
TiDB on Kubernetes Documentation

PingCAP Inc.

20250718

Table of Contents

1 TiDB on Kubernetes Docs 5

2 Introduction 5
2.1 TiDB Operator Overview · 5

2.1.1 Compatibility between TiDB Operator and TiDB · · · · · · · · · · · · · · · · · · 5
2.1.2 Differences between TiDB Operator v2 and v1 · 6
2.1.3 Manage TiDB clusters using TiDB Operator· 7

3 Get Started with TiDB on Kubernetes 7
3.1 Step 1: Create a test Kubernetes cluster · 8
3.2 Step 2: Deploy TiDB Operator · 9

3.2.1 Install TiDB Operator CRDs · 9
3.2.2 Install TiDB Operator· 9

3.3 Step 3: Deploy a TiDB cluster · 10
3.4 Step 4: Connect to TiDB · 12

3.4.1 Install the mysql command-line tool · 12
3.4.2 Forward port 4000 · 12
3.4.3 Connect to the TiDB service · 13

4 Deploy 15

1

4.1 Deploy TiDB Operator on Kubernetes · 15
4.1.1 Prerequisites · 15
4.1.2 Deploy a Kubernetes cluster· 15
4.1.3 Deploy TiDB Operator CRDs · 15
4.1.4 Deploy TiDB Operator · 16

4.2 Deploy a TiDB Cluster on Kubernetes · 17
4.2.1 Prerequisites · 17
4.2.2 Configure the TiDB cluster · 17
4.2.3 Deploy the TiDB cluster · 21

4.3 Access the TiDB Cluster on Kubernetes· 23
4.3.1 ClusterIP · 23
4.3.2 NodePort · 25
4.3.3 LoadBalancer · 26

5 Monitor and Alert 26
5.1 Deploy Monitoring and Alerts for a TiDB Cluster · 26

5.1.1 Monitor the TiDB cluster · 26
5.1.2 Configure alerts · 33
5.1.3 Monitor multiple clusters using Grafana· 33

5.2 Kubernetes Observability: Monitoring, Alerts, and Log Collection · · · · · · · · · · 33
5.2.1 Monitoring · 33
5.2.2 Alerts · 35
5.2.3 Log collection · 35

6 Configure 36
6.1 Component Configuration· 36

6.1.1 Configure TiDB parameters · 36
6.1.2 Configure TiKV parameters · 36
6.1.3 Configure PD parameters · 37
6.1.4 Configure TiProxy parameters · 39
6.1.5 Configure TiFlash parameters · 40
6.1.6 Configure TiCDC startup parameters · 40

2

6.2 Storage Volume Configuration · 40
6.2.1 Overview · 41
6.2.2 Component-specific volume configuration· 41
6.2.3 Modify storage volumes· 43
6.2.4 FAQ · 47

6.3 Customize the Configuration of Kubernetes Native Resources · · · · · · · · · · · · · · 47
6.3.1 Supported resource types · 47
6.3.2 Usage · 48
6.3.3 Notes · 49
6.3.4 Example use cases · 49

7 Manage 51
7.1 Security · 51

7.1.1 Enable TLS for the MySQL Client · 51
7.1.2 Enable TLS Between TiDB Components · 60
7.1.3 Run Containers as a Non-Root User · 76
7.1.4 Renew and Replace the TLS Certificate · 77

7.2 Manually Scale TiDB on Kubernetes · 82
7.2.1 Horizontal scaling· 82
7.2.2 Vertical scaling · 84
7.2.3 Scaling troubleshooting · 84

7.3 Upgrade · 85
7.3.1 Upgrade TiDB Operator · 85
7.3.2 Upgrade a TiDB Cluster on Kubernetes· 87

7.4 Backup and Restore· 88
7.4.1 Backup and Restore Overview · 88
7.4.2 Backup and Restore Custom Resources · 91
7.4.3 Grant Permissions to Remote Storage· 101
7.4.4 Amazon S3 Compatible Storage· 109
7.4.5 Google Cloud Storage · 138
7.4.6 Azure Blob Storage · 162

