.com/lichunzhu))

11.6.13.2 Other Notable Changes

• Update tools in backup manager to v4.0.3 (#3019, [@lichunzhu](https://github.com/lichunzhu))
• Support cleanPolicy for the Backup CR to define the clean behavior of the backup

data in the remote storage when the Backup CR is deleted (#3002, [@lichun-
zhu](https://github.com/lichunzhu))

• Add TLS support for TiCDC (#3011, [@weekface](https://github.com/weekface))
• Add TLS support between Drainer and the downstream database server (#2993,

[@lichunzhu](https://github.com/lichunzhu))
• Support specifying mysqlNodePort and statusNodePort for TiDB Service Spec

(#2941, [@lichunzhu](https://github.com/lichunzhu))
• Fix the initialCommitTs bug in Drainer’s values.yaml (#2857, [@weekface](https://github.com/weekface))
• Add backup config for TiKV server, add enable-telemetry, and deprecate disable-

↪→ telemetry config for PD server (#2964, [@lichunzhu](https://github.com/lichunzhu))
• Add commitTS info column in get restore command (#2926, [@lichunzhu](https://github.com/lichunzhu))
• Update the used Grafana version from v6.0.1 to v6.1.6 (#2923, [@lichunzhu](https://github.com/lichunzhu))
• Support showing commitTS in restore status (#2899, [@lichunzhu](https://github.com/lichunzhu))
• Exit without error if the backup data the user tries to clean does not exist (#2916,

[@lichunzhu](https://github.com/lichunzhu))
• Support auto-scaling by storage for TiKV in TidbClusterAutoScaler (#2884,

[@Yisaer](https://github.com/Yisaer))
• Clean temporary files in Backup job with Dumpling to save space (#2897, [@lichun-

zhu](https://github.com/lichunzhu))
• Fail the backup job if existing PVC’s size is smaller than the storage request in the

backup job (#2894, [@lichunzhu](https://github.com/lichunzhu))
• Support scaling and auto-failover even if a TiKV store fails in upgrading (#2886,

[@cofyc](https://github.com/cofyc))

696

https://github.com/pingcap/tidb-operator/pull/3002
https://github.com/pingcap/tidb-operator/pull/2870
https://github.com/pingcap/tidb-operator/pull/3019
https://github.com/pingcap/tidb-operator/pull/3002
https://github.com/pingcap/tidb-operator/pull/3011
https://github.com/pingcap/tidb-operator/pull/2993
https://github.com/pingcap/tidb-operator/pull/2941
https://github.com/pingcap/tidb-operator/pull/2857
https://github.com/pingcap/tidb-operator/pull/2964
https://github.com/pingcap/tidb-operator/pull/2926
https://github.com/pingcap/tidb-operator/pull/2923
https://github.com/pingcap/tidb-operator/pull/2899
https://github.com/pingcap/tidb-operator/pull/2916
https://github.com/pingcap/tidb-operator/pull/2884
https://github.com/pingcap/tidb-operator/pull/2897
https://github.com/pingcap/tidb-operator/pull/2894
https://github.com/pingcap/tidb-operator/pull/2886

• Fix a bug that the TidbMonitor resource could not be set (#2878, [@week-
face](https://github.com/weekface))

• Fix an error for the monitor creation in the tidb-cluster chart (#2869, [@8398a7](https://github.com/8398a7))
• Remove readyToScaleThresholdSeconds in TidbClusterAutoScaler; TiDB Opera-

tor won’t support de-noise in TidbClusterAutoScaler (#2862, [@Yisaer](https://github.com/Yisaer))
• Update the version of TiDB Lightning used in tidb-backup-manager from v3.0.15 to

v4.0.2 (#2865, [@lichunzhu](https://github.com/lichunzhu))

11.6.14 TiDB Operator 1.1.2 Release Notes

Release date: July 1, 2020
TiDB Operator version: 1.1.2

11.6.14.1 Action Required

• An incompatible issue with PD 4.0.2 has been fixed. Please upgrade TiDB Op-
erator to v1.1.2 before deploying TiDB 4.0.2 and later versions (#2809, [@co-
fyc](https://github.com/cofyc))

11.6.14.2 Other Notable Changes

• Collect metrics for TiCDC, TiDB Lightning and TiKV Importer (#2835, [@week-
face](https://github.com/weekface))

• Update PD/TiDB/TiKV config to v4.0.2 (#2828, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Fix the bug that PDMember might still exist after scaling-in (#2793, [@Yisaer](https://github.com/Yisaer))
• Support Auto-Scaler Reference in TidbCluster Status when there exists TidbClusterAutoScaler

↪→ (#2791, [@Yisaer](https://github.com/Yisaer))
• Support configuring container lifecycle hooks and terminationGracePeriodSeconds

in TiDB spec (#2810, [@weekface](https://github.com/weekface))

11.6.15 TiDB Operator 1.1.1 Release Notes

Release date: June 19, 2020
TiDB Operator version: 1.1.1

11.6.15.1 Notable changes

• Add the additionalContainers and additionalVolumes fields so that TiDB Opera-
tor can support adding sidecars to TiDB, TiKV, PD, etc. (#2229, [@yeya24](https://github.com/yeya24))

• Add cross check to ensure TiKV is not scaled or upgraded at the same time (#2705,
[@DanielZhangQD](https://github.com/DanielZhangQD))

697

https://github.com/pingcap/tidb-operator/pull/2878
https://github.com/pingcap/tidb-operator/pull/2869
https://github.com/pingcap/tidb-operator/pull/2862
https://github.com/pingcap/tidb-operator/pull/2865
https://github.com/pingcap/tidb-operator/pull/2809
https://github.com/pingcap/tidb-operator/pull/2835
https://github.com/pingcap/tidb-operator/pull/2828
https://github.com/pingcap/tidb-operator/pull/2793
https://github.com/pingcap/tidb-operator/pull/2791
https://github.com/pingcap/tidb-operator/pull/2810
https://github.com/pingcap/tidb-operator/pull/2229
https://github.com/pingcap/tidb-operator/pull/2705

• Fix the bug that TidbMonitor will scrape multi TidbCluster with the same name
in different namespaces when then namespace in ClusterRef is not set (#2746,
[@Yisaer](https://github.com/Yisaer))

• Update TiDB Operator examples to deploy TiDB Cluster 4.0.0 images (#2600,
[@kolbe](https://github.com/kolbe))

• Add the alertMangerAlertVersion option to TidbMonitor (#2744, [@week-
face](https://github.com/weekface))

• Fix alert rules lost after rolling upgrade (#2715, [@weekface](https://github.com/weekface))
• Fix an issue that pods may be stuck in pending for a long time in scale-out after a

scale-in (#2709, [@cofyc](https://github.com/cofyc))
• Add EnableDashboardInternalProxy in PDSpec to let user directly visit PD Dash-

board (#2713, [@Yisaer](https://github.com/Yisaer))
• Fix the PV syncing error when TidbMonitor and TidbCluster have different values

in reclaimPolicy (#2707, [@Yisaer](https://github.com/Yisaer))
• Update Configuration to v4.0.1 (#2702, [@Yisaer](https://github.com/Yisaer))
• Change tidb-discovery strategy type to Recreate to fix the bug that more than one

discovery pod may exist (#2701, [@weekface](https://github.com/weekface))
• Expose the Dashboard service with HTTP endpoint whether tlsCluster is enabled

(#2684, [@Yisaer](https://github.com/Yisaer))
• Add the .tikv.dataSubDir field to specify subdirectory within the data volume to

store TiKV data (#2682, [@cofyc](https://github.com/cofyc))
• Add the imagePullSecrets attribute to all components (#2679, [@weekface](https://github.com/weekface))
• Enable StatefulSet and Pod validation webhook to work at the same time (#2664,

[@Yisaer](https://github.com/Yisaer))
• Emit an event if it fails to sync labels to TiKV stores (#2587, [@PengJi](https://github.com/PengJi))
• Make datasource information hidden in log for Backup and Restore jobs (#2652,

[@Yisaer](https://github.com/Yisaer))
• Support the DynamicConfiguration switch in TidbCluster Spec (#2539, [@Yisaer](https://github.com/Yisaer))
• Support LoadBalancerSourceRanges in the ServiceSpec for the TidbCluster and

TidbMonitor (#2610, [@shonge](https://github.com/shonge))
• Support Dashboard metrics ability for TidbCluster when TidbMonitor deployed

(#2483, [@Yisaer](https://github.com/Yisaer))
• Bump the DM version to v2.0.0-beta.1 (#2615, [@tennix](https://github.com/tennix))
• support setting discovery resources (#2434, [@shonge](https://github.com/shonge))
• Support the Denoising for the TidbClusterAuto-scaling (#2307, [@vincent178](https://github.com/vincent178))
• Support scraping Pump and Drainermetrics in TidbMonitor (#2750, [@Yisaer](https://github.com/Yisaer))

11.6.16 TiDB Operator 1.1 GA Release Notes

Release date: May 28, 2020
TiDB Operator version: 1.1.0

11.6.16.1 Upgrade from v1.0.x

698

https://github.com/pingcap/tidb-operator/pull/2746
https://github.com/pingcap/tidb-operator/pull/2600
https://github.com/pingcap/tidb-operator/pull/2744
https://github.com/pingcap/tidb-operator/pull/2715
https://github.com/pingcap/tidb-operator/pull/2709
https://github.com/pingcap/tidb-operator/pull/2713
https://github.com/pingcap/tidb-operator/pull/2707
https://github.com/pingcap/tidb-operator/pull/2702
https://github.com/pingcap/tidb-operator/pull/2701
https://github.com/pingcap/tidb-operator/pull/2684
https://github.com/pingcap/tidb-operator/pull/2682
https://github.com/pingcap/tidb-operator/pull/2679
https://github.com/pingcap/tidb-operator/pull/2664
https://github.com/pingcap/tidb-operator/pull/2587
https://github.com/pingcap/tidb-operator/pull/2652
https://github.com/pingcap/tidb-operator/pull/2539
https://github.com/pingcap/tidb-operator/pull/2610
https://github.com/pingcap/tidb-operator/pull/2483
https://github.com/pingcap/tidb-operator/pull/2615
https://github.com/pingcap/tidb-operator/pull/2434
https://github.com/pingcap/tidb-operator/pull/2307
https://github.com/pingcap/tidb-operator/pull/2750

For v1.0.x users, refer to Upgrade TiDB Operator to upgrade TiDB Operator in your
cluster. Note that you should read the release notes (especially breaking changes and action
required items) before the upgrade.

11.6.16.2 Breaking changes since v1.0.0

• Change TiDB pod readiness probe from HTTPGet to TCPSocket 4000 port. This will
trigger rolling-upgrade for the tidb-server component. You can set spec.paused
↪→ to true before upgrading tidb-operator to avoid the rolling upgrade, and set it
back to false when you are ready to upgrade your TiDB server (#2139, [@week-
face](https://github.com/weekface))

• --advertise-address is configured for tidb-server, which would trigger rolling-
upgrade for the TiDB server. You can set spec.paused to true before upgrading
TiDB Operator to avoid the rolling upgrade, and set it back to false when you are
ready to upgrade your TiDB server (#2076, [@cofyc](https://github.com/cofyc))

• --default-storage-class-name and --default-backup-storage-class-name flags
are abandoned, and the storage class defaults to Kubernetes default storage class right
now. If you have set default storage class different than Kubernetes default storage
class, set them explicitly in your TiDB cluster Helm or YAML files. (#1581, [@co-
fyc](https://github.com/cofyc))

• Add the timezone support for all charts (#1122, [@weekface](https://github.com/weekface)).
For the tidb-cluster chart, we already have the timezone option (UTC by default).
If the user does not change it to a different value (for example, Asia/Shanghai), none
of the Pods will be recreated.
If the user changes it to another value (for example, Aisa/Shanghai), all the related
Pods (add a TZ env) will be recreated, namely rolling updated.
The related Pods include pump, drainer, discovery, monitor, scheduled backup,
tidb-initializer, and tikv-importer.
All images’ time zone maintained by TiDB Operator is UTC. If you use your own
images, you need to make sure that the time zone inside your images is UTC.

11.6.16.3 Other Notable changes

• Fix TidbCluster upgrade bug when PodWebhook and Advancend StatefulSet are
both enabled (#2507, [@Yisaer](https://github.com/Yisaer))

• Support preemption in tidb-scheduler (#2510, [@cofyc](https://github.com/cofyc))
• Update BR to v4.0.0-rc.2 to include the auto_random fix (#2508, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Supports advanced statefulset for TiFlash (#2469, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Sync Pump before TiDB (#2515, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Improve performance by removing TidbControl lock (#2489, [@weekface](https://github.com/weekface))

699

https://github.com/pingcap/tidb-operator/pull/2139
https://github.com/pingcap/tidb-operator/pull/2076
https://github.com/pingcap/tidb-operator/pull/1581
https://github.com/pingcap/tidb-operator/tree/master/charts
https://github.com/pingcap/tidb-operator/pull/1122
https://github.com/pingcap/tidb-operator/pull/2507
https://github.com/pingcap/tidb-operator/pull/2510
https://github.com/pingcap/tidb-operator/pull/2508
https://github.com/pingcap/tidb-operator/pull/2469
https://github.com/pingcap/tidb-operator/pull/2515
https://github.com/pingcap/tidb-operator/pull/2489

• Support TiCDC in TidbCluster (#2362, [@weekface](https://github.com/weekface))
• Update TiDB/TiKV/PD configuration to 4.0.0 GA version (#2571, [@Yisaer](https://github.com/Yisaer))
• TiDB Operator will not do failover for PD pods which are not desired (#2570,

[@Yisaer](https://github.com/Yisaer))

11.6.17 TiDB Operator 1.1 RC.4 Release Notes

Release date: May 15, 2020
TiDB Operator version: 1.1.0-rc.4

11.6.17.1 Action Required

• Separate TiDB client certificates can be used for each component. Users should migrate
the old TLS configs of Backup and Restore to the new configs. Refer to #2403 for
more details (#2403, [@weekface](https://github.com/weekface))

11.6.17.2 Other Notable Changes

• Fix the bug that the service annotations would be exposed in TidbCluster specification
(#2471, [@Yisaer](https://github.com/Yisaer))

• Fix a bug when reconciling TiDB service while the healthCheckNodePort is already
generated by Kubernetes (#2438, [@aylei](https://github.com/aylei))

• Support TidbMonitorRef in TidbCluster Status (#2424, [@Yisaer](https://github.com/Yisaer))
• Support setting the backup path prefix for remote storage (#2435, [@only-

mellb](https://github.com/onlymellb))
• Support customizing mydumper options in Backup CR (#2407, [@onlymellb](https://github.com/onlymellb))
• Support TiCDC in TidbCluster CR. (#2338, [@weekface](https://github.com/weekface))
• Update BR to v3.1.1 in the tidb-backup-manager image (#2425, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Support creating node pools for TiFlash and CDC on ACK (#2420, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Support creating node pools for TiFlash and CDC on EKS (#2413, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Expose PVReclaimPolicy for TidbMonitor when storage is enabled (#2379,

[@Yisaer](https://github.com/Yisaer))
• Support arbitrary topology-based HA in tidb-scheduler (for example, node zones)

(#2366, [@PengJi](https://github.com/PengJi))
• Skip setting the TLS for PD dashboard when the TiDB version is earlier than 4.0.0

(#2389, [@weekface](https://github.com/weekface))
• Support backup and restore with GCS using BR (#2267, [@shuijing198799](https://github.com/shuijing198799))
• Update TiDBConfig and TiKVConfig to support the 4.0.0-rc version (#2322,

[@Yisaer](https://github.com/Yisaer))
• Fix the bug when TidbCluster service type is NodePort, the value of NodePort would

change frequently (#2284, [@Yisaer](https://github.com/Yisaer))
• Add external strategy ability for TidbClusterAutoScaler (#2279, [@Yisaer](https://github.com/Yisaer))
• PVC will not be deleted when TidbMonitor gets deleted (#2374, [@Yisaer](https://github.com/Yisaer))
• Support scaling for TiFlash (#2237, [@DanielZhangQD](https://github.com/DanielZhangQD))