3

7.5 Maintain · 186
7.5.1 View TiDB Logs on Kubernetes · 186
7.5.2 Pause Sync of a TiDB Cluster on Kubernetes · 187
7.5.3 Suspend and Resume a TiDB Cluster on Kubernetes· · · · · · · · · · · · · · · · 189
7.5.4 Restart a TiDB Cluster on Kubernetes · 191
7.5.5 Destroy TiDB Clusters on Kubernetes · 192

8 Reference 192
8.1 Architecture · 192

8.1.1 TiDB Operator Architecture · 192
8.2 Comparison Between TiDB Operator v2 and v1 · 195

8.2.1 Core changes in TiDB Operator v2 · 195
8.2.2 Components and features not yet supported in TiDB Operator v2 · · · · 197

8.3 Tools · 198
8.3.1 Tools on Kubernetes · 198

9 Release Notes 199
9.1 v2.0 · 199

9.1.1 TiDB Operator 2.0.0-beta.0 Release Notes· 199

4

1 TiDB on Kubernetes Docs

2 Introduction

2.1 TiDB Operator Overview

TiDB Operator is an automated operating system for TiDB clusters on Kubernetes.
It provides a full management life-cycle for TiDB including deployment, upgrades, scaling,
backup, fail-over, and configuration changes. With TiDB Operator, TiDB can run seamlessly
in the Kubernetes clusters deployed on a public cloud or in a self-managed environment.

2.1.1 Compatibility between TiDB Operator and TiDB

The corresponding relationship between TiDB Operator and TiDB versions is as follows:

TiDB
ver-
sions

Compatible
TiDB
Oper-
ator
ver-
sions

dev dev
TiDB
>=
8.0

2.0,
1.6
(rec-
om-
mended),
1.5

7.1
<=
TiDB
< 8.0

1.5
(rec-
om-
mended),
1.4

6.5
<=
TiDB
< 7.1

1.5,
1.4
(rec-
om-
mended),
1.3

5.4
<=
TiDB
< 6.5

1.4,
1.3
(rec-
om-
mended)

5

https://docs.pingcap.com/tidb-in-kubernetes/v2.0
https://github.com/pingcap/tidb-operator

TiDB
ver-
sions

Compatible
TiDB
Oper-
ator
ver-
sions

5.1
<=
TiDB
< 5.4

1.4,
1.3
(rec-
om-
mended),
1.2
(end
of
sup-
port)

3.0
<=
TiDB
< 5.1

1.4,
1.3
(rec-
om-
mended),
1.2
(end
of
sup-
port),
1.1
(end
of
sup-
port)

2.1
<=
TiDB
<
v3.0

1.0
(end
of
sup-
port)

2.1.2 Differences between TiDB Operator v2 and v1

With the rapid development of TiDB and the Kubernetes ecosystem, TiDB Operator
releases v2, which is incompatible with v1. For a detailed comparison between v2 and v1,
see Comparison Between TiDB Operator v2 and v1.

6

2.1.3 Manage TiDB clusters using TiDB Operator

In Kubernetes environments, you can use TiDB Operator to efficiently deploy and man-
age TiDB clusters. You can choose from the following deployment methods based on your
requirements:

• To quickly deploy TiDB Operator and set up a TiDB cluster in a test environment,
see Get Started with TiDB on Kubernetes.

• To deploy TiDB Operator with custom configurations, see Deploy TiDB Operator.

Before deploying in any environment, you can customize TiDB configurations using the
following guides:

• Configure storage volumes
• Customize pods

After the deployment is complete, see the following documents to use, operate, and
maintain TiDB clusters on Kubernetes:

• Deploy a TiDB Cluster
• Access a TiDB Cluster
• Scale a TiDB Cluster
• View TiDB Logs on Kubernetes

When a problem occurs and the cluster needs diagnosis, you can:

• See TiDB FAQs on Kubernetes for any available solution;
• See Troubleshoot TiDB on Kubernetes to shoot troubles.

Some of TiDB’s tools are used differently on Kubernetes. You can see Tools on Kuber-
netes to understand how TiDB tools are used on Kubernetes.

Finally, when a new version of TiDB Operator is released, you can refer to Upgrade
TiDB Operator to upgrade to the latest version.

3 Get Started with TiDB on Kubernetes

This document introduces how to create a simple Kubernetes cluster and use it to deploy
a basic test TiDB cluster using TiDB Operator.

7

Warning:
This document is for demonstration purposes only. Do not follow it in
production environments. For deployment in production environments, see
Deploy TiDB on Kubernetes.

To deploy TiDB Operator and a TiDB cluster, follow these steps:

1. Create a test Kubernetes cluster
2. Deploy TiDB Operator
3. Deploy a TiDB cluster
4. Connect to TiDB

3.1 Step 1: Create a test Kubernetes cluster

This section describes how to create a local test Kubernetes cluster using kind. You can
also refer to the Kubernetes official documentation for other deployment options.

kind lets you run a local Kubernetes cluster using containers as nodes. To install kind,
see Quick Start.

The following uses kind v0.24.0 as an example:
kind create cluster --name tidb-operator

Expected output
create cluster with image kindest/node:v1.31.0@sha256:53

↪→ df588e04085fd41ae12de0c3fe4c72f7013bba32a20e7325357a1ac94ba865
Creating cluster "tidb-operator" ...
� Ensuring node image (kindest/node:v1.31.0) �
� Preparing nodes � � � �
� Writing configuration �
� Starting control-plane �
� Installing CNI �
� Installing StorageClass �
� Joining worker nodes �

Set kubectl context to "kind-tidb-operator"
You can now use your cluster with:

kubectl cluster-info --context kind-tidb-operator

Have a question, bug, or feature request? Let us know! https://kind.sigs.k8s
↪→ .io/#community �

8

https://kind.sigs.k8s.io/
https://kubernetes.io/docs/setup/#learning-environment
https://kind.sigs.k8s.io/docs/user/quick-start/#installation

Check whether the cluster is successfully created:
kubectl cluster-info --context kind-tidb-operator

Expected output
Kubernetes master is running at https://127.0.0.1:51026
KubeDNS is running at https://127.0.0.1:51026/api/v1/namespaces/kube-system/

↪→ services/kube-dns:dns/proxy

To further debug and diagnose cluster problems, use 'kubectl cluster-info
↪→ dump'.

Now that your Kubernetes cluster is ready, you can deploy TiDB Operator.

3.2 Step 2: Deploy TiDB Operator

To deploy TiDB Operator, perform the following steps:

1. Install TiDB Operator CRDs
2. Install TiDB Operator

3.2.1 Install TiDB Operator CRDs

TiDB Operator includes multiple Custom Resource Definitions (CRDs) that implement
different components of the TiDB cluster. Run the following command to install the CRDs
in the cluster:
kubectl apply -f https://github.com/pingcap/tidb-operator/releases/download/

↪→ v2.0.0-beta.0/tidb-operator.crds.yaml --server-side

3.2.2 Install TiDB Operator

Run the following command to install TiDB Operator into the cluster:
kubectl apply -f https://github.com/pingcap/tidb-operator/releases/download/

↪→ v2.0.0-beta.0/tidb-operator.yaml --server-side

Check whether the TiDB Operator components are running normally:
kubectl get pods --namespace tidb-admin

Expected output
NAME READY STATUS RESTARTS AGE
tidb-operator-6c98b57cc8-ldbnr 1/1 Running 0 2m22s

When all pods are in the Running state, continue to the next step.