700

https://github.com/pingcap/tidb-operator/pull/2362
https://github.com/pingcap/tidb-operator/pull/2571
https://github.com/pingcap/tidb-operator/pull/2570
https://github.com/pingcap/tidb-operator/pull/2403
https://github.com/pingcap/tidb-operator/pull/2403
https://github.com/pingcap/tidb-operator/pull/2471
https://github.com/pingcap/tidb-operator/pull/2438
https://github.com/pingcap/tidb-operator/pull/2424
https://github.com/pingcap/tidb-operator/pull/2435
https://github.com/pingcap/tidb-operator/pull/2407
https://github.com/pingcap/tidb-operator/pull/2338
https://github.com/pingcap/tidb-operator/pull/2425
https://github.com/pingcap/tidb-operator/pull/2420
https://github.com/pingcap/tidb-operator/pull/2413
https://github.com/pingcap/tidb-operator/pull/2379
https://github.com/pingcap/tidb-operator/pull/2366
https://github.com/pingcap/tidb-operator/pull/2389
https://github.com/pingcap/tidb-operator/pull/2267
https://github.com/pingcap/tidb-operator/pull/2322
https://github.com/pingcap/tidb-operator/pull/2284
https://github.com/pingcap/tidb-operator/pull/2279
https://github.com/pingcap/tidb-operator/pull/2374
https://github.com/pingcap/tidb-operator/pull/2237

11.6.18 TiDB Operator 1.1 RC.3 Release Notes

Release date: April 30, 2020
TiDB Operator version: 1.1.0-rc.3

11.6.18.1 Notable Changes

• Skip auto-failover when pods are not scheduled and perform recovery operation no
matter what state failover pods are in (#2263, [@cofyc](https://github.com/cofyc))

• Support TiFlashmetrics in TidbMonitor (#2341, [@Yisaer](https://github.com/Yisaer))
• Do not print rclone config in the Pod logs (#2343, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Using Patch in periodicity controller to avoid updating StatefulSet to the wrong

state (#2332, [@Yisaer](https://github.com/Yisaer))
• Set enable-placement-rules to true for PD if TiFlash is enabled in the cluster

(#2328, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Support rclone options in the Backup and Restore CR (#2318, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Fix the issue that statefulsets are updated during each sync even if no changes are made

to the config (#2308, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Support configuring Ingress in TidbMonitor (#2314, [@Yisaer](https://github.com/Yisaer))
• Fix a bug that auto-created failover pods can’t be deleted when they are in the failed

state (#2300, [@cofyc](https://github.com/cofyc))
• Add useful Event in TidbCluster during upgrading and scaling when admissionWebhook

↪→ .validation.pods in operator configuration is enabled (#2305, [@Yisaer](https://github.com/Yisaer))
• Fix the issue that services are updated during each sync even if no changes are made to

the service configuration (#2299, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Fix a bug that would cause panic in statefulset webhook when the update strategy of

StatefulSet is not RollingUpdate (#2291, [@Yisaer](https://github.com/Yisaer))
• Fix a panic in syncing TidbClusterAutoScaler status when the target TidbCluster

does not exist (#2289, [@Yisaer](https://github.com/Yisaer))
• Fix the pdapi cache issue while the cluster TLS is enabled (#2275, [@week-

face](https://github.com/weekface))
• Fix the config error in restore (#2250, [@Yisaer](https://github.com/Yisaer))
• Support failover for TiFlash (#2249, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Update the default eks version in terraform scripts to 1.15 (#2238, [@Yisaer](https://github.com/Yisaer))
• Support upgrading for TiFlash (#2246, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Add stderr logs from BR to the backup-manager logs (#2213, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Add field TiKVEncryptionConfig in TiKVConfig, which defines how to en-

crypt data key and raw data in TiKV, and how to back up and restore the
master key. See the description for details in tikv_config.go (#2151, [@shui-
jing198799](https://github.com/shuijing198799))

11.6.19 TiDB Operator 1.1 RC.2 Release Notes

Release date: April 15, 2020

701

https://github.com/pingcap/tidb-operator/pull/2263
https://github.com/pingcap/tidb-operator/pull/2341
https://github.com/pingcap/tidb-operator/pull/2343
https://github.com/pingcap/tidb-operator/pull/2332
https://github.com/pingcap/tidb-operator/pull/2328
https://github.com/pingcap/tidb-operator/pull/2318
https://github.com/pingcap/tidb-operator/pull/2308
https://github.com/pingcap/tidb-operator/pull/2314
https://github.com/pingcap/tidb-operator/pull/2300
https://github.com/pingcap/tidb-operator/pull/2305
https://github.com/pingcap/tidb-operator/pull/2299
https://github.com/pingcap/tidb-operator/pull/2291
https://github.com/pingcap/tidb-operator/pull/2289
https://github.com/pingcap/tidb-operator/pull/2275
https://github.com/pingcap/tidb-operator/pull/2250
https://github.com/pingcap/tidb-operator/pull/2249
https://github.com/pingcap/tidb-operator/pull/2238
https://github.com/pingcap/tidb-operator/pull/2246
https://github.com/pingcap/tidb-operator/pull/2213
https://github.com/pingcap/tidb-operator/pull/2151

TiDB Operator version: 1.1.0-rc.2

11.6.19.1 Action Required

• Change TiDB pod readiness probe from HTTPGet to TCPSocket 4000 port. This will
trigger rolling-upgrade for the tidb-server component. You can set spec.paused
↪→ to true before upgrading tidb-operator to avoid the rolling upgrade, and set it
back to false when you are ready to upgrade your TiDB server (#2139, [@week-
face](https://github.com/weekface))

11.6.19.2 Notable Changes

• Add status field for TidbAutoScaler CR (#2182, [@Yisaer](https://github.com/Yisaer))
• Add spec.pd.maxFailoverCount field to limit max failover replicas for PD (#2184,

[@cofyc](https://github.com/cofyc))
• Emit more events for TidbCluster and TidbClusterAutoScaler to help users know

TiDB running status (#2150, [@Yisaer](https://github.com/Yisaer))
• Add the AGE column to show creation timestamp for all CRDs (#2168, [@co-

fyc](https://github.com/cofyc))
• Add a switch to skip PD Dashboard TLS configuration (#2143, [@weekface](https://github.com/weekface))
• Support deploying TiFlash with TidbCluster CR (#2157, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Add TLS support for TiKVmetrics API (#2137, [@weekface](https://github.com/weekface))
• Set PD DashboardConfig when TLS between the MySQL client and TiDB server is

enabled (#2085, [@weekface](https://github.com/weekface))
• Remove unnecessary informer caches to reduce the memory footprint of tidb-controller-

manager (#1504, [@aylei](https://github.com/aylei))
• Fix the failure that Helm cannot load the kubeconfig file when deleting the tidb-

operator release during terraform destroy (#2148, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Support configuring the Webhook TLS setting by loading a secret (#2135,

[@Yisaer](https://github.com/Yisaer))
• Support TiFlash in TidbCluster CR (#2122, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Fix the error that alertmanager couldn’t be set in TidbMonitor (#2108, [@Yisaer](https://github.com/Yisaer))

11.6.20 TiDB Operator 1.1 RC.1 Release Notes

Release date: April 1, 2020
TiDB Operator version: 1.1.0-rc.1

11.6.20.1 Action Required

• --advertise-address will be configured for tidb-server, which would trigger rolling-
upgrade for the tidb-server component. You can set spec.paused to true before
upgrading tidb-operator to avoid the rolling upgrade, and set it back to false when you
are ready to upgrade your TiDB server (#2076, [@cofyc](https://github.com/cofyc))

702

https://github.com/pingcap/tidb-operator/pull/2139
https://github.com/pingcap/tidb-operator/pull/2182
https://github.com/pingcap/tidb-operator/pull/2184
https://github.com/pingcap/tidb-operator/pull/2150
https://github.com/pingcap/tidb-operator/pull/2168
https://github.com/pingcap/tidb-operator/pull/2143
https://github.com/pingcap/tidb-operator/pull/2157
https://github.com/pingcap/tidb-operator/pull/2137
https://github.com/pingcap/tidb-operator/pull/2085
https://github.com/pingcap/tidb-operator/pull/1504
https://github.com/pingcap/tidb-operator/pull/2148
https://github.com/pingcap/tidb-operator/pull/2135
https://github.com/pingcap/tidb-operator/pull/2122
https://github.com/pingcap/tidb-operator/pull/2108
https://github.com/pingcap/tidb-operator/pull/2076

• Add the tlsClient.tlsSecret field in the backup and restore spec, which supports
specifying a secret name that includes the cert (#2003, [@shuijing198799](https://github.com/shuijing198799))

• Remove spec.br.pd, spec.br.ca, spec.br.cert, spec.br.key and add spec
↪→ .br.cluster, spec.br.clusterNamespace for the Backup, Restore and
BackupSchedule custom resources, which makes the BR configuration more rea-
sonable (#1836, [@shuijing198799](https://github.com/shuijing198799))

11.6.20.2 Other Notable Changes

• Use tidb-lightning in Restore instead of loader (#2068, [@Yisaer](https://github.com/Yisaer))
• Add cert-allowed-cn support to TiDB components (#2061, [@weekface](https://github.com/weekface))
• Fix the PD location-labels configuration (#1941, [@aylei](https://github.com/aylei))
• Able to pause and unpause TiDB cluster deployment via spec.paused (#2013, [@co-

fyc](https://github.com/cofyc))
• Default the max-backups for TiDB server configuration to 3 if the TiDB cluster is

deployed by CR (#2045, [@Yisaer](https://github.com/Yisaer))
• Able to configure custom environments for components (#2052, [@cofyc](https://github.com/cofyc))
• Fix the error that kubectl get tc cannot show correct images (#2031, [@Yisaer](https://github.com/Yisaer))

1. Default the spec.tikv.maxFailoverCount and spec.tidb.maxFailoverCount
to 3 when they are not defined

2. Disable auto-failover when maxFailoverCount is set to 0 (#2015, [@Yisaer](https://github.com/Yisaer))

• Support deploying TiDB clusters with TidbCluster and TidbMonitor CRs via Ter-
raform on ACK (#2012, [@DanielZhangQD](https://github.com/DanielZhangQD))

• Update PDConfig for TidbCluster to PD v3.1.0 (#1928, [@Yisaer](https://github.com/Yisaer))
• Support deploying TiDB clusters with TidbCluster and TidbMonitor CRs via Ter-

raform on AWS (#2004, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Update TidbConfig for TidbCluster to TiDB v3.1.0 (#1906, [@Yisaer](https://github.com/Yisaer))
• Allow users to define resources for initContainers in TiDB initializer job (#1938, [@tful-

crand](https://github.com/tfulcrand))
• Add TLS support for Pump and Drainer (#1979, [@weekface](https://github.com/weekface))
• Add documents and examples for auto-scaler and initializer (#1772, [@Yisaer](https://github.com/Yisaer))

1. Add check to guarantee the NodePort won’t be changed if the serviceType of
TidbMonitor is NodePort

2. Add EnvVar sort to avoid the monitor rendering different results from the same
TidbMonitor spec

3. Fix the problem that the TidbMonitor LoadBalancer IP is not used (#1962,
[@Yisaer](https://github.com/Yisaer))

• Make tidb-initializer support TLS (#1931, [@weekface](https://github.com/weekface))

1. Fix the problem that Advanced StatefulSet cannot work with webhook
2. Change the Reaction for the Down State TiKV pod during deleting request in

webhook from admit to reject (#1963, [@Yisaer](https://github.com/Yisaer))

703

https://github.com/pingcap/tidb-operator/pull/2003
https://github.com/pingcap/tidb-operator/pull/1836
https://github.com/pingcap/tidb-operator/pull/2068
https://github.com/pingcap/tidb-operator/pull/2061
https://github.com/pingcap/tidb-operator/pull/1941
https://github.com/pingcap/tidb-operator/pull/2013
https://github.com/pingcap/tidb-operator/pull/2045
https://github.com/pingcap/tidb-operator/pull/2052
https://github.com/pingcap/tidb-operator/pull/2031
https://github.com/pingcap/tidb-operator/pull/2015
https://github.com/pingcap/tidb-operator/pull/2012
https://github.com/pingcap/tidb-operator/pull/1928
https://github.com/pingcap/tidb-operator/pull/2004
https://github.com/pingcap/tidb-operator/pull/1906
https://github.com/pingcap/tidb-operator/pull/1938
https://github.com/pingcap/tidb-operator/pull/1979
https://github.com/pingcap/tidb-operator/pull/1772
https://github.com/pingcap/tidb-operator/pull/1962
https://github.com/pingcap/tidb-operator/pull/1931
https://github.com/pingcap/tidb-operator/pull/1963

• Fix the drainer installation error when drainerName is set (#1961, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Fix some TiKV configuration keys in toml (#1887, [@aylei](https://github.com/aylei))
• Support using a remote directory as data source for tidb-lightning (#1629,

[@aylei](https://github.com/aylei))
• Add the API document and a script that generates documentation (#1945,

[@Yisaer](https://github.com/Yisaer))
• Add the tikv-importer chart (#1910, [@shonge](https://github.com/shonge))
• Fix the Prometheus scrape config issue while TLS is enabled (#1919, [@week-

face](https://github.com/weekface))
• Enable TLS between TiDB components (#1870, [@weekface](https://github.com/weekface))
• Fix the timeout error when .Values.admission.validation.pods is true during the

TiKV upgrade (#1875, [@Yisaer](https://github.com/Yisaer))
• Enable TLS for MySQL clients (#1878, [@weekface](https://github.com/weekface))
• Fix the bug which would cause broken TiDB image property (#1860, [@Yisaer](https://github.com/Yisaer))
• TidbMonitor would use its namespace for the targetRef if it is not defined (#1834,

[@Yisaer](https://github.com/Yisaer))
• Support starting tidb-server with --advertise-address parameter (#1859, [@Lin-

uxGit](https://github.com/LinuxGit))
• Backup/Restore: support configuring TiKV GC life time (#1835, [@LinuxGit](https://github.com/LinuxGit))
• Support no secret for S3/Ceph when the OIDC authentication is used (#1817,

[@tirsen](https://github.com/tirsen))

1. Change the setting from the previous admission.hookEnabled.pods to the
admission.validation.pods

2. Change the setting from the previous admission.hookEnabled.statefulSets to
the admission.validation.statefulSets

3. Change the setting from the previous admission.hookEnabled.validating to
the admission.validation.pingcapResources

4. Change the setting from the previous admission.hookEnabled.defaulting to
the admission.mutation.pingcapResources

5. Change the setting from the previous admission.failurePolicy.defaulting to
the admission.failurePolicy.mutation

6. Change the setting from the previous admission.failurePolicy.* to the
admission.failurePolicy.validation (#1832, [@Yisaer](https://github.com/Yisaer))

• Enable TidbCluster defaulting mutation by default which is recommended when ad-
mission webhook is used (#1816, [@Yisaer](https://github.com/Yisaer))

• Fix a bug that TiKV fails to start while creating the cluster using CR with cluster
TLS enabled (#1808, [@weekface](https://github.com/weekface))

• Support using prefix in remote storage during backup/restore (#1790, [@DanielZhangQD](https://github.com/DanielZhangQD))

11.6.21 TiDB Operator 1.1 Beta.2 Release Notes

Release date: February 26, 2020
TiDB Operator version: 1.1.0-beta.2

704

https://github.com/pingcap/tidb-operator/pull/1961
https://github.com/pingcap/tidb-operator/pull/1887
https://github.com/pingcap/tidb-operator/pull/1629
https://github.com/pingcap/tidb-operator/pull/1945
https://github.com/pingcap/tidb-operator/pull/1910
https://github.com/pingcap/tidb-operator/pull/1919
https://github.com/pingcap/tidb-operator/pull/1870
https://github.com/pingcap/tidb-operator/pull/1875
https://github.com/pingcap/tidb-operator/pull/1878
https://github.com/pingcap/tidb-operator/pull/1860
https://github.com/pingcap/tidb-operator/pull/1834
https://github.com/pingcap/tidb-operator/pull/1859
https://github.com/pingcap/tidb-operator/pull/1835
https://github.com/pingcap/tidb-operator/pull/1817
https://github.com/pingcap/tidb-operator/pull/1832
https://github.com/pingcap/tidb-operator/pull/1816
https://github.com/pingcap/tidb-operator/pull/1808
https://github.com/pingcap/tidb-operator/pull/1790

11.6.21.1 Action Required

• --default-storage-class-name and --default-backup-storage-class-name are
abandoned, and the storage class defaults to Kubernetes default storage class right
now. If you have set default storage class different than Kubernetes default storage
class, please set them explicitly in your TiDB cluster helm or YAML files. (#1581,
[@cofyc](https://github.com/cofyc))

11.6.21.2 Other Notable Changes

• Allow users to configure affinity and tolerations for Backup and Restore. (#1737,
[@Smana](https://github.com/Smana))

• Allow AdvancedStatefulSet and Admission Webhook to work together. (#1640,
[@Yisaer](https://github.com/Yisaer))

• Add a basic deployment example of managing TiDB cluster with custom resources
only. (#1573, [@aylei](https://github.com/aylei))