9

3.3 Step 3: Deploy a TiDB cluster

To deploy a TiDB cluster, perform the following steps:

1. Create a namespace:

Note:
Cross-namespace Cluster references are not supported. Make sure that
all components are deployed in the same Kubernetes namespace.

kubectl create namespace db

2. Deploy the TiDB cluster.
Method 1: use the following command to create a TiDB cluster that includes PD,
TiKV, and TiDB components
Create the Cluster resource:
apiVersion: core.pingcap.com/v1alpha1
kind: Cluster
metadata:
name: basic
namespace: db

kubectl apply -f cluster.yaml --server-side

Create the PD component:
apiVersion: core.pingcap.com/v1alpha1
kind: PDGroup
metadata:
name: pd
namespace: db

spec:
cluster:
name: basic

replicas: 1
template:
metadata:
annotations:
author: pingcap

spec:
version: v8.5.2
volumes:

10

- name: data
mounts:
- type: data
storage: 20Gi

kubectl apply -f pd.yaml --server-side

Create the TiKV component:
apiVersion: core.pingcap.com/v1alpha1
kind: TiKVGroup
metadata:
name: tikv
namespace: db

spec:
cluster:
name: basic

replicas: 1
template:
metadata:
annotations:
author: pingcap

spec:
version: v8.5.2
volumes:
- name: data
mounts:
- type: data
storage: 100Gi

kubectl apply -f tikv.yaml --server-side

Create the TiDB component:
apiVersion: core.pingcap.com/v1alpha1
kind: TiDBGroup
metadata:
name: tidb
namespace: db

spec:
cluster:
name: basic

replicas: 1
template:
metadata:
annotations:

11

author: pingcap
spec:
version: v8.5.2

kubectl apply -f tidb.yaml --server-side

Method 2: save the preceding YAML files to a local directory and deploy the TiDB
cluster with a single command:
kubectl apply -f ./<directory> --server-side

3. Monitor the status of Pod:
watch kubectl get pods -n db

Expected output
NAME READY STATUS RESTARTS AGE
pd-pd-68t96d 1/1 Running 0 2m
tidb-tidb-coqwpi 1/1 Running 0 2m
tikv-tikv-sdoxy4 1/1 Running 0 2m

After all component Pods start, each component type (pd, tikv, and tidb) will be in
the Running state. You can press Ctrl+C to return to the command line and proceed
to the next step.

3.4 Step 4: Connect to TiDB

Because TiDB supports the MySQL transport protocol and most of its syntax, you can
use the mysql command-line tool to connect to TiDB directly. The following steps describe
how to connect to the TiDB cluster.

3.4.1 Install the mysql command-line tool

To connect to TiDB, you need to install a MySQL-compatible command-line client on
the machine where you are running kubectl. You can install MySQL Server, MariaDB
Server, or Percona Server MySQL executables, or install them from your operating system’s
software repository.

3.4.2 Forward port 4000

To connect to TiDB, you need to forward a port from the local host to the TiDB service
on Kubernetes.

First, list services in the db namespace:

12

kubectl get svc -n db

Expected output
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
pd-pd ClusterIP 10.96.229.12 <none> 2379/TCP,2380/TCP 3m
pd-pd-peer ClusterIP None <none> 2379/TCP,2380/TCP 3m
tidb-tidb ClusterIP 10.96.174.237 <none> 4000/TCP,10080/TCP 3m
tidb-tidb-peer ClusterIP None <none> 10080/TCP 3m
tikv-tikv-peer ClusterIP None <none> 20160/TCP,20180/TCP 3m

In this example, the TiDB service is tidb-tidb.
Then, use the following command to forward a local port to the cluster:

kubectl port-forward -n db svc/tidb-tidb 14000:4000 > pf14000.out &

If port 14000 is already in use, you can use a different available port. The command
runs in the background and forwards output to the file pf14000.out, so you can continue
to run commands in the current shell session.

3.4.3 Connect to the TiDB service

Note:
To connect to TiDB (version < v4.0.7) using a MySQL 8.0 client, if the
user account has a password, you must explicitly specify --default-auth=
↪→ mysql_native_password. This is because mysql_native_password is no
longer the default plugin.

mysql --comments -h 127.0.0.1 -P 14000 -u root

Expected output
Welcome to the MariaDB monitor. Commands end with ; or \g.
Your MySQL connection id is 178505
Server version: 8.0.11-TiDB-v8.5.2 TiDB Server (Apache License 2.0)

↪→ Community Edition, MySQL 8.0 compatible

Copyright (c) 2000, 2018, Oracle, MariaDB Corporation Ab and others.