• Support TidbCluster Auto-scaling feature based on CPU average utilization load.
(#1731, [@Yisaer](https://github.com/Yisaer))

• Support user-defined TiDB server/client certificate (#1714, [@weekface](https://github.com/weekface))
• Add an option for tidb-backup chart to allow reusing existing PVC or not for restore

(#1708, [@mightyguava](https://github.com/mightyguava))
• Add resources, imagePullPolicy and nodeSelector field for tidb-backup chart

(#1705, [@mightyguava](https://github.com/mightyguava))
• Add more SANs (Subject Alternative Name) to TiDB server certificate (#1702, [@week-

face](https://github.com/weekface))
• Support automatically migrating existing Kubernetes StatefulSets to Advanced State-

fulSets when AdvancedStatfulSet feature is enabled (#1580, [@cofyc](https://github.com/cofyc))
• Fix the bug in admission webhook which causes PD pod deleting error and allow

the deleting pod to request for PD and TiKV when PVC is not found. (#1568,
[@Yisaer](https://github.com/Yisaer))

• Limit the restart rate for PD and TiKV - only one instance would be restarted each
time (#1532, [@Yisaer](https://github.com/Yisaer))

• Add default ClusterRef namespace for TidbMonitor as the same as it is deployed and
fix the bug that TidbMonitor’s Pod can’t be created when Spec.PrometheusSpec.
↪→ logLevel is missing. (#1500, [@Yisaer](https://github.com/Yisaer))

• Refine logs for TidbMonitor and TidbInitializer controller (#1493, [@aylei](https://github.com/aylei))
• Avoid unnecessary updates to Service and Deployment of discovery (#1499,

[@aylei](https://github.com/aylei))
• Remove some update events that are not very useful (#1486, [@weekface](https://github.com/weekface))

11.6.22 TiDB Operator 1.1 Beta.1 Release Notes

Release date: January 8, 2020
TiDB Operator version: 1.1.0-beta.1

705

https://github.com/pingcap/tidb-operator/pull/1581
https://github.com/pingcap/tidb-operator/pull/1737
https://github.com/pingcap/tidb-operator/pull/1640
https://github.com/pingcap/tidb-operator/pull/1573
https://github.com/pingcap/tidb-operator/pull/1731
https://github.com/pingcap/tidb-operator/pull/1714
https://github.com/pingcap/tidb-operator/pull/1708
https://github.com/pingcap/tidb-operator/pull/1705
https://github.com/pingcap/tidb-operator/pull/1702
https://github.com/pingcap/tidb-operator/pull/1580
https://github.com/pingcap/tidb-operator/pull/1568
https://github.com/pingcap/tidb-operator/pull/1532
https://github.com/pingcap/tidb-operator/pull/1500
https://github.com/pingcap/tidb-operator/pull/1493
https://github.com/pingcap/tidb-operator/pull/1499
https://github.com/pingcap/tidb-operator/pull/1486

11.6.22.1 Action Required

• ACTION REQUIRED: Add the timezone support for all charts (#1122, [@week-
face](https://github.com/weekface)).
For the tidb-cluster chart, we already have the timezone option (UTC by default).
If the user does not change it to a different value (for example: Aisa/Shanghai), all
Pods will not be recreated.
If the user changes it to another value (for example: Aisa/Shanghai), all the related
Pods (add a TZ env) will be recreated (rolling update).
Regarding other charts, we don’t have a timezone option in their values.yaml. We
add the timezone option in this PR. No matter whether the user uses the old values
↪→ .yaml or the new values.yaml, all the related Pods (add a TZ env) will not be
recreated (rolling update).
The related Pods include pump, drainer, discovery, monitor, scheduled backup,
tidb-initializer, and tikv-importer.
All images’ time zone maintained by tidb-operator is UTC. If you use your own
images, you need to make sure that the time zone inside your images is UTC.

11.6.22.2 Other Notable Changes

• Support backup to S3 with Backup & Restore (BR) (#1280, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Add basic defaulting and validating for TidbCluster (#1429, [@aylei](https://github.com/aylei))
• Support scaling in/out with deleted slots feature of advanced StatefulSets (#1361,

[@cofyc](https://github.com/cofyc))
• Support initializing the TiDB cluster with TidbInitializer Custom Resource (#1403,

[@DanielZhangQD](https://github.com/DanielZhangQD))
• Refine the configuration schema of PD/TiKV/TiDB (#1411, [@aylei](https://github.com/aylei))
• Set the default name of the instance label key for tidbcluster-owned resources to the

cluster name (#1419, [@aylei](https://github.com/aylei))
• Extend the custom resource TidbCluster to support managing the Pump cluster

(#1269, [@aylei](https://github.com/aylei))
• Fix the default TiKV-importer configuration (#1415, [@aylei](https://github.com/aylei))
• Expose ephemeral-storage in resource configuration (#1398, [@aylei](https://github.com/aylei))
• Add e2e case of operating tidb-cluster without helm (#1396, [@aylei](https://github.com/aylei))
• Expose terraform Aliyun ACK version and specify the default version to ‘1.14.8-

aliyun.1’ (#1284, [@shonge](https://github.com/shonge))
• Refine error messages for the scheduler (#1373, [@weekface](https://github.com/weekface))
• Bind the cluster-role system:kube-scheduler to the service account tidb-scheduler

(#1355, [@shonge](https://github.com/shonge))
• Add a new CRD TidbInitializer (#1391, [@aylei](https://github.com/aylei))
• Upgrade the default backup image to pingcap/tidb-cloud-backup:20191217 and facili-

tate the -r option (#1360, [@aylei](https://github.com/aylei))

706

https://github.com/pingcap/tidb-operator/tree/master/charts
https://github.com/pingcap/tidb-operator/pull/1122
https://github.com/pingcap/br
https://github.com/pingcap/tidb-operator/pull/1280
https://github.com/pingcap/tidb-operator/pull/1429
https://github.com/pingcap/tidb-operator/pull/1361
https://github.com/pingcap/tidb-operator/pull/1403
https://github.com/pingcap/tidb-operator/pull/1411
https://github.com/pingcap/tidb-operator/pull/1419
https://github.com/pingcap/tidb-operator/pull/1269
https://github.com/pingcap/tidb-operator/pull/1415
https://github.com/pingcap/tidb-operator/pull/1398
https://github.com/pingcap/tidb-operator/pull/1396
https://github.com/pingcap/tidb-operator/pull/1284
https://github.com/pingcap/tidb-operator/pull/1373
https://github.com/pingcap/tidb-operator/pull/1355
https://github.com/pingcap/tidb-operator/pull/1391
https://github.com/pingcap/tidb-operator/pull/1360

• Fix Docker ulimit configuring for the latest EKS AMI (#1349, [@aylei](https://github.com/aylei))
• Support sync pump status to tidb-cluster (#1292, [@shonge](https://github.com/shonge))
• Support automatically creating and reconciling the tidb-discovery-service for tidb-

↪→ controller-manager (#1322, [@aylei](https://github.com/aylei))
• Make backup and restore more universal and secure (#1276, [@onlymellb](https://github.com/onlymellb))
• Manage PD and TiKV configurations in the TidbCluster resource (#1330,

[@aylei](https://github.com/aylei))
• Support managing the configuration of tidb-server in the TidbCluster resource

(#1291, [@aylei](https://github.com/aylei))
• Add schema for configuration of TiKV (#1306, [@aylei](https://github.com/aylei))
• Wait for the TiDB host:port to be opened before processing to initialize TiDB to

speed up TiDB initialization (#1296, [@cofyc](https://github.com/cofyc))
• Remove DinD related scripts (#1283, [@shonge](https://github.com/shonge))
• Allow retrieving credentials from metadata on AWS and GCP (#1248, [@greg-

webs](https://github.com/gregwebs))
• Add the privilege to operate configmap for tidb-controller-manager (#1275,

[@aylei](https://github.com/aylei))
• Manage TiDB service in tidb-controller-manager (#1242, [@aylei](https://github.com/aylei))
• Support the cluster-level setting for components (#1193, [@aylei](https://github.com/aylei))
• Get the time string from the current time instead of the Pod name (#1229, [@week-

face](https://github.com/weekface))
• Operator will not resign the ddl owner anymore when upgrading tidb-servers

because tidb-server will transfer ddl owner automatically on shutdown (#1239,
[@aylei](https://github.com/aylei))

• Fix the Google terraform module use_ip_aliases error (#1206, [@tennix](https://github.com/tennix))
• Upgrade the default TiDB version to v3.0.5 (#1179, [@shonge](https://github.com/shonge))
• Upgrade the base system of Docker images to the latest stable (#1178, [@AstroPro-

fundis](https://github.com/AstroProfundis))
• tkctl get TiKV now can show store state for each TiKV Pod (#916, [@Yisaer](https://github.com/Yisaer))
• Add an option to monitor across namespaces (#907, [@gregwebs](https://github.com/gregwebs))
• Add the STOREID column to show the store ID for each TiKV Pod in tkctl get TiKV

(#842, [@Yisaer](https://github.com/Yisaer))
• Users can designate permitting host in chart values.tidb.permitHost (#779,

[@shonge](https://github.com/shonge))
• Add the zone label and reserved resources arguments to kubelet (#871, [@aylei](https://github.com/aylei))
• Fix an issue that kubeconfig may be destroyed in the apply phrase (#861, [@co-

fyc](https://github.com/cofyc))
• Support canary release for the TiKV component (#869, [@onlymellb](https://github.com/onlymellb))
• Make the latest charts compatible with the old controller manager (#856, [@only-

mellb](https://github.com/onlymellb))
• Add the basic support of TLS encrypted connections in the TiDB cluster (#750, [@As-

troProfundis](https://github.com/AstroProfundis))
• Support tidb-operator to spec nodeSelector, affinity and tolerations (#855,

[@shonge](https://github.com/shonge))
• Support configuring resources requests and limits for all containers of the TiDB cluster

707

https://github.com/pingcap/tidb-operator/pull/1349
https://github.com/pingcap/tidb-operator/pull/1292
https://github.com/pingcap/tidb-operator/pull/1322
https://github.com/pingcap/tidb-operator/pull/1276
https://github.com/pingcap/tidb-operator/pull/1330
https://github.com/pingcap/tidb-operator/pull/1291
https://github.com/pingcap/tidb-operator/pull/1306
https://github.com/pingcap/tidb-operator/pull/1296
https://github.com/pingcap/tidb-operator/pull/1283
https://github.com/pingcap/tidb-operator/pull/1248
https://github.com/pingcap/tidb-operator/pull/1275
https://github.com/pingcap/tidb-operator/pull/1242
https://github.com/pingcap/tidb-operator/pull/1193
https://github.com/pingcap/tidb-operator/pull/1229
https://github.com/pingcap/tidb-operator/pull/1239
https://github.com/pingcap/tidb-operator/pull/1206
https://github.com/pingcap/tidb-operator/pull/1179
https://github.com/pingcap/tidb-operator/pull/1178
https://github.com/pingcap/tidb-operator/pull/916
https://github.com/pingcap/tidb-operator/pull/907
https://github.com/pingcap/tidb-operator/pull/842
https://github.com/pingcap/tidb-operator/pull/779
https://github.com/pingcap/tidb-operator/pull/871
https://github.com/pingcap/tidb-operator/pull/861
https://github.com/pingcap/tidb-operator/pull/869
https://github.com/pingcap/tidb-operator/pull/856
https://github.com/pingcap/tidb-operator/pull/750
https://github.com/pingcap/tidb-operator/pull/855

(#853, [@aylei](https://github.com/aylei))
• Support using Kind (Kubernetes IN Docker) to set up a testing environment (#791,

[@xiaojingchen](https://github.com/xiaojingchen))
• Support ad-hoc data source to be restored with the tidb-lightning chart (#827, [@ten-

nix](https://github.com/tennix))
• Add the tikvGCLifeTime option (#835, [@weekface](https://github.com/weekface))
• Update the default backup image to pingcap/tidb-cloud-backup:20190828 (#846,

[@aylei](https://github.com/aylei))
• Fix the Pump/Drainer data directory to avoid potential data loss (#826, [@aylei](https://github.com/aylei))
• Fix the issue thattkctl outputs nothing with the -oyaml or -ojson flag and support

viewing details of a specific Pod or PV, also improve the output of the tkctl get
command (#822, [@onlymellb](https://github.com/onlymellb))

• Add recommendations options to mydumper: -t 16 -F 64 --skip-tz-utc (#828,
[@weekface](https://github.com/weekface))

• Support zonal and multi-zonal clusters in deploy/gcp (#809, [@cofyc](https://github.com/cofyc))
• Fix ad-hoc backup when the default backup name is used (#836, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Add the support for tidb-lightning (#817, [@tennix](https://github.com/tennix))
• Support restoring the TiDB cluster from a specified scheduled backup directory (#804,

[@onlymellb](https://github.com/onlymellb))
• Fix an exception in the log of tkctl (#797, [@onlymellb](https://github.com/onlymellb))
• Add the hostNetwork field in PD/TiKV/TiDB spec to make it possible to run TiDB

components in host network (#774, [@cofyc](https://github.com/cofyc))
• Use mdadm and RAID rather than LVM when it is available on GKE (#789, [@greg-

webs](https://github.com/gregwebs))
• Users can now expand cloud storage PV dynamically by increasing the PVC storage

size (#772, [@tennix](https://github.com/tennix))
• Support configuring node image types for PD/TiDB/TiKV node pools (#776, [@co-

fyc](https://github.com/cofyc))
• Add a script to delete unused disk for GKE (#771, [@gregwebs](https://github.com/gregwebs))
• Support binlog.pump.config and binlog.drainer.config configurations for Pump

and Drainer (#693, [@weekface](https://github.com/weekface))
• Prevent the Pump progress from exiting with 0 if the Pump becomes offline (#769,

[@weekface](https://github.com/weekface))
• Introduce a new helm chart, tidb-drainer, to facilitate multiple Drainers management

(#744, [@aylei](https://github.com/aylei))
• Add the backup-manager tool to support backing up, restoring, and cleaning backup

data (#694, [@onlymellb](https://github.com/onlymellb))
• Add affinity to Pump/Drainer configuration (#741, [@weekface](https://github.com/weekface))
• Fix the TiKV scaling failure in some cases after TiKV failover (#726, [@only-

mellb](https://github.com/onlymellb))
• Fix error handling for UpdateService (#718, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Reduce e2e run time from 60 m to 20 m (#713, [@weekface](https://github.com/weekface))
• Add the AdvancedStatefulset feature to use advanced StatefulSet instead of Kuber-

netes builtin StatefulSet (#1108, [@cofyc](https://github.com/cofyc))
• Enable auto generate certificates for the TiDB cluster (#782, [@AstroPro-

708

https://github.com/pingcap/tidb-operator/pull/853
https://github.com/pingcap/tidb-operator/pull/791
https://github.com/pingcap/tidb-operator/pull/827
https://github.com/pingcap/tidb-operator/pull/835
https://github.com/pingcap/tidb-operator/pull/846
https://github.com/pingcap/tidb-operator/pull/826
https://github.com/pingcap/tidb-operator/pull/822
https://github.com/pingcap/tidb-operator/pull/828
https://github.com/pingcap/tidb-operator/pull/809
https://github.com/pingcap/tidb-operator/pull/836
https://github.com/pingcap/tidb-operator/pull/817
https://github.com/pingcap/tidb-operator/pull/804
https://github.com/pingcap/tidb-operator/pull/797
https://github.com/pingcap/tidb-operator/pull/774
https://github.com/pingcap/tidb-operator/pull/789
https://github.com/pingcap/tidb-operator/pull/772
https://github.com/pingcap/tidb-operator/pull/776
https://github.com/pingcap/tidb-operator/pull/771
https://github.com/pingcap/tidb-operator/pull/693
https://github.com/pingcap/tidb-operator/pull/769
https://github.com/pingcap/tidb-operator/pull/744
https://github.com/pingcap/tidb-operator/pull/694
https://github.com/pingcap/tidb-operator/pull/741
https://github.com/pingcap/tidb-operator/pull/726
https://github.com/pingcap/tidb-operator/pull/718
https://github.com/pingcap/tidb-operator/pull/713
https://github.com/pingcap/tidb-operator/pull/1108
https://github.com/pingcap/tidb-operator/pull/782

fundis](https://github.com/AstroProfundis))
• Support backup to gcs (#1127, [@onlymellb](https://github.com/onlymellb))
• Support configuring net.ipv4.tcp_keepalive_time and net.core.somaxconn for

TiDB and configuring net.core.somaxconn for TiKV (#1107, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Add basic e2e tests for aggregated apiserver (#1109, [@aylei](https://github.com/aylei))
• Add the enablePVReclaim option to reclaim PV when tidb-operator scales in TiKV

or PD (#1037, [@onlymellb](https://github.com/onlymellb))
• Unify all S3 compliant storage to support backup and restore (#1088, [@only-

mellb](https://github.com/onlymellb))
• Set podSecurityContext to nil by default (#1079, [@aylei](https://github.com/aylei))
• Add tidb-apiserver in the tidb-operator chart (#1083, [@aylei](https://github.com/aylei))
• Add new component TiDB aggregated apiserver (#1048, [@aylei](https://github.com/aylei))
• Fix the issue that the tkctl version does not work when the release name is un-wanted

(#1065, [@aylei](https://github.com/aylei))
• Support pause for backup schedule (#1047, [@onlymellb](https://github.com/onlymellb))
• Fix the issue that TiDB Loadbalancer is empty in terraform output (#1045,

[@DanielZhangQD](https://github.com/DanielZhangQD))
• Fix that the create_tidb_cluster_release variable in AWS terraform script does

not work (#1062, [@aylei](https://github.com/aylei))
• Enable ConfigMapRollout by default in the stability test (#1036, [@aylei](https://github.com/aylei))
• Migrate to use app/v1 and do not support Kubernetes before 1.9 anymore (#1012,

[@Yisaer](https://github.com/Yisaer))
• Suspend the ReplaceUnhealthy process for AWS TiKV auto-scaling-group (#1014,

[@aylei](https://github.com/aylei))
• Change the tidb-monitor-reloader image to pingcap/tidb-monitor-reloader:v1.0.1

(#898, [@qiffang](https://github.com/qiffang))
• Add some sysctl kernel parameter settings for tuning (#1016, [@tennix](https://github.com/tennix))
• Support maximum retention time backups for backup schedule (#979, [@only-

mellb](https://github.com/onlymellb))
• Upgrade the default TiDB version to v3.0.4 (#837, [@shonge](https://github.com/shonge))
• Fix values file customization for tidb-operator on Aliyun (#971, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Add the maxFailoverCount limit to TiKV (#965, [@weekface](https://github.com/weekface))
• Support setting custom tidb-operator values in terraform script for AWS (#946,

[@aylei](https://github.com/aylei))
• Convert the TiKV capacity into MiB when it is not a multiple of GiB (#942, [@co-

fyc](https://github.com/cofyc))
• Fix Drainer misconfiguration (#939, [@weekface](https://github.com/weekface))
• Support correctly deploying tidb-operator and tidb-cluster with customized values.