Type 'help;' or '\h' for help. Type '\c' to clear the current input
↪→ statement.

13

https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html#upgrade-caching-sha2-password
https://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html#upgrade-caching-sha2-password

MySQL [(none)]>

Use the following sample commands to verify the cluster is working.
Create a hello_world table

mysql> use test;
mysql> create table hello_world (id int unsigned not null auto_increment

↪→ primary key, v varchar(32));
Query OK, 0 rows affected (0.17 sec)

mysql> select * from information_schema.tikv_region_status where db_name=
↪→ database() and table_name='hello_world'\G

*************************** 1. row ***************************
REGION_ID: 18
START_KEY: 7480000000000000FF6800000000000000F8
END_KEY: 748000FFFFFFFFFFFFF900000000000000F8
TABLE_ID: 104
DB_NAME: test

TABLE_NAME: hello_world
IS_INDEX: 0
INDEX_ID: NULL

INDEX_NAME: NULL
IS_PARTITION: 0
PARTITION_ID: NULL

PARTITION_NAME: NULL
EPOCH_CONF_VER: 5
EPOCH_VERSION: 57
WRITTEN_BYTES: 0

READ_BYTES: 0
APPROXIMATE_SIZE: 1
APPROXIMATE_KEYS: 0

REPLICATIONSTATUS_STATE: NULL
REPLICATIONSTATUS_STATEID: NULL
1 row in set (0.015 sec)

Query the TiDB version
mysql> select tidb_version()\G
*************************** 1. row ***************************
tidb_version(): Release Version: v8.5.2
Edition: Community
Git Commit Hash: 945d07c5d5c7a1ae212f6013adfb187f2de24b23
Git Branch: HEAD
UTC Build Time: 2024-05-21 03:51:57

14

GoVersion: go1.21.10
Race Enabled: false
Check Table Before Drop: false
Store: tikv
1 row in set (0.001 sec)

4 Deploy

4.1 Deploy TiDB Operator on Kubernetes

This document describes how to deploy TiDB Operator on Kubernetes.

4.1.1 Prerequisites

Before deploying TiDB Operator, make sure your environment meets the following soft-
ware requirements:

• Kubernetes >= v1.30
• kubectl >= v1.30
• Helm >= v3.8

4.1.2 Deploy a Kubernetes cluster

TiDB Operator runs in a Kubernetes cluster. You can set up a Kubernetes cluster using
one of the following options:

• Self-managed cluster: set up a self-managed Kubernetes cluster using any method
described in the Kubernetes official documentation.

• Cloud provider: use a Kubernetes service provided by a Kubernetes certified cloud
provider.

Whichever option you choose, make sure your Kubernetes version is v1.30 or later. To
quickly create a simple cluster for testing, see Get Started.

4.1.3 Deploy TiDB Operator CRDs

Run the following command to install the Custom Resource Definitions (CRDs) required
by TiDB Operator:
kubectl apply -f https://github.com/pingcap/tidb-operator/releases/download/

↪→ v2.0.0-beta.0/tidb-operator.crds.yaml --server-side

15

https://kubernetes.io/releases/
https://kubernetes.io/docs/tasks/tools/
https://helm.sh/
https://kubernetes.io/docs/setup/
https://kubernetes.io/docs/setup/production-environment/turnkey-solutions/
https://kubernetes.io/docs/setup/production-environment/turnkey-solutions/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions

4.1.4 Deploy TiDB Operator

You can deploy TiDB Operator using either of the following methods:

• Method 1: Deploy using kubectl apply
• Method 2: Deploy using Helm

4.1.4.1 Method 1: Deploy using kubectl apply

All resources required to install TiDB Operator (except CRDs), including RBAC and De-
ployment objects, are packaged in the tidb-operator.yaml file. You can deploy everything
with a single command:
kubectl apply -f https://github.com/pingcap/tidb-operator/releases/download/