↪→ yaml (#959, [@DanielZhangQD](https://github.com/DanielZhangQD))
• Support specifying SecurityContext for PD, TiKV and TiDB Pods and enable tcp

keepalive for AWS (#915, [@aylei](https://github.com/aylei))

709

https://github.com/pingcap/tidb-operator/pull/1127
https://github.com/pingcap/tidb-operator/pull/1107
https://github.com/pingcap/tidb-operator/pull/1109
https://github.com/pingcap/tidb-operator/pull/1037
https://github.com/pingcap/tidb-operator/pull/1088
https://github.com/pingcap/tidb-operator/pull/1079
https://github.com/pingcap/tidb-operator/pull/1083
https://github.com/pingcap/tidb-operator/pull/1048
https://github.com/pingcap/tidb-operator/pull/1065
https://github.com/pingcap/tidb-operator/pull/1047
https://github.com/pingcap/tidb-operator/pull/1045
https://github.com/pingcap/tidb-operator/pull/1062
https://github.com/pingcap/tidb-operator/pull/1036
https://github.com/pingcap/tidb-operator/pull/1012
https://github.com/pingcap/tidb-operator/pull/1014
https://github.com/pingcap/tidb-operator/pull/898
https://github.com/pingcap/tidb-operator/pull/1016
https://github.com/pingcap/tidb-operator/pull/979
https://github.com/pingcap/tidb-operator/pull/837
https://github.com/pingcap/tidb-operator/pull/971
https://github.com/pingcap/tidb-operator/pull/965
https://github.com/pingcap/tidb-operator/pull/946
https://github.com/pingcap/tidb-operator/pull/942
https://github.com/pingcap/tidb-operator/pull/939
https://github.com/pingcap/tidb-operator/pull/959
https://github.com/pingcap/tidb-operator/pull/915

11.7 v1.0

11.7.1 TiDB Operator 1.0.7 Release Notes

Release date: June 16, 2020
TiDB Operator version: 1.0.7

11.7.1.1 Notable Changes

• Fix alert rules lost after rolling upgrade (#2715)
• Upgrade local volume provisioner to 2.3.4 (#1778)
• Fix operator failover config invalid (#1877)
• Remove unnecessary duplicated docs (#2100)
• Update doc links and image in readme (#2106)
• Emit events when PD failover (#1466)
• Fix some broken urls (#1501)
• Remove some not very useful update events (#1486)

11.7.2 TiDB Operator 1.0.6 Release Notes

Release date: December 27, 2019
TiDB Operator version: 1.0.6

11.7.2.1 v1.0.6 What’s New
Action required: Users should migrate the configs in values.yaml of previous chart

releases to the new values.yaml of the new chart. Otherwise, the monitor pods might fail
when you upgrade the monitor with the new chart.

For example, configs in the old values.yaml file:
monitor:
...
initializer:
image: pingcap/tidb-monitor-initializer:v3.0.5
imagePullPolicy: IfNotPresent

...

After migration, configs in the new values.yaml file should be as follows:
monitor:
...
initializer:
image: pingcap/tidb-monitor-initializer:v3.0.5
imagePullPolicy: Always

710

https://github.com/pingcap/tidb-operator/pull/2715
https://github.com/pingcap/tidb-operator/pull/1778
https://github.com/pingcap/tidb-operator/pull/1877
https://github.com/pingcap/tidb-operator/pull/2100
https://github.com/pingcap/tidb-operator/pull/2106
https://github.com/pingcap/tidb-operator/pull/1466
https://github.com/pingcap/tidb-operator/pull/1501
https://github.com/pingcap/tidb-operator/pull/1486

config:
K8S_PROMETHEUS_URL: http://prometheus-k8s.monitoring.svc:9090

...

11.7.2.1.1 Monitor

• Enable alert rule persistence (#898)
• Add node & pod info in TiDB Grafana (#885)

11.7.2.1.2 TiDB Scheduler

• Refine scheduler error messages (#1373)

11.7.2.1.3 Compatibility

• Fix the compatibility issue in Kubernetes v1.17 (#1241)
• Bind the system:kube-scheduler ClusterRole to the tidb-scheduler service account

(#1355)

11.7.2.1.4 TiKV Importer

• Fix the default tikv-importer configuration (#1415)

11.7.2.1.5 E2E

• Ensure pods unaffected when upgrading (#955)

11.7.2.1.6 CI

• Move the release CI script from Jenkins into the tidb-operator repository (#1237)
• Adjust the release CI script for the release-1.0 branch (#1320)

11.7.3 TiDB Operator 1.0.5 Release Notes

Release date: December 11, 2019
TiDB Operator version: 1.0.5

11.7.3.1 v1.0.5 What’s New
There is no action required if you are upgrading from v1.0.4.

711

https://github.com/pingcap/tidb-operator/pull/898
https://github.com/pingcap/tidb-operator/pull/885
https://github.com/pingcap/tidb-operator/pull/1373
https://github.com/pingcap/tidb-operator/pull/1241
https://github.com/pingcap/tidb-operator/pull/1355
https://github.com/pingcap/tidb-operator/pull/1415
https://github.com/pingcap/tidb-operator/pull/955
https://github.com/pingcap/tidb-operator/pull/1237
https://github.com/pingcap/tidb-operator/pull/1320

11.7.3.1.1 Scheduled Backup

• Fix the issue that backup failed when clusterName is too long (#1229)

11.7.3.1.2 TiDB Binlog

• It is recommended that TiDB and Pump be deployed on the same node through
the affinity feature and Pump be dispersed on different nodes through the anti
↪→ -affinity feature. At most only one Pump instance is allowed on each node. We
added a guide to the chart. (#1251)

11.7.3.1.3 Compatibility

• Fix tidb-scheduler RBAC permission in Kubernetes v1.16 (#1282)
• Do not set DNSPolicy if hostNetwork is disabled to keep backward compatibility

(#1287)

11.7.3.1.4 E2E

• Fix e2e nil point dereference (#1221)

11.7.4 TiDB Operator 1.0.4 Release Notes

Release date: November 23, 2019
TiDB Operator version: 1.0.4

11.7.4.1 v1.0.4 What’s New

11.7.4.1.1 Action Required
There is no action required if you are upgrading from v1.0.3.

11.7.4.1.2 Highlights
#1202 introduced HostNetwork support, which offers better performance compared to

the Pod network. Check out our benchmark report for details.

Note:
Due to this issue of Kubernetes, the Kubernetes cluster must be one of the
following versions to enable HostNetwork of the TiDB cluster:

712

https://github.com/pingcap/tidb-operator/pull/1229
https://github.com/pingcap/tidb-operator/pull/1251
https://github.com/pingcap/tidb-operator/pull/1282
https://github.com/pingcap/tidb-operator/pull/1287
https://github.com/pingcap/tidb-operator/pull/1221
https://github.com/pingcap/tidb-operator/pull/1202
https://github.com/kubernetes/kubernetes/issues/78420

• v1.13.11 or later
• v1.14.7 or later
• v1.15.4 or later
• any version since v1.16.0

#1175 added the podSecurityContext support for TiDB cluster Pods. We recommend
setting the namespaced kernel parameters for TiDB cluster Pods according to our Environ-
ment Recommendation.

New Helm chart tidb-lightning brings TiDB Lightning support for TiDB on Kuber-
netes. Check out the document for detailed user guide.

Another new Helm chart tidb-drainer brings multiple drainers support for TiDB Binlog
on Kubernetes. Check out the document for detailed user guide.

11.7.4.1.3 Improvements

• Support HostNetwork (#1202)
• Support configuring sysctls for Pods and enable net.* (#1175)
• Add tidb-lightning support (#1161)
• Add new helm chart tidb-drainer to support multiple drainers (#1160)

11.7.4.2 Detailed Bug Fixes and Changes

• Add e2e scripts and simplify the e2e Jenkins file (#1174)
• Fix the pump/drainer data directory to avoid data loss caused by bad configuration

(#1183)
• Add init sql case to e2e (#1199)
• Keep the instance label of drainer same with the TiDB cluster in favor of monitoring

(#1170)
• Set podSecurityContext to nil by default in favor of backward compatibility (#1184)

11.7.4.3 Additional Notes for Users of v1.1.0.alpha branch
For historical reasons, v1.1.0.alpha is a hot-fix branch and got this name by mistake.

All fixes in that branch are cherry-picked to v1.0.4 and the v1.1.0.alpha branch will be
discarded to keep things clear.

We strongly recommend you to upgrade to v1.0.4 if you are using any version under
v1.1.0.alpha.

v1.0.4 introduces the following fixes comparing to v1.1.0.alpha.3:

• Support HostNetwork (#1202)

713

https://github.com/pingcap/tidb-operator/pull/1175
https://docs.pingcap.com/tidb/stable/tidb-lightning-overview
https://github.com/pingcap/tidb-operator/pull/1202
https://github.com/pingcap/tidb-operator/pull/1175
https://github.com/pingcap/tidb-operator/pull/1161
https://github.com/pingcap/tidb-operator/pull/1160
https://github.com/pingcap/tidb-operator/pull/1174
https://github.com/pingcap/tidb-operator/pull/1183
https://github.com/pingcap/tidb-operator/pull/1199
https://github.com/pingcap/tidb-operator/pull/1170
https://github.com/pingcap/tidb-operator/pull/1184
https://github.com/pingcap/tidb-operator/pull/1202

• Add the permit host option for tidb-initializer job (#779)
• Fix drainer misconfiguration in tidb-cluster chart (#945)
• Set the default externalTrafficPolicy to be Local for TiDB services (#960)
• Fix tidb-operator crash when users modify sts upgrade strategy improperly (#969)
• Add the maxFailoverCount limit to TiKV (#976)
• Fix values file customization for tidb-operator on Aliyun (#983)
• Do not limit failover count when maxFailoverCount = 0 (#978)
• Suspend the ReplaceUnhealthy process for TiKV auto-scaling-group on AWS (#1027)
• Fix the issue that the create_tidb_cluster_release variable does not work (#1066))
• Add v1 to statefulset apiVersions (#1056)
• Add timezone support (#1126)

11.7.5 TiDB Operator 1.0.3 Release Notes

Release date: November 13, 2019
TiDB Operator version: 1.0.3

11.7.5.1 v1.0.3 What’s New

11.7.5.1.1 Action Required
ACTION REQUIRED: This release upgrades default TiDB version to v3.0.5 which

fixed a serious bug in TiDB. So if you are using TiDB v3.0.4 or prior versions, you must
upgrade to v3.0.5.

ACTION REQUIRED: This release adds the timezone support for all charts.
For existing TiDB clusters. If the timezone in tidb-cluster/values.yaml has been

customized to other timezones instead of the default UTC, then upgrading tidb-operator will
trigger a rolling update for the related pods.

The related pods include pump, drainer, discovery, monitor, scheduled backup, tidb
↪→ -initializer, and tikv-importer.

The time zone for all images maintained by tidb-operator should be UTC. If you use
your own images, you need to make sure that the corresponding time zones are UTC.

11.7.5.1.2 Improvements

• Add the timezone support for all containers of the TiDB cluster
• Support configuring resource requests and limits for all containers of the TiDB cluster

11.7.5.2 Detailed Bug Fixes and Changes

• Upgrade default TiDB version to v3.0.5 (#1132)

714

https://github.com/pingcap/tidb-operator/pull/779
https://github.com/pingcap/tidb-operator/pull/945
https://github.com/pingcap/tidb-operator/pull/960
https://github.com/pingcap/tidb-operator/pull/969
https://github.com/pingcap/tidb-operator/pull/976
https://github.com/pingcap/tidb-operator/pull/983
https://github.com/pingcap/tidb-operator/pull/978
https://github.com/pingcap/tidb-operator/pull/1027
https://github.com/pingcap/tidb-operator/pull/1066
https://github.com/pingcap/tidb-operator/pull/1056
https://github.com/pingcap/tidb-operator/pull/1027
https://github.com/pingcap/tidb/pull/12597
https://github.com/pingcap/tidb-operator/tree/master/charts
https://github.com/pingcap/tidb-operator/pull/1132

• Add the timezone support for all containers of the TiDB cluster (#1122)
• Support configuring resource requests and limits for all containers of the TiDB cluster

(#853)

11.7.6 TiDB Operator 1.0.2 Release Notes

Release date: November 1, 2019
TiDB Operator version: 1.0.2

11.7.6.1 v1.0.2 What’s New

11.7.6.1.1 Action Required
The AWS Terraform script uses auto-scaling-group for all components (PD/TiKV/TiD-

B/monitor). When an ec2 instance fails the health check, the instance will be replaced. This
is helpful for those applications that are stateless or use EBS volumes to store data.

But a TiKV Pod uses instance store to store its data. When an instance is replaced, all
the data on its store will be lost. TiKV has to resync all data to the newly added instance.
Though TiDB is a distributed database and can work when a node fails, resyncing data can
cost much if the dataset is large. Besides, the ec2 instance may be recovered to a healthy
state by rebooting.

So we disabled the auto-scaling-group’s replacing behavior in v1.0.2.
Auto-scaling-group scaling process can also be suspended according to its documentation

if you are using v1.0.1 or prior versions.