↪→ v2.0.0-beta.0/tidb-operator.yaml --server-side

TiDB Operator will be deployed in the tidb-admin namespace. To verify the deploy-
ment, run:
kubectl get pods -n tidb-admin

Expected output:
NAME READY STATUS RESTARTS AGE
tidb-operator-6c98b57cc8-ldbnr 1/1 Running 0 2m

4.1.4.2 Method 2: Deploy using Helm
Use Helm to deploy all resources except CRDs:

helm install tidb-operator oci://ghcr.io/pingcap/charts/tidb-operator --
↪→ version v2.0.0-beta.0 --namespace tidb-admin --create-namespace

TiDB Operator will be deployed in the tidb-admin namespace. To verify the deploy-
ment, run:
kubectl get pods -n tidb-admin

Expected output:
NAME READY STATUS RESTARTS AGE
tidb-operator-6c98b57cc8-ldbnr 1/1 Running 0 2m

16

4.1.4.2.1 Customize the deployment
To customize deployment parameters, first export the default values.yaml file:

helm show values oci://ghcr.io/pingcap/charts/tidb-operator --version v2
↪→ .0.0-beta.0 > values.yaml

Edit the values.yaml file as needed, then install TiDB Operator with the customized
settings:
helm install tidb-operator oci://ghcr.io/pingcap/charts/tidb-operator --

↪→ version v2.0.0-beta.0 -f values.yaml

4.2 Deploy a TiDB Cluster on Kubernetes

This document describes how to deploy a TiDB cluster on Kubernetes.

4.2.1 Prerequisites

• TiDB Operator is deployed.

4.2.2 Configure the TiDB cluster

A TiDB cluster consists of the following components. Each component is managed by a
corresponding Custom Resource Definition (CRD):

Component CRD
PD PDGroup
TiKV TiKVGroup
TiDB TiDBGroup
TiProxy (optional) TiProxyGroup
TiFlash (optional) TiFlashGroup
TiCDC (optional) TiCDCGroup

In the following steps, you will define a TiDB cluster using the Cluster CRD. Then, in
each component CRD, specify the cluster.name field to associate the component with the
cluster.
spec:
cluster:
name: <cluster>

Before deploying the cluster, prepare a YAML file for each component. The following
lists some example configurations:

17

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/#customresourcedefinitions
https://docs.pingcap.com/tidb/stable/tidb-scheduling/
https://docs.pingcap.com/tidb/stable/tidb-storage/
https://docs.pingcap.com/tidb/stable/tidb-computing/
https://docs.pingcap.com/tidb/stable/tiproxy-overview/
https://docs.pingcap.com/tidb/stable/tiflash-overview/
https://docs.pingcap.com/tidb/stable/ticdc-overview/

• PD: pd.yaml
• TiKV: tikv.yaml
• TiDB: tidb.yaml
• TiFlash: tiflash.yaml
• TiProxy: tiproxy.yaml
• TiCDC: ticdc.yaml

4.2.2.1 Configure component version
Use the version field to specify the component version:

spec:
template:
spec:
version: v8.5.2

To use a custom image, set the image field:
spec:
template:
spec:
version: v8.5.2
image: gcr.io/xxx/tidb

If the version does not follow semantic versioning, you can specify it using the image
field:
spec:
template:
spec:
version: v8.5.2
image: gcr.io/xxx/tidb:dev

Note:
TiDB Operator determines upgrade dependencies between components based
on the version field. To avoid upgrade failures, ensure the image version is
correct.