11.7.6.1.2 Improvements

• Suspend ReplaceUnhealthy process for AWS TiKV auto-scaling-group
• Add a new VM manager qm in stability test
• Add tikv.maxFailoverCount limit to TiKV
• Set the default externalTrafficPolicy to be Local for TiDB service in AWS/GCP/Aliyun
• Add provider and module versions for AWS

11.7.6.1.3 Bug Fixes

• Fix the issue that tkctl version does not work when the release name is un-wanted
• Migrate statefulsets apiVersion to app/v1 which fixes compatibility with Kubernetes

1.16 and above versions
• Fix the issue that the create_tidb_cluster_release variable in AWS Terraform

script does not work
• Fix compatibility issues by adding v1beta1 to statefulset apiVersions

715

https://github.com/pingcap/tidb-operator/pull/1122
https://github.com/pingcap/tidb-operator/pull/853
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-suspend-resume-processes.html

• Fix the issue that TiDB Loadbalancer is empty in Terraform output
• Fix a compatibility issue of TiKV maxFailoverCount
• Fix Terraform providers version constraint issues for GCP and Aliyun
• Fix values file customization for tidb-operator on Aliyun
• Fix tidb-operator crash when users modify statefulset upgrade strategy improperly
• Fix drainer misconfiguration

11.7.6.2 Detailed Bug Fixes and Changes

• Fix the issue that tkctl version does not work when the release name is un-wanted
(#1065)

• Fix the issue that the create_tidb_cluster_release variable in AWS terraform
script does not work (#1062)

• Fix compatibility issues for (#1012): add v1beta1 to statefulset apiVersions (#1054)
• Enable ConfigMapRollout by default in stability test (#1036)
• Fix the issue that TiDB Loadbalancer is empty in Terraform output (#1045)
• Migrate statefulsets apiVersion to app/v1 which fixes compatibility with Kubernetes

1.16 and above versions (#1012)
• Only expect TiDB cluster upgrade to be complete when rolling back wrong configura-

tion in stability test (#1030)
• Suspend ReplaceUnhealthy process for AWS TiKV auto-scaling-group (#1014)
• Add a new VM manager qm in stability test (#896)
• Fix provider versions constraint issues for GCP and Aliyun (#959)
• Fix values file customization for tidb-operator on Aliyun (#971)
• Fix a compatibility issue of TiKV tikv.maxFailoverCount (#977)
• Add tikv.maxFailoverCount limit to TiKV (#965)
• Fix tidb-operator crash when users modify statefulset upgrade strategy improperly

(#912)
• Set the default externalTrafficPolicy to be Local for TiDB service in AWS/GCP/Aliyun

(#947)
• Add note about setting PV reclaim policy to retain (#911)
• Fix drainer misconfiguration (#939)
• Add provider and module versions for AWS (#926)

11.7.7 TiDB Operator 1.0.1 Release Notes

Release date: September 17, 2019
TiDB Operator version: 1.0.1

11.7.7.1 v1.0.1 What’s New

11.7.7.1.1 Action Required

716

https://github.com/pingcap/tidb-operator/pull/1065
https://github.com/pingcap/tidb-operator/pull/1062
https://github.com/pingcap/tidb-operator/pull/1012
https://github.com/pingcap/tidb-operator/pull/1054
https://github.com/pingcap/tidb-operator/pull/1036
https://github.com/pingcap/tidb-operator/pull/1045
https://github.com/pingcap/tidb-operator/pull/1012
https://github.com/pingcap/tidb-operator/pull/1030
https://github.com/pingcap/tidb-operator/pull/1014
https://github.com/pingcap/tidb-operator/pull/896
https://github.com/pingcap/tidb-operator/pull/959
https://github.com/pingcap/tidb-operator/pull/971
https://github.com/pingcap/tidb-operator/pull/977
https://github.com/pingcap/tidb-operator/pull/965
https://github.com/pingcap/tidb-operator/pull/912
https://github.com/pingcap/tidb-operator/pull/947
https://github.com/pingcap/tidb-operator/pull/911
https://github.com/pingcap/tidb-operator/pull/939
https://github.com/pingcap/tidb-operator/pull/926

• ACTION REQUIRED: We fixed a serious bug (#878) that could cause all PD and
TiKV pods to be accidentally deleted when kube-apiserver fails. This would cause
TiDB service outage. So if you are using v1.0.0 or prior versions, you must upgrade
to v1.0.1.

• ACTION REQUIRED: The backup tool image pingcap/tidb-cloud-backup uses a
forked version of Mydumper. The current version pingcap/tidb-cloud-backup
↪→ :20190610 contains a serious bug that could result in a missing column in the
exported data. This is fixed in #29. And the default image used now contains this
fixed version. So if you are using the old version image for backup, you must upgrade
to use pingcap/tidb-cloud-backup:201908028 and do a new full backup to avoid
potential data inconsistency.

11.7.7.1.2 Improvements

• Modularize GCP Terraform
• Add a script to remove orphaned k8s disks
• Support binlog.pump.config, binlog.drainer.config configurations for Pump and

Drainer
• Set the resource limit for the tidb-backup job
• Add affinity to Pump and Drainer configurations
• Upgrade local-volume-provisioner to v2.3.2
• Reduce e2e run time from 60m to 20m
• Prevent the Pump process from exiting with 0 if the Pump becomes offline
• Support expanding cloud storage PV dynamically by increasing PVC storage size
• Add the tikvGCLifeTime option to do backup
• Add important parameters to tikv.config and tidb.config in values.yaml
• Support restoring the TiDB cluster from a specified scheduled backup directory
• Enable cloud storage volume expansion & label local volume
• Document and improve HA algorithm
• Support specifying the permit host in the values.tidb.permitHost chart
• Add the zone label and reserved resources arguments to kubelet
• Update the default backup image to pingcap/tidb-cloud-backup:20190828

11.7.7.1.3 Bug Fixes

• Fix the TiKV scale-in failure in some cases after the TiKV failover
• Fix error handling for UpdateService
• Fix some orphan pods cleaner bugs
• Fix the bug of setting the StatefulSet partition
• Fix ad-hoc full backup failure due to incorrect claimName
• Fix the offline Pump: the Pump process will exit with 0 if going offline
• Fix an incorrect condition judgment

717

https://github.com/pingcap/tidb-operator/pull/878
https://hub.docker.com/r/pingcap/tidb-cloud-backup
https://github.com/pingcap/mydumper
https://github.com/pingcap/mydumper/pull/29

11.7.7.2 Detailed Bug Fixes and Changes

• Clean up tidb.pingcap.com/pod-scheduling annotation when the pod is scheduled
(#790)

• Update tidb-cloud-backup image tag (#846)
• Add the TiDB permit host option (#779)
• Add the zone label and reserved resources for nodes (#871)
• Fix some orphan pods cleaner bugs (#878)
• Fix the bug of setting the StatefulSet partition (#830)
• Add the tikvGCLifeTime option (#835)
• Add recommendations options to Mydumper (#828)
• Fix ad-hoc full backup failure due to incorrect claimName (#836)
• Improve tkctl get command output (#822)
• Add important parameters to TiKV and TiDB configurations (#786)
• Fix the issue that binlog.drainer.config is not supported in v1.0.0 (#775)
• Support restoring the TiDB cluster from a specified scheduled backup directory (#804)
• Fix extraLabels description in values.yaml (#763)
• Fix tkctl log output exception (#797)
• Add a script to remove orphaned K8s disks (#745)
• Enable cloud storage volume expansion & label local volume (#772)
• Prevent the Pump process from exiting with 0 if the Pump becomes offline (#769)
• Modularize GCP Terraform (#717)
• Support binlog.pump.config configurations for Pump and Drainer (#693)
• Remove duplicate key values (#758)
• Fix some typos (#738)
• Extend the waiting time of the CheckManualPauseTiDB process (#752)
• Set the resource limit for the tidb-backup job (#729)
• Fix e2e test compatible with v1.0.0 (#757)
• Make incremental backup test work (#764)
• Add retry logic for LabelNodes function (#735)
• Fix the TiKV scale-in failure in some cases (#726)
• Add affinity to Pump and Drainer (#741)
• Refine cleanup logic (#719)
• Inject a failure by pod annotation (#716)
• Update README links to point to correct pingcap.com/docs URLs for English and

Chinese (#732)
• Document and improve HA algorithm (#670)
• Fix an incorrect condition judgment (#718)
• Upgrade local-volume-provisioner to v2.3.2 (#696)
• Reduce e2e test run time (#713)
• Fix Terraform GKE scale-out issues (#711)
• Update wording and fix format for v1.0.0 (#709)
• Update documents (#705)

718

https://github.com/pingcap/tidb-operator/pull/790
https://github.com/pingcap/tidb-operator/pull/846
https://github.com/pingcap/tidb-operator/pull/779
https://github.com/pingcap/tidb-operator/pull/871
https://github.com/pingcap/tidb-operator/pull/878
https://github.com/pingcap/tidb-operator/pull/830
https://github.com/pingcap/tidb-operator/pull/835
https://github.com/pingcap/tidb-operator/pull/828
https://github.com/pingcap/tidb-operator/pull/836
https://github.com/pingcap/tidb-operator/pull/822
https://github.com/pingcap/tidb-operator/pull/786
https://github.com/pingcap/tidb-operator/pull/775
https://github.com/pingcap/tidb-operator/pull/804
https://github.com/pingcap/tidb-operator/pull/763
https://github.com/pingcap/tidb-operator/pull/797
https://github.com/pingcap/tidb-operator/pull/745
https://github.com/pingcap/tidb-operator/pull/772
https://github.com/pingcap/tidb-operator/pull/769
https://github.com/pingcap/tidb-operator/pull/717
https://github.com/pingcap/tidb-operator/pull/693
https://github.com/pingcap/tidb-operator/pull/758
https://github.com/pingcap/tidb-operator/pull/738
https://github.com/pingcap/tidb-operator/pull/752
https://github.com/pingcap/tidb-operator/pull/729
https://github.com/pingcap/tidb-operator/pull/757
https://github.com/pingcap/tidb-operator/pull/764
https://github.com/pingcap/tidb-operator/pull/735
https://github.com/pingcap/tidb-operator/pull/726
https://github.com/pingcap/tidb-operator/pull/741
https://github.com/pingcap/tidb-operator/pull/719
https://github.com/pingcap/tidb-operator/pull/716
https://github.com/pingcap/tidb-operator/pull/732
https://github.com/pingcap/tidb-operator/pull/670
https://github.com/pingcap/tidb-operator/pull/718
https://github.com/pingcap/tidb-operator/pull/696
https://github.com/pingcap/tidb-operator/pull/713
https://github.com/pingcap/tidb-operator/pull/711
https://github.com/pingcap/tidb-operator/pull/709
https://github.com/pingcap/tidb-operator/pull/705

11.7.8 TiDB Operator 1.0 GA Release Notes

Release date: July 30, 2019
TiDB Operator version: 1.0.0

11.7.8.1 v1.0.0 What’s New

11.7.8.1.1 Action Required

• ACTION REQUIRED: tikv.storeLabels was removed from values.yaml. You can
directly set it with location-labels in pd.config.

• ACTION REQUIRED: the --features flag of tidb-scheduler has been updated to the
key={true,false} format. You can enable the feature by appending =true.

• ACTION REQUIRED: you need to change the configurations in values.yaml of pre-
vious chart releases to the new values.yaml of the new chart. Otherwise, the config-
urations will be ignored when upgrading the TiDB cluster with the new chart.

The pd section in old values.yaml:
pd:
logLevel: info
maxStoreDownTime: 30m
maxReplicas: 3

The pd section in new values.yaml:
pd:
config: |
[log]
level = "info"
[schedule]
max-store-down-time = "30m"
[replication]
max-replicas = 3

The tikv section in old values.yaml:
tikv:
logLevel: info
syncLog: true
readpoolStorageConcurrency: 4
readpoolCoprocessorConcurrency: 8
storageSchedulerWorkerPoolSize: 4

The tikv section in new values.yaml:

719

tikv:
config: |
log-level = "info"
[server]
status-addr = "0.0.0.0:20180"
[raftstore]
sync-log = true
[readpool.storage]
high-concurrency = 4
normal-concurrency = 4
low-concurrency = 4
[readpool.coprocessor]
high-concurrency = 8
normal-concurrency = 8
low-concurrency = 8
[storage]
scheduler-worker-pool-size = 4

The tidb section in old values.yaml:
tidb:
logLevel: info
preparedPlanCacheEnabled: false
preparedPlanCacheCapacity: 100
txnLocalLatchesEnabled: false
txnLocalLatchesCapacity: "10240000"
tokenLimit: "1000"
memQuotaQuery: "34359738368"
txnEntryCountLimit: "300000"
txnTotalSizeLimit: "104857600"
checkMb4ValueInUtf8: true
treatOldVersionUtf8AsUtf8mb4: true
lease: 45s
maxProcs: 0

The tidb section in new values.yaml:
tidb:
config: |
token-limit = 1000
mem-quota-query = 34359738368
check-mb4-value-in-utf8 = true
treat-old-version-utf8-as-utf8mb4 = true
lease = "45s"
[log]

720

level = "info"
[prepared-plan-cache]
enabled = false
capacity = 100
[txn-local-latches]
enabled = false
capacity = 10240000
[performance]
txn-entry-count-limit = 300000
txn-total-size-limit = 104857600
max-procs = 0

The monitor section in old values.yaml:
monitor:
create: true
...

The monitor section in new values.yaml:
monitor:
create: true
initializer:
image: pingcap/tidb-monitor-initializer:v3.0.5
imagePullPolicy: IfNotPresent

reloader:
create: true
image: pingcap/tidb-monitor-reloader:v1.0.0
imagePullPolicy: IfNotPresent
service:
type: NodePort

...

Please check cluster configuration for detailed configuration.

11.7.8.1.2 Stability Test Cases Added

• Stop all etcds and kubelets

11.7.8.1.3 Improvements

• Simplify GKE SSD setup
• Modularization for AWS Terraform scripts
• Turn on the automatic failover feature by default

721

• Enable configmap rollout by default
• Enable stable scheduling by default
• Support multiple TiDB clusters management in Alibaba Cloud
• Enable AWS NLB cross zone load balancing by default

11.7.8.1.4 Bug Fixes

• Fix sysbench installation on bastion machine of AWS deployment
• Fix TiKV metrics monitoring in default setup

11.7.8.2 Detailed Bug Fixes and Changes

• Allow upgrading TiDB monitor along with TiDB version (#666)
• Specify the TiKV status address to fix monitoring (#695)
• Fix sysbench installation on bastion machine for AWS deployment (#688)
• Update the git add upstream command to use https in contributing document

(#690)
• Stability cases: stop kubelet and etcd (#665)
• Limit test cover packages (#687)
• Enable nlb cross zone load balancing by default (#686)
• Add TiKV raftstore parameters (#681)
• Support multiple TiDB clusters management for Alibaba Cloud (#658)
• Adjust the EndEvictLeader function (#680)
• Add more logs (#676)
• Update feature gates to support key={true,false} syntax (#677)
• Fix the typo meke to make (#679)
• Enable configmap rollout by default and quote configmap digest suffix (#678)
• Turn automatic failover on (#667)
• Sets node count for default pool equal to total desired node count (#673)
• Upgrade default TiDB version to v3.0.1 (#671)
• Remove storeLabels (#663)
• Change the way to configure TiDB/TiKV/PD in charts (#638)
• Modularize for AWS terraform scripts (#650)
• Change the DeferClose function (#653)
• Increase the default storage size for Pump from 10Gi to 20Gi in response to stop-

↪→ write-at-available-space (#657)
• Simplify local SDD setup (#644)

11.7.9 TiDB Operator 1.0 RC.1 Release Notes

Release date: July 12, 2019
TiDB Operator version: 1.0.0-rc.1

722

https://github.com/pingcap/tidb-operator/pull/666
https://github.com/pingcap/tidb-operator/pull/695
https://github.com/pingcap/tidb-operator/pull/688
https://github.com/pingcap/tidb-operator/pull/690
https://github.com/pingcap/tidb-operator/pull/665
https://github.com/pingcap/tidb-operator/pull/687
https://github.com/pingcap/tidb-operator/pull/686
https://github.com/pingcap/tidb-operator/pull/681
https://github.com/pingcap/tidb-operator/pull/658
https://github.com/pingcap/tidb-operator/pull/680
https://github.com/pingcap/tidb-operator/pull/676
https://github.com/pingcap/tidb-operator/pull/677
https://github.com/pingcap/tidb-operator/pull/679
https://github.com/pingcap/tidb-operator/pull/678
https://github.com/pingcap/tidb-operator/pull/667
https://github.com/pingcap/tidb-operator/pull/673
https://github.com/pingcap/tidb-operator/pull/671
https://github.com/pingcap/tidb-operator/pull/663
https://github.com/pingcap/tidb-operator/pull/638
https://github.com/pingcap/tidb-operator/pull/650
https://github.com/pingcap/tidb-operator/pull/653
https://github.com/pingcap/tidb-operator/pull/657
https://github.com/pingcap/tidb-operator/pull/644

11.7.9.1 v1.0.0-rc.1 What’s New

11.7.9.1.1 Stability test cases added

• Stop kube-proxy
• Upgrade tidb-operator

11.7.9.1.2 Improvements

• Get the TS first and increase the TiKV GC life time to 3 hours before the full backup
• Add endpoints list and watch permission for controller-manager
• Scheduler image is updated to use “k8s.gcr.io/kube-scheduler” which is much smaller

than “gcr.io/google-containers/hyperkube”. You must pre-pull the new scheduler im-
age into your airgap environment before upgrading.

• Full backup data can be uploaded to or downloaded from Amazon S3
• The terraform scripts support manage multiple TiDB clusters in one EKS cluster.
• Add tikv.storeLabels setting
• On GKE one can use COS for TiKV nodes with small data for faster startup
• Support force upgrade when PD cluster is unavailable.

11.7.9.1.3 Bug Fixes

• Fix unbound variable in the backup script
• Give kube-scheduler permission to update/patch pod status
• Fix tidb user of scheduled backup script
• Fix scheduled backup to ceph object storage
• Fix several usability problems for AWS terraform deployment
• Fix scheduled backup bug: segmentation fault when backup user’s password is empty

11.7.9.2 Detailed Bug Fixes and Changes

• Segmentation fault when backup user’s password is empty (#649)
• Small fixes for terraform AWS (#646)
• TiKV upgrade bug fix (#626)
• Improve the readability of some code (#639)
• Support force upgrade when PD cluster is unavailable (#631)
• Add new terraform version requirement to AWS deployment (#636)
• GKE local ssd provisioner for COS (#612)
• Remove TiDB version from build (#627)
• Refactor so that using the PD API avoids unnecessary imports (#618)
• Add storeLabels setting (#527)
• Update google-kubernetes-tutorial.md (#622)

723

https://github.com/pingcap/tidb-operator/pull/649
https://github.com/pingcap/tidb-operator/pull/646
https://github.com/pingcap/tidb-operator/pull/626
https://github.com/pingcap/tidb-operator/pull/639
https://github.com/pingcap/tidb-operator/pull/631
https://github.com/pingcap/tidb-operator/pull/636
https://github.com/pingcap/tidb-operator/pull/612
https://github.com/pingcap/tidb-operator/pull/627
https://github.com/pingcap/tidb-operator/pull/618
https://github.com/pingcap/tidb-operator/pull/527
https://github.com/pingcap/tidb-operator/pull/622

• Multiple clusters management in EKS (#616)
• Add Amazon S3 support to the backup/restore features (#606)
• Pass TiKV upgrade case (#619)
• Separate slow log with TiDB server log by default (#610)
• Fix the problem of unbound variable in backup script (#608)
• Fix notes of tidb-backup chart (#595)
• Give kube-scheduler ability to update/patch pod status. (#611)
• Use kube-scheduler image instead of hyperkube (#596)
• Fix pull request template grammar (#607)
• Local SSD provision: reduce network traffic (#601)
• Add operator upgrade case (#579)
• Fix a bug that TiKV status is always upgrade (#598)
• Build without debugger symbols (#592)
• Improve error messages (#591)
• Fix tidb user of scheduled backup script (#594)
• Fix dt case bug (#571)
• GKE terraform (#585)
• Fix scheduled backup to Ceph object storage (#576)
• Add stop kube-scheduler/kube-controller-manager test cases (#583)
• Add endpoints list and watch permission for controller-manager (#590)
• Refine fullbackup (#570)
• Make sure go modules files are always tidy and up to date (#588)
• Local SSD on GKE (#577)
• Stop kube-proxy case (#556)
• Fix resource unit (#573)
• Give local-volume-provisioner pod a QoS of Guaranteed (#569)
• Check PD endpoints status when it’s unhealthy (#545)

11.7.10 TiDB Operator 1.0 Beta.3 Release Notes

Release date: June 6, 2019
TiDB Operator version: 1.0.0-beta.3

11.7.10.1 v1.0.0-beta.3 What’s New

11.7.10.1.1 Action Required

• ACTION REQUIRED: nodeSelectorRequired was removed from values.yaml.
• ACTION REQUIRED: Comma-separated values support in nodeSelector has been

dropped, please use new-added affinity field which has a more expressive syntax.

11.7.10.1.2 A lot of stability cases added

724

https://github.com/pingcap/tidb-operator/pull/616
https://github.com/pingcap/tidb-operator/pull/606
https://github.com/pingcap/tidb-operator/pull/619
https://github.com/pingcap/tidb-operator/pull/610
https://github.com/pingcap/tidb-operator/pull/608
https://github.com/pingcap/tidb-operator/pull/595
https://github.com/pingcap/tidb-operator/pull/611
https://github.com/pingcap/tidb-operator/pull/596
https://github.com/pingcap/tidb-operator/pull/607
https://github.com/pingcap/tidb-operator/pull/601
https://github.com/pingcap/tidb-operator/pull/579
https://github.com/pingcap/tidb-operator/pull/598
https://github.com/pingcap/tidb-operator/pull/592
https://github.com/pingcap/tidb-operator/pull/591
https://github.com/pingcap/tidb-operator/pull/594
https://github.com/pingcap/tidb-operator/pull/571
https://github.com/pingcap/tidb-operator/pull/585
https://github.com/pingcap/tidb-operator/pull/576
https://github.com/pingcap/tidb-operator/pull/583
https://github.com/pingcap/tidb-operator/pull/590
https://github.com/pingcap/tidb-operator/pull/570
https://github.com/pingcap/tidb-operator/pull/588
https://github.com/pingcap/tidb-operator/pull/577
https://github.com/pingcap/tidb-operator/pull/556
https://github.com/pingcap/tidb-operator/pull/573
https://github.com/pingcap/tidb-operator/pull/569
https://github.com/pingcap/tidb-operator/pull/545

• ConfigMap rollout
• One PD replicas
• Stop TiDB Operator itself
• TiDB stable scheduling
• Disaster tolerance and data regions disaster tolerance
• Fix many bugs of stability test

11.7.10.1.3 New Features

• Introduce ConfigMap rollout management. With the feature gate open, configuration
file changes will be automatically applied to the cluster via a rolling update. Cur-
rently, the scheduler and replication configurations of PD can not be changed via
ConfigMap rollout. You can use pd-ctl to change these values instead, see #487 for
details.

• Support stable scheduling for pods of TiDB members in tidb-scheduler.
• Support adding additional pod annotations for PD/TiKV/TiDB, for example, fluent-

bit.io/parser.
• Support the affinity feature of k8s which can define the rule of assigning pods to nodes
• Allow pausing during TiDB upgrade

11.7.10.1.4 Documentation Improvement

• GCP one-command deployment
• Refine user guides
• Improve GKE, AWS, Aliyun guide

11.7.10.1.5 Pass User Acceptance Tests

11.7.10.1.6 Other improvements

• Upgrade default TiDB version to v3.0.0-rc.1
• Fix a bug in reporting assigned nodes of TiDB members
• tkctl get can show cpu usage correctly now
• Adhoc backup now appends the start time to the PVC name by default.
• Add the privileged option for TiKV pod
• tkctl upinfo can show nodeIP podIP port now
• Get TS and use it before full backup using mydumper
• Fix capabilities issue for tkctl debug command

725

https://github.com/pingcap/tidb-operator/pull/487
https://docs.fluentbit.io/manual/filter/kubernetes#kubernetes-annotations
https://docs.fluentbit.io/manual/filter/kubernetes#kubernetes-annotations

11.7.10.2 Detailed Bug Fixes and Changes

• Add capabilities and privilege mode for debug container (#537)
• Note helm versions in deployment docs (#553)
• Split public and private subnets when using existing vpc (#530)
• Release v1.0.0-beta.3 (#557)
• GKE terraform upgrade to 0.12 and fix bastion instance zone to be region agnostic

(#554)
• Get TS and use it before full backup using mydumper (#534)
• Add port podip nodeip to tkctl upinfo (#538)
• Fix disaster tolerance of stability test (#543)
• Add privileged option for TiKV pod template (#550)
• Use staticcheck instead of megacheck (#548)
• Refine backup and restore documentation (#518)
• Fix stability tidb pause case (#542)
• Fix tkctl get cpu info rendering (#536)
• Fix Aliyun tf output rendering and refine documents (#511)
• Make webhook configurable (#529)
• Add pods disaster tolerance and data regions disaster tolerance test cases (#497)
• Remove helm hook annotation for initializer job (#526)
• Add stable scheduling e2e test case (#524)
• Upgrade TiDB version in related documentations (#532)
• Fix a bug in reporting assigned nodes of TiDB members (#531)
• Reduce wait time and fix stability test (#525)
• Fix documentation usability issues in GCP document (#519)
• PD replicas 1 and stop tidb-operator (#496)
• Pause-upgrade stability test (#521)
• Fix restore script bug (#510)
• Retry truncating sst files upon failure (#484)
• Upgrade default TiDB to v3.0.0-rc.1 (#520)
• Add --namespace when creating backup secret (#515)
• New stability test case for ConfigMap rollout (#499)
• Fix issues found in Queeny’s test (#507)
• Pause rolling-upgrade process of TiDB statefulset (#470)
• GKE terraform and guide (#493)
• Support the affinity feature of Kubernetes which defines the rule of assigning pods to

nodes (#475)
• Support adding additional pod annotations for PD/TiKV/TiDB (#500)
• Document PD configuration issue (#504)
• Refine Aliyun and AWS cloud TiDB configurations (#492)
• Update wording and add note (#502)
• Support stable scheduling for TiDB (#477)
• Fix make lint (#495)
• Support updating configuration on the fly (#479)
• Update AWS deploy docs after testing (#491)

726

https://github.com/pingcap/tidb-operator/pull/537
https://github.com/pingcap/tidb-operator/pull/553
https://github.com/pingcap/tidb-operator/pull/530
https://github.com/pingcap/tidb-operator/pull/557
https://github.com/pingcap/tidb-operator/pull/554
https://github.com/pingcap/tidb-operator/pull/534
https://github.com/pingcap/tidb-operator/pull/538
https://github.com/pingcap/tidb-operator/pull/543
https://github.com/pingcap/tidb-operator/pull/550
https://github.com/pingcap/tidb-operator/pull/548
https://github.com/pingcap/tidb-operator/pull/518
https://github.com/pingcap/tidb-operator/pull/542
https://github.com/pingcap/tidb-operator/pull/536
https://github.com/pingcap/tidb-operator/pull/511
https://github.com/pingcap/tidb-operator/pull/529
https://github.com/pingcap/tidb-operator/pull/497
https://github.com/pingcap/tidb-operator/pull/526
https://github.com/pingcap/tidb-operator/pull/524
https://github.com/pingcap/tidb-operator/pull/532
https://github.com/pingcap/tidb-operator/pull/531
https://github.com/pingcap/tidb-operator/pull/525
https://github.com/pingcap/tidb-operator/pull/519
https://github.com/pingcap/tidb-operator/pull/496
https://github.com/pingcap/tidb-operator/pull/521
https://github.com/pingcap/tidb-operator/pull/510
https://github.com/pingcap/tidb-operator/pull/484
https://github.com/pingcap/tidb-operator/pull/520
https://github.com/pingcap/tidb-operator/pull/515
https://github.com/pingcap/tidb-operator/pull/499
https://github.com/pingcap/tidb-operator/pull/507
https://github.com/pingcap/tidb-operator/pull/470
https://github.com/pingcap/tidb-operator/pull/493
https://github.com/pingcap/tidb-operator/pull/475
https://github.com/pingcap/tidb-operator/pull/500
https://github.com/pingcap/tidb-operator/pull/504
https://github.com/pingcap/tidb-operator/pull/492
https://github.com/pingcap/tidb-operator/pull/502
https://github.com/pingcap/tidb-operator/pull/477
https://github.com/pingcap/tidb-operator/pull/495
https://github.com/pingcap/tidb-operator/pull/479
https://github.com/pingcap/tidb-operator/pull/491

• Add release-note to pull_request_template.md (#490)
• Design proposal of stable scheduling in TiDB (#466)
• Update DinD image to make it possible to configure HTTP proxies (#485)
• Fix a broken link (#489)
• Fix typo (#483)

11.7.11 TiDB Operator 1.0 Beta.2 Release Notes

Release date: May 10, 2019
TiDB Operator version: 1.0.0-beta.2

11.7.11.1 v1.0.0-beta.2 What’s New

11.7.11.1.1 Stability has been greatly enhanced

• Refactored e2e test
• Added stability test, 7x24 running

11.7.11.1.2 Greatly improved ease of use

• One-command deployment for AWS, Aliyun
• Minikube deployment for testing
• Tkctl cli tool
• Refactor backup chart for ease use
• Refine initializer job
• Grafana monitor dashboard improved, support multi-version
• Improved user guide
• Contributing documentation

11.7.11.1.3 Bug fixes

• Fix PD start script, add join file when startup
• Fix TiKV failover take too long
• Fix PD ha when replcias is less than 3
• Fix a tidb-scheduler acquireLock bug and emit event when scheduled failed
• Fix scheduler ha bug with defer deleting pods
• Fix a bug when using shareinformer without deepcopy

727

https://github.com/pingcap/tidb-operator/pull/490
https://github.com/pingcap/tidb-operator/pull/466
https://github.com/pingcap/tidb-operator/pull/485
https://github.com/pingcap/tidb-operator/pull/489
https://github.com/pingcap/tidb-operator/pull/483

11.7.11.1.4 Other improvements

• Remove pushgateway from TiKV pod
• Add GitHub templates for issue reporting and PR
• Automatically set the scheduler K8s version
• Switch to go module
• Support slow log of TiDB

11.7.11.2 Detailed Bug Fixes and Changes

• Don’t initialize when there is no tidb.password (#282)
• Fix join script (#285)
• Document tool setup and e2e test detail in CONTRIBUTING.md (#288)
• Update setup.md (#281)
• Support slow log tailing sidcar for TiDB instance (#290)
• Flexible tidb initializer job with secret set outside of helm (#286)
• Ensure SLOW_LOG_FILE env variable is always set (#298)
• Fix setup document description (#300)
• Refactor backup (#301)
• Abandon vendor and refresh go.sum (#311)
• Set the SLOW_LOG_FILE in the startup script (#307)
• Automatically set the scheduler K8s version (#313)
• TiDB stability test main function (#306)
• Add fault-trigger server (#312)
• Add ad-hoc backup and restore function (#316)
• Add scale & upgrade case functions (#309)
• Add slack (#318)
• Log dump when test failed (#317)
• Add fault-trigger client (#326)
• Monitor checker (#320)
• Add blockWriter case for inserting data (#321)
• Add scheduled-backup test case (#322)
• Port ddl test as a workload (#328)
• Use fault-trigger at e2e tests and add some log (#330)
• Add binlog deploy and check process (#329)
• Fix e2e can not make (#331)
• Multi TiDB cluster testing (#334)
• Fix backup test bugs (#335)
• Delete blockWrite.go and use blockwrite.go instead (#333)
• Remove vendor (#344)
• Add more checks for scale & upgrade (#327)
• Support more fault injection (#345)
• Rewrite e2e (#346)
• Add failover test (#349)

728

https://github.com/pingcap/tidb-operator/pull/282
https://github.com/pingcap/tidb-operator/pull/285
https://github.com/pingcap/tidb-operator/pull/288
https://github.com/pingcap/tidb-operator/pull/281
https://github.com/pingcap/tidb-operator/pull/290
https://github.com/pingcap/tidb-operator/pull/286
https://github.com/pingcap/tidb-operator/pull/298
https://github.com/pingcap/tidb-operator/pull/300
https://github.com/pingcap/tidb-operator/pull/301
https://github.com/pingcap/tidb-operator/pull/311
https://github.com/pingcap/tidb-operator/pull/307
https://github.com/pingcap/tidb-operator/pull/313
https://github.com/pingcap/tidb-operator/pull/306
https://github.com/pingcap/tidb-operator/pull/312
https://github.com/pingcap/tidb-operator/pull/316
https://github.com/pingcap/tidb-operator/pull/309
https://github.com/pingcap/tidb-operator/pull/318
https://github.com/pingcap/tidb-operator/pull/317
https://github.com/pingcap/tidb-operator/pull/326
https://github.com/pingcap/tidb-operator/pull/320
https://github.com/pingcap/tidb-operator/pull/321
https://github.com/pingcap/tidb-operator/pull/322
https://github.com/pingcap/tidb-operator/pull/328
https://github.com/pingcap/tidb-operator/pull/330
https://github.com/pingcap/tidb-operator/pull/329
https://github.com/pingcap/tidb-operator/pull/331
https://github.com/pingcap/tidb-operator/pull/334
https://github.com/pingcap/tidb-operator/pull/335
https://github.com/pingcap/tidb-operator/pull/333
https://github.com/pingcap/tidb-operator/pull/344
https://github.com/pingcap/tidb-operator/pull/327
https://github.com/pingcap/tidb-operator/pull/345
https://github.com/pingcap/tidb-operator/pull/346
https://github.com/pingcap/tidb-operator/pull/349

• Fix HA when the number of replicas are less than 3 (#351)
• Add fault-trigger service file (#353)
• Fix dind doc (#352)
• Add additionalPrintColumns for TidbCluster CRD (#361)
• Refactor stability main function (#363)
• Enable admin privilege for prom (#360)
• Update README.md with new info (#365)
• Build CLI (#357)
• Add extraLabels variable in tidb-cluster chart (#373)
• Fix TiKV failover (#368)
• Separate and ensure setup before e2e-build (#375)
• Fix codegen.sh and lock related dependencies (#371)
• Add sst-file-corruption case (#382)
• Use release name as default clusterName (#354)
• Add util class to support adding annotations to Grafana (#378)
• Use Grafana provisioning to replace dashboard installer (#388)
• Ensure test env is ready before cases running (#386)
• Remove monitor config job check (#390)
• Update local-pv documentation (#383)
• Update Jenkins links in README.md (#395)
• Fix e2e workflow in CONTRIBUTING.md (#392)
• Support running stability test out of cluster (#397)
• Update TiDB secret docs and charts (#398)
• Enable blockWriter write pressure in stability test (#399)
• Support debug and ctop commands in CLI (#387)
• Marketplace update (#380)
• Update editable value from true to false (#394)
• Add fault inject for kube proxy (#384)
• Use ioutil.TempDir() create charts and operator repo’s directories (#405)
• Improve workflow in docs/google-kubernetes-tutorial.md (#400)
• Support plugin start argument for TiDB instance (#412)
• Replace govet with official vet tool (#416)
• Allocate 24 PVs by default (after 2 clusters are scaled to (#407)
• Refine stability (#422)
• Record event as grafana annotation in stability test (#414)
• Add GitHub templates for issue reporting and PR (#420)
• Add TiDBUpgrading func (#423)
• Fix operator chart issue (#419)
• Fix stability issues (#433)
• Change cert generate method and add pd and kv prestop webhook (#406)
• A tidb-scheduler bug fix and emit event when scheduled failed (#427)
• Shell completion for tkctl (#431)
• Delete an duplicate import (#434)
• Add etcd and kube-apiserver faults (#367)
• Fix TiDB Slack link (#444)

729

https://github.com/pingcap/tidb-operator/pull/351
https://github.com/pingcap/tidb-operator/pull/353
https://github.com/pingcap/tidb-operator/pull/352
https://github.com/pingcap/tidb-operator/pull/361
https://github.com/pingcap/tidb-operator/pull/363
https://github.com/pingcap/tidb-operator/pull/360
https://github.com/pingcap/tidb-operator/pull/365
https://github.com/pingcap/tidb-operator/pull/357
https://github.com/pingcap/tidb-operator/pull/373
https://github.com/pingcap/tidb-operator/pull/368
https://github.com/pingcap/tidb-operator/pull/375
https://github.com/pingcap/tidb-operator/pull/371
https://github.com/pingcap/tidb-operator/pull/382
https://github.com/pingcap/tidb-operator/pull/354
https://github.com/pingcap/tidb-operator/pull/378
https://github.com/pingcap/tidb-operator/pull/388
https://github.com/pingcap/tidb-operator/pull/386
https://github.com/pingcap/tidb-operator/pull/390
https://github.com/pingcap/tidb-operator/pull/383
https://github.com/pingcap/tidb-operator/pull/395
https://github.com/pingcap/tidb-operator/pull/392
https://github.com/pingcap/tidb-operator/pull/397
https://github.com/pingcap/tidb-operator/pull/398
https://github.com/pingcap/tidb-operator/pull/399
https://github.com/pingcap/tidb-operator/pull/387
https://github.com/pingcap/tidb-operator/pull/380
https://github.com/pingcap/tidb-operator/pull/394
https://github.com/pingcap/tidb-operator/pull/384
https://github.com/pingcap/tidb-operator/pull/405
https://github.com/pingcap/tidb-operator/pull/400
https://github.com/pingcap/tidb-operator/pull/412
https://github.com/pingcap/tidb-operator/pull/416
https://github.com/pingcap/tidb-operator/pull/407
https://github.com/pingcap/tidb-operator/pull/422
https://github.com/pingcap/tidb-operator/pull/414
https://github.com/pingcap/tidb-operator/pull/420
https://github.com/pingcap/tidb-operator/pull/423
https://github.com/pingcap/tidb-operator/pull/419
https://github.com/pingcap/tidb-operator/pull/433
https://github.com/pingcap/tidb-operator/pull/406
https://github.com/pingcap/tidb-operator/pull/427
https://github.com/pingcap/tidb-operator/pull/431
https://github.com/pingcap/tidb-operator/pull/434
https://github.com/pingcap/tidb-operator/pull/367
https://github.com/pingcap/tidb-operator/pull/444

• Fix scheduler ha bug (#443)
• Add terraform script to auto deploy TiDB cluster on AWS (#401)
• Add instructions to access Grafana in GKE tutorial (#448)
• Fix label selector (#437)
• No need to set ClusterIP when syncing headless service (#432)
• Document how to deploy TiDB cluster with tidb-operator in minikube (#451)
• Add slack notify (#439)
• Fix local dind env (#440)
• Add terraform scripts to support alibaba cloud ACK deployment (#436)
• Fix backup data compare logic (#454)
• Async emit annotations (#438)
• Use TiDB v2.1.8 by default & remove pushgateway (#435)
• Fix a bug that uses shareinformer without copy (#462)
• Add version command for tkctl (#456)
• Add tkctl user manual (#452)
• Fix binlog problem on large scale (#460)
• Copy kubernetes.io/hostname label to PVs (#464)
• AWS EKS tutorial change to new terraform script (#463)
• Update documentation of minikube installation (#471)
• Update documentation of DinD installation (#458)
• Add instructions to access Grafana (#476)
• Support-multi-version-dashboard (#473)
• Update Aliyun deploy docs after testing (#474)
• GKE local SSD size warning (#467)
• Update roadmap (#376)

11.7.12 TiDB Operator 1.0 Beta.1 P2 Release Notes

Release date: February 21, 2019
TiDB Operator version: 1.0.0-beta.1-p2

11.7.12.1 Notable Changes

• New algorithm for scheduler HA predicate (#260)
• Add TiDB discovery service (#262)
• Serial scheduling (#266)
• Change tolerations type to an array (#271)
• Start directly when where is join file (#275)
• Add code coverage icon (#272)
• In values.yml, omit just the empty leaves (#273)
• Charts: backup to ceph object storage (#280)
• Add ClusterIDLabelKey label to TidbCluster (#279)

730

https://github.com/pingcap/tidb-operator/pull/443
https://github.com/pingcap/tidb-operator/pull/401
https://github.com/pingcap/tidb-operator/pull/448
https://github.com/pingcap/tidb-operator/pull/437
https://github.com/pingcap/tidb-operator/pull/432
https://github.com/pingcap/tidb-operator/pull/451
https://github.com/pingcap/tidb-operator/pull/439
https://github.com/pingcap/tidb-operator/pull/440
https://github.com/pingcap/tidb-operator/pull/436
https://github.com/pingcap/tidb-operator/pull/454
https://github.com/pingcap/tidb-operator/pull/438
https://github.com/pingcap/tidb-operator/pull/435
https://github.com/pingcap/tidb-operator/pull/462
https://github.com/pingcap/tidb-operator/pull/456
https://github.com/pingcap/tidb-operator/pull/452
https://github.com/pingcap/tidb-operator/pull/460
https://github.com/pingcap/tidb-operator/pull/464
https://github.com/pingcap/tidb-operator/pull/463
https://github.com/pingcap/tidb-operator/pull/471
https://github.com/pingcap/tidb-operator/pull/458
https://github.com/pingcap/tidb-operator/pull/476
https://github.com/pingcap/tidb-operator/pull/473
https://github.com/pingcap/tidb-operator/pull/474
https://github.com/pingcap/tidb-operator/pull/467
https://github.com/pingcap/tidb-operator/pull/376
https://github.com/pingcap/tidb-operator/pull/260
https://github.com/pingcap/tidb-operator/pull/262
https://github.com/pingcap/tidb-operator/pull/266
https://github.com/pingcap/tidb-operator/pull/271
https://github.com/pingcap/tidb-operator/pull/275
https://github.com/pingcap/tidb-operator/pull/272
https://github.com/pingcap/tidb-operator/pull/273
https://github.com/pingcap/tidb-operator/pull/280
https://github.com/pingcap/tidb-operator/pull/279

11.7.13 TiDB Operator 1.0 Beta.1 P1 Release Notes

Release date: January 7, 2019
TiDB Operator version: 1.0.0-beta.1-p1

11.7.13.1 Bug Fixes

• Fix scheduler policy issue, works on kubernetes v1.10, v1.11 and v1.12 now (#256)

11.7.13.2 Docs

• Proposal: add multiple statefulsets support to TiDB Operator (#240)
• Update roadmap (#258)

11.7.14 TiDB Operator 1.0 Beta.1 Release Notes

Release date: December 27, 2018
TiDB Operator version: 1.0.0-beta.1

11.7.14.1 Bug Fixes

• Fix pd_control bug: avoid relying on PD error response text (#197)
• Add orphan pod cleaner (#201)
• Fix scheduler configuration for Kubernetes 1.12 (#200)
• Fix Grafana configuration (#206)
• Fix pd failover bug: scale out directly when failover occurs (#217)
• Refactor PD failover (#211)
• Refactor tidb_cluster_control logic (#215)
• Fix upgrade logic: avoid updating pd/tikv/tidb simultaneously (#234)
• Fix PD control logic: get member/store before delete member/store and fix member

id parse error (#245)
• Fix documents errors (#213)
• Fix backup and restore script bug (#251 #254 #255)
• Fix GKE multiple availability zones deployment PD disk scheduling bug (#248)

11.7.14.2 Minor Improvements

• Add Kubernetes 1.12 local DinD scripts (#195)
• Bump default TiDB to v2.1.0 (#212)
• Release tidb-operator/tidb-cluster charts (#216)
• Add connection timeout for TiDB password setter job (#219)

731

https://github.com/pingcap/tidb-operator/pull/256
https://github.com/pingcap/tidb-operator/pull/240
https://github.com/pingcap/tidb-operator/pull/258
https://github.com/pingcap/tidb-operator/pull/197
https://github.com/pingcap/tidb-operator/pull/201
https://github.com/pingcap/tidb-operator/pull/200
https://github.com/pingcap/tidb-operator/pull/206
https://github.com/pingcap/tidb-operator/pull/217
https://github.com/pingcap/tidb-operator/pull/211
https://github.com/pingcap/tidb-operator/pull/215
https://github.com/pingcap/tidb-operator/pull/234
https://github.com/pingcap/tidb-operator/pull/245
https://github.com/pingcap/tidb-operator/pull/213
https://github.com/pingcap/tidb-operator/pull/251
https://github.com/pingcap/tidb-operator/pull/254
https://github.com/pingcap/tidb-operator/pull/255
https://github.com/pingcap/tidb-operator/pull/248
https://github.com/pingcap/tidb-operator/pull/195
https://github.com/pingcap/tidb-operator/pull/212
https://github.com/pingcap/tidb-operator/pull/216
https://github.com/pingcap/tidb-operator/pull/219

• Separate ad-hoc backup and restore to another chart (#227)
• Add compiler version info to tidb-operator binary (#237)
• Allow specifying TiDB service LoadBalancer IP (#246)
• Expose TiKV cpu/memory related configuration to values.yaml (#252)

11.7.15 TiDB Operator 1.0 Beta.0 Release Notes

Release date: November 26, 2018
TiDB Operator version: 1.0.0-beta.0

11.7.15.1 Notable Changes

• Introduce basic chaos testing
• Improve unit test coverage (#179 #181 #182 #184 #190 #192 #194)
• Add default value for log-level of PD/TiKV/TiDB (#185)
• Fix PD connection timeout issue for DinD environment (#186)
• Fix monitor configuration (#193)
• Fix document Helm client version requirement (#175)
• Keep scheduler name consistent in chart (#188)
• Remove unnecessary warning message when volumeName is empty (#177)
• Migrate to Go 1.11 module (#178)
• Add user guide (#187)

11.8 v0

11.8.1 TiDB Operator 0.4 Release Notes

Release date: November 9, 2018
TiDB Operator version: 0.4.0

11.8.1.1 Notable Changes

• Extend Kubernetes built-in scheduler for TiDB data awareness pod scheduling (#145)
• Restore backup data from GCS bucket (#160)
• Set password for TiDB when a TiDB cluster is first deployed (#171)

11.8.1.2 Minor Changes and Bug Fixes

• Update roadmap for the following two months (#166)
• Add more unit tests (#169)
• E2E test with multiple clusters (#162)

732

https://github.com/pingcap/tidb-operator/pull/227
https://github.com/pingcap/tidb-operator/pull/237
https://github.com/pingcap/tidb-operator/pull/246
https://github.com/pingcap/tidb-operator/pull/252
https://github.com/pingcap/tidb-operator/pull/179
https://github.com/pingcap/tidb-operator/pull/181
https://github.com/pingcap/tidb-operator/pull/182
https://github.com/pingcap/tidb-operator/pull/184
https://github.com/pingcap/tidb-operator/pull/190
https://github.com/pingcap/tidb-operator/pull/192
https://github.com/pingcap/tidb-operator/pull/194
https://github.com/pingcap/tidb-operator/pull/185
https://github.com/pingcap/tidb-operator/pull/186
https://github.com/pingcap/tidb-operator/pull/193
https://github.com/pingcap/tidb-operator/pull/175
https://github.com/pingcap/tidb-operator/pull/188
https://github.com/pingcap/tidb-operator/pull/177
https://github.com/pingcap/tidb-operator/pull/178
https://github.com/pingcap/tidb-operator/pull/187
https://github.com/pingcap/tidb-operator/pull/145
https://github.com/pingcap/tidb-operator/pull/160
https://github.com/pingcap/tidb-operator/pull/171
https://github.com/pingcap/tidb-operator/pull/166
https://github.com/pingcap/tidb-operator/pull/169
https://github.com/pingcap/tidb-operator/pull/162

• E2E test for meta info synchronization (#164)
• Add TiDB failover limit (#163)
• Synchronize PV reclaim policy early to persist data (#169)
• Use helm release name as instance label (#168) (breaking change)
• Fix local PV setup script (#172)

11.8.2 TiDB Operator 0.3.1 Release Notes

Release date: October 31, 2018
TiDB Operator version: 0.3.1

11.8.2.1 Minor Changes

• Paramertize the serviceAccount (#116 #111)
• Bump TiDB to v2.0.7 & allow user specified config files (#121)
• Remove binding mode for GKE pd-ssd storageclass (#130)
• Modified placement of tidb_version (#125)
• Update google-kubernetes-tutorial.md (#105)
• Remove redundant creation statement of namespace tidb-operator-e2e (#132)
• Update the label name of app in local dind documentation (#136)
• Remove noisy events (#131)
• Marketplace (#123 #135)
• Change monitor/backup/binlog pvc labels (#143)
• TiDB readiness probes (#147)
• Add doc on how to provision kubernetes on AWS (#71)
• Add imagePullPolicy support (#152)
• Separation startup scripts and application config from yaml files (#149)
• Update marketplace for our open source offering (#151)
• Add validation to crd (#153)
• Marketplace: use the Release.Name (#157)

11.8.2.2 Bug Fixes

• Fix parallel upgrade bug (#118)
• Fix wrong parameter AGRS to ARGS (#114)
• Can’t recover after a upgrade failed (#120)
• Scale in when store id match (#124)
• PD can’t scale out if not all members are ready (#142)
• podLister and pvcLister usages are wrong (#158)

11.8.3 TiDB Operator 0.3.0 Release Notes

Release date: October 12, 2018
TiDB Operator version: 0.3.0

733

https://github.com/pingcap/tidb-operator/pull/164
https://github.com/pingcap/tidb-operator/pull/163
https://github.com/pingcap/tidb-operator/pull/169
https://github.com/pingcap/tidb-operator/pull/168
https://github.com/pingcap/tidb-operator/pull/172
https://github.com/pingcap/tidb-operator/pull/116
https://github.com/pingcap/tidb-operator/pull/111
https://github.com/pingcap/tidb-operator/pull/
https://github.com/pingcap/tidb-operator/pull/130
https://github.com/pingcap/tidb-operator/pull/125
https://github.com/pingcap/tidb-operator/pull/105
https://github.com/pingcap/tidb-operator/pull/132
https://github.com/pingcap/tidb-operator/pull/136
https://github.com/pingcap/tidb-operator/pull/131
https://github.com/pingcap/tidb-operator/pull/123
https://github.com/pingcap/tidb-operator/pull/135
https://github.com/pingcap/tidb-operator/pull/143
https://github.com/pingcap/tidb-operator/pull/147
https://github.com/pingcap/tidb-operator/pull/71
https://github.com/pingcap/tidb-operator/pull/152
https://github.com/pingcap/tidb-operator/pull/149
https://github.com/pingcap/tidb-operator/pull/151
https://github.com/pingcap/tidb-operator/pull/153
https://github.com/pingcap/tidb-operator/pull/157
https://github.com/pingcap/tidb-operator/pull/118
https://github.com/pingcap/tidb-operator/pull/114
https://github.com/pingcap/tidb-operator/pull/120
https://github.com/pingcap/tidb-operator/pull/124
https://github.com/pingcap/tidb-operator/pull/142
https://github.com/pingcap/tidb-operator/pull/158

11.8.3.1 Notable Changes

• Add full backup support
• Add TiDB Binlog support
• Add graceful upgrade feature
• Allow monitor data to be persistent

11.8.4 TiDB Operator 0.2.1 Release Notes

Release date: September 20, 2018
TiDB Operator version: 0.2.1

11.8.4.1 Bug Fixes

• Fix retry on conflict logic (#87)
• Fix TiDB timezone configuration by setting TZ environment variable (#96)
• Fix failover by keeping spec replicas unchanged (#95)
• Fix repeated updating pod and pd/tidb StatefulSet (#101)

11.8.5 TiDB Operator 0.2.0 Release Notes

Release date: September 11, 2018
TiDB Operator version: 0.2.0

11.8.5.1 Notable Changes

• Support auto-failover experimentally
• Unify Tiller managed resources and TiDB Operator managed resources labels (breaking

change)
• Manage TiDB service via Tiller instead of TiDB Operator, allow more parameters to

be customized (required for public cloud load balancer)
• Add toleration for TiDB cluster components (useful for dedicated deployment)
• Add script to easy setup DinD environment
• Lint and format code in CI
• Refactor upgrade functions as interface

11.8.6 TiDB Operator 0.1.0 Release Notes

Release date: August 22, 2018
TiDB Operator version: 0.1.0

734

https://github.com/pingcap/tidb-operator/pull/87
https://github.com/pingcap/tidb-operator/pull/96
https://github.com/pingcap/tidb-operator/pull/95
https://github.com/pingcap/tidb-operator/pull/101

11.8.6.1 Notable Changes

• Bootstrap multiple TiDB clusters
• Monitor deployment support
• Helm charts support
• Basic Network PV/Local PV support
• Safely scale the TiDB cluster
• Upgrade the TiDB cluster in order
• Stop the TiDB process without terminating Pod
• Synchronize cluster meta info to POD/PV/PVC labels
• Basic unit tests & E2E tests
• Tutorials for GKE, local DinD

© 2023 PingCAP. All Rights Reserved.

735

	TiDB on Kubernetes Docs
	Introduction
	TiDB Operator Overview
	Manage TiDB clusters using TiDB Operator

	What's New in TiDB Operator v1.6
	Compatibility changes
	Extensibility
	Usability

	Get Started with TiDB on Kubernetes
	Step 1: Create a test Kubernetes cluster
	Method 1: Create a Kubernetes cluster using kind
	Method 2: Create a Kubernetes cluster using minikube

	Step 2: Deploy TiDB Operator
	Install TiDB Operator CRDs
	Install TiDB Operator

	Step 3: Deploy a TiDB cluster and its monitoring services
	Deploy a TiDB cluster
	Deploy TiDB Dashboard independently
	Deploy TiDB monitoring services
	View the Pod status

	Step 4: Connect to TiDB
	Install the MySQL client
	Forward port 4000
	Connect to the TiDB service
	Access the Grafana dashboard
	Access the TiDB Dashboard web UI

	Step 5: Upgrade a TiDB cluster
	Modify the TiDB cluster version
	Wait for Pods to restart
	Forward the TiDB service port
	Check the TiDB cluster version

	Step 6: Destroy the TiDB cluster and the Kubernetes cluster
	Destroy the TiDB cluster
	Destroy the Kubernetes cluster

	See also

	Deploy
	On Self-Managed Kubernetes
	Prerequisites for TiDB on Kubernetes
	Persistent Storage Class Configuration on Kubernetes
	Deploy TiDB Operator on Kubernetes
	Configure a TiDB Cluster on Kubernetes
	Deploy TiDB on General Kubernetes
	Initialize a TiDB Cluster on Kubernetes
	Access the TiDB Cluster

	On Public Cloud Kubernetes
	Deploy TiDB on AWS EKS
	Deploy TiDB on Google Cloud GKE
	Deploy TiDB on Azure AKS

	Deploy a TiDB Cluster on ARM64 Machines
	Prerequisites
	Deploy TiDB operator
	Deploy a TiDB cluster
	Initialize a TiDB cluster
	Deploy monitoring for a TiDB cluster

	Deploy the HTAP Storage Engine Tiflash for an Existing TiDB Cluster
	Usage scenarios
	Deploy TiFlash
	Adding PVs to TiFlash
	Remove TiFlash

	Deploy TiProxy Load Balancer for an Existing TiDB Cluster
	Deploy TiProxy
	Remove TiProxy

	Deploy TiDB Across Multiple Kubernetes Clusters
	Build Multiple Interconnected AWS EKS Clusters
	Build Multiple Interconnected Google Cloud GKE Clusters
	Deploy a TiDB Cluster across Multiple Kubernetes Clusters

	Deploy a Heterogeneous Cluster for an Existing TiDB Cluster
	Usage scenarios
	Prerequisites
	Deploy a heterogeneous cluster

	Deploy TiCDC on Kubernetes
	Prerequisites
	Fresh TiCDC deployment
	Add TiCDC to an existing TiDB cluster

	Deploy TiDB Binlog
	Prerequisites
	Deploy TiDB Binlog in a TiDB cluster
	Deploy Drainer
	Enable TLS
	Remove Pump/Drainer nodes

	Monitor and Alert
	Deploy Monitoring and Alerts for a TiDB Cluster
	Monitor the TiDB cluster
	Enable Ingress
	Configure alert
	Monitor multiple clusters

	Access TiDB Dashboard
	Prerequisites: Determine the TiDB Dashboard service
	Method 1. Access TiDB Dashboard by port forward
	Method 2. Access TiDB Dashboard by Ingress
	Method 3. Use NodePort Service
	Enable Continuous Profiling
	Unsupported TiDB Dashboard features

	Aggregate Monitoring Data of Multiple TiDB Clusters
	Thanos
	Aggregate monitoring data via Thanos Query
	RemoteWrite mode

	Monitor a TiDB Cluster across Multiple Kubernetes Clusters
	Push data from Prometheus
	Pull data from Prometheus
	Visualize monitoring data using Grafana

	Enable Dynamic Configuration for TidbMonitor
	Enable the dynamic configuration feature
	Disable the dynamic configuration feature

	Enable Shards for TidbMonitor
	Shards
	Enable shards

	Migrate
	Import Data
	Deploy TiDB Lightning
	Destroy TiDB Lightning
	Troubleshoot TiDB Lightning

	Migrate from MySQL
	Deploy DM on Kubernetes
	Use DM on Kubernetes

	Migrate TiDB to Kubernetes
	Prerequisites
	Step 1: Configure DNS service in all nodes of the cluster to be migrated
	Step 2: Create a TiDB cluster on Kubernetes
	Step 3: Scale in the TiDB nodes of the source cluster
	Step 4: Scale in the TiKV nodes of the source cluster
	Step 5: Scale in the PD nodes of the source cluster
	Step 6: Delete the spec.pdAddresses field

	Manage
	Secure
	Enable TLS for the MySQL Client
	Enable TLS between TiDB Components
	Enable TLS for DM
	Replicate Data to TLS-enabled Downstream Services
	Renew and Replace the TLS Certificate
	Run Containers as a Non-root User

	Manually Scale TiDB on Kubernetes
	Horizontal scaling
	Vertical scaling
	Scale PD microservice components
	Scaling troubleshooting

	Upgrade
	Upgrade a TiDB Cluster on Kubernetes
	Upgrade TiDB Operator

	Backup and Restore
	Backup and Restore Overview
	Backup and Restore Custom Resources
	Grant Permissions to Remote Storage
	Amazon S3 Compatible Storage
	Google Cloud Storage
	Azure Blob Storage
	Persistent Volumes
	Snapshot Backup and Restore across Multiple Kubernetes

	Maintain
	Restart a TiDB Cluster on Kubernetes
	Destroy TiDB Clusters on Kubernetes
	View TiDB Logs on Kubernetes
	Modify TiDB Cluster Configuration
	Automatic failover
	Pause Sync of a TiDB Cluster on Kubernetes
	Suspend TiDB cluster
	Maintain Different TiDB Clusters Separately Using Multiple Sets of TiDB Operator
	Maintain Kubernetes Nodes that Hold the TiDB Cluster
	Migrate from Helm 2 to Helm 3
	Replace Nodes for a TiDB Cluster

	Disaster Recovery
	Recover the Deleted Cluster
	Use PD Recover to Recover the PD Cluster

	Troubleshoot
	Tips for troubleshooting TiDB on Kubernetes
	Use the debug mode
	Modify the configuration of a TiKV instance
	Configure forceful upgrade for the TiKV cluster
	Configure forceful upgrade for the TiCDC cluster

	Common Deployment Failures of TiDB on Kubernetes
	The Pod is not created normally
	The Pod is in the Pending state
	The high availability scheduling policy of tidb-scheduler is not satisfied
	The Pod is in the CrashLoopBackOff state

	Common Cluster Exceptions of TiDB on Kubernetes
	TiKV Store is in Tombstone status abnormally
	Persistent connections are abnormally terminated in TiDB

	Common Network Issues of TiDB on Kubernetes
	Network connection failure between Pods
	Unable to access the TiDB service

	Troubleshoot TiDB Cluster Using PingCAP Clinic
	Usage scenarios
	Install Diag client
	Use Diag to collect data
	Use Diag to perform a quick check on the cluster

	TiDB FAQs on Kubernetes
	How to modify time zone settings？
	For the first deployment
	For a running cluster

	Can HPA or VPA be configured on TiDB components?
	What scenarios require manual intervention when I use TiDB Operator to orchestrate a TiDB cluster?
	What is the recommended deployment topology when I use TiDB Operator to orchestrate a TiDB cluster on a public cloud?
	Does TiDB Operator support TiSpark?
	How to check the configuration of the TiDB cluster?
	Why does TiDB Operator fail to schedule Pods when I deploy the TiDB clusters?
	How does TiDB ensure data safety and reliability?
	If the Ready field of a TidbCluster is false, does it mean that the corresponding TiDBCluster is unavailable?
	After the configuration of a component is modified, why does the new configuration not take effect?

	Reference
	Architecture
	TiDB Operator Architecture
	TiDB Scheduler
	Advanced StatefulSet Controller
	Enable Admission Controller in TiDB Operator

	TiDB on Kubernetes Sysbench Performance Test
	Test purpose
	Test environment
	Test report
	Conclusion

	API References
	Command Cheat Sheet for TiDB Cluster Management
	kubectl
	Helm

	RBAC rules required by TiDB Operator
	Manage TiDB clusters at the cluster level
	Manage TiDB clusters at the namespace level

	Tools
	Tools on Kubernetes

	Configure
	TiDB Binlog Drainer Configurations on Kubernetes

	TiDB Log Collection on Kubernetes
	Collect logs of TiDB and Kubernetes components
	Collect system logs

	Monitoring and Alerts on Kubernetes
	Monitor the Kubernetes cluster

	PingCAP Clinic Diagnostic Data
	TiDB cluster information
	TiDB diagnostic data
	TiKV diagnostic data
	PD diagnostic data
	TiFlash diagnostic data
	TiCDC diagnostic data
	Prometheus monitoring data

	Release Notes
	v1.6
	TiDB Operator 1.6.1 Release Notes
	TiDB Operator 1.6.0 Release Notes
	TiDB Operator 1.6.0-beta.1 Release Notes

	v1.5
	TiDB Operator 1.5.5 Release Notes
	TiDB Operator 1.5.4 Release Notes
	TiDB Operator 1.5.3 Release Notes
	TiDB Operator 1.5.2 Release Notes
	TiDB Operator 1.5.1 Release Notes
	TiDB Operator 1.5.0 Release Notes
	TiDB Operator 1.5.0-beta.1 Release Notes

	v1.4
	TiDB Operator 1.4.7 Release Notes
	TiDB Operator 1.4.6 Release Notes
	TiDB Operator 1.4.5 Release Notes
	TiDB Operator 1.4.4 Release Notes
	TiDB Operator 1.4.3 Release Notes
	TiDB Operator 1.4.2 Release Notes
	TiDB Operator 1.4.1 Release Notes
	TiDB Operator 1.4.0 Release Notes
	TiDB Operator 1.4.0-beta.3 Release Notes
	TiDB Operator 1.4.0-beta.2 Release Notes
	TiDB Operator 1.4.0-beta.1 Release Notes
	TiDB Operator 1.4.0-alpha.1 Release Notes

	v1.3
	TiDB Operator 1.3.10 Release Notes
	TiDB Operator 1.3.9 Release Notes
	TiDB Operator 1.3.8 Release Notes
	TiDB Operator 1.3.7 Release Notes
	TiDB Operator 1.3.6 Release Notes
	TiDB Operator 1.3.5 Release Notes
	TiDB Operator 1.3.4 Release Notes
	TiDB Operator 1.3.3 Release Notes
	TiDB Operator 1.3.2 Release Notes
	TiDB Operator 1.3.1 Release Notes
	TiDB Operator 1.3.0 Release Notes
	TiDB Operator 1.3.0-beta.1 Release Notes

	v1.2
	TiDB Operator 1.2.7 Release Notes
	TiDB Operator 1.2.6 Release Notes
	TiDB Operator 1.2.5 Release Notes
	TiDB Operator 1.2.4 Release Notes
	TiDB Operator 1.2.3 Release Notes
	TiDB Operator 1.2.2 Release Notes
	TiDB Operator 1.2.1 Release Notes
	TiDB Operator 1.2.0 Release Notes
	TiDB Operator 1.2.0-rc.2 Release Notes
	TiDB Operator 1.2.0-rc.1 Release Notes
	TiDB Operator 1.2.0-beta.2 Release Notes
	TiDB Operator 1.2.0-beta.1 Release Notes
	TiDB Operator 1.2.0-alpha.1 Release Notes

	v1.1
	TiDB Operator 1.1.15 Release Notes
	TiDB Operator 1.1.14 Release Notes
	TiDB Operator 1.1.13 Release Notes
	TiDB Operator 1.1.12 Release Notes
	TiDB Operator 1.1.11 Release Notes
	TiDB Operator 1.1.10 Release Notes
	TiDB Operator 1.1.9 Release Notes
	TiDB Operator 1.1.8 Release Notes
	TiDB Operator 1.1.7 Release Notes
	TiDB Operator 1.1.6 Release Notes
	TiDB Operator 1.1.5 Release Notes
	TiDB Operator 1.1.4 Release Notes
	TiDB Operator 1.1.3 Release Notes
	TiDB Operator 1.1.2 Release Notes
	TiDB Operator 1.1.1 Release Notes
	TiDB Operator 1.1 GA Release Notes
	TiDB Operator 1.1 RC.4 Release Notes
	TiDB Operator 1.1 RC.3 Release Notes
	TiDB Operator 1.1 RC.2 Release Notes
	TiDB Operator 1.1 RC.1 Release Notes
	TiDB Operator 1.1 Beta.2 Release Notes
	TiDB Operator 1.1 Beta.1 Release Notes

	v1.0
	TiDB Operator 1.0.7 Release Notes
	TiDB Operator 1.0.6 Release Notes
	TiDB Operator 1.0.5 Release Notes
	TiDB Operator 1.0.4 Release Notes
	TiDB Operator 1.0.3 Release Notes
	TiDB Operator 1.0.2 Release Notes
	TiDB Operator 1.0.1 Release Notes
	TiDB Operator 1.0 GA Release Notes
	TiDB Operator 1.0 RC.1 Release Notes
	TiDB Operator 1.0 Beta.3 Release Notes
	TiDB Operator 1.0 Beta.2 Release Notes
	TiDB Operator 1.0 Beta.1 P2 Release Notes
	TiDB Operator 1.0 Beta.1 P1 Release Notes
	TiDB Operator 1.0 Beta.1 Release Notes
	TiDB Operator 1.0 Beta.0 Release Notes

	v0
	TiDB Operator 0.4 Release Notes
	TiDB Operator 0.3.1 Release Notes
	TiDB Operator 0.3.0 Release Notes
	TiDB Operator 0.2.1 Release Notes
	TiDB Operator 0.2.0 Release Notes
	TiDB Operator 0.1.0 Release Notes