4.2.2.2 Configure resources
Use the spec.resources field to define the CPU and memory resources for a component:

18

https://raw.githubusercontent.com/pingcap/tidb-operator/refs/tags/v2.0.0-beta.0/examples/basic/01-pd.yaml
https://raw.githubusercontent.com/pingcap/tidb-operator/refs/tags/v2.0.0-beta.0/examples/basic/02-tikv.yaml
https://raw.githubusercontent.com/pingcap/tidb-operator/refs/tags/v2.0.0-beta.0/examples/basic/03-tidb.yaml
https://raw.githubusercontent.com/pingcap/tidb-operator/refs/tags/v2.0.0-beta.0/examples/basic/04-tiflash.yaml
https://raw.githubusercontent.com/pingcap/tidb-operator/refs/tags/v2.0.0-beta.0/examples/basic/05-tiproxy.yaml
https://raw.githubusercontent.com/pingcap/tidb-operator/refs/tags/v2.0.0-beta.0/examples/basic/06-ticdc.yaml
https://semver.org/

spec:
resources:
cpu: "4"
memory: 8Gi

Note:

• By default, the same values apply to both requests and limits.
• To set different values for requests and limits, use the Overlay feature.

4.2.2.3 Configure component parameters
Use the spec.config field to define config.toml settings:

spec:
config: |
[log]
level = warn

Note:
Validation of config.toml content is not currently supported. Make sure
your configuration is correct.

4.2.2.4 Configure volumes
Use the spec.volumes field to define mounted volumes for a component:

spec:
template:
spec:
volumes:
- name: test
mounts:
- mountPath: "/test"
storage: 100Gi

Some components support a type field to specify a volume’s purpose. Related fields in
config.toml are updated automatically. For example:

19

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/#requests-and-limits

apiVersion: core.pingcap.com/v1alpha1
kind: TiKVGroup
...
spec:
template:
spec:
volumes:
- name: data
mounts:
data is for TiKV's data dir
- type: data
storage: 100Gi

You can also specify a StorageClass and VolumeAttributeClass. For details, see Volume
Configuration.

4.2.2.5 Configure scheduling policies
Use the spec.schedulePolicies field to distribute components evenly across nodes:

spec:
schedulePolicies:
- type: EvenlySpread
evenlySpread:
topologies:
- topology:

topology.kubernetes.io/zone: us-west-2a
- topology:

topology.kubernetes.io/zone: us-west-2b
- topology:

topology.kubernetes.io/zone: us-west-2c

To assign weights to topologies, use the weight field:
spec:
schedulePolicies:
- type: EvenlySpread
evenlySpread:
topologies:
- weight: 2
topology:
topology.kubernetes.io/zone: us-west-2a

- topology:
topology.kubernetes.io/zone: us-west-2b

You can also configure the following scheduling options using the Overlay feature:

20

https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/volume-attributes-classes/

• NodeSelector
• Toleration
• Affinity
• TopologySpreadConstraints

4.2.3 Deploy the TiDB cluster

After preparing the YAML files for each component, deploy the TiDB cluster by following
these steps:

1. Create a namespace:

Note:
Cross-namespace references for Cluster resources are not supported.
Make sure to deploy all components in the same namespace.

kubectl create namespace db

2. Deploy the TiDB cluster:
Option 1: Deploy each component individually. The following example shows how to
deploy a TiDB cluster with PD, TiKV, and TiDB.
The following is an example configuration for the Cluster CRD:
apiVersion: core.pingcap.com/v1alpha1
kind: Cluster
metadata:
name: basic
namespace: db

Create the Cluster CRD:
kubectl apply -f cluster.yaml --server-side

The following is an example configuration for the PD component:
apiVersion: core.pingcap.com/v1alpha1
kind: PDGroup
metadata:
name: pd
namespace: db

spec:
cluster:
name: basic

21

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/

replicas: 3
template:
metadata:
annotations:
author: pingcap

spec:
version: v8.5.2
volumes:
- name: data
mounts:
- type: data
storage: 20Gi

Create the PD component:
kubectl apply -f pd.yaml --server-side

The following is an example configuration for the TiKV component:
apiVersion: core.pingcap.com/v1alpha1
kind: TiKVGroup
metadata:
name: tikv
namespace: db

spec:
cluster:
name: basic

replicas: 3
template:
metadata:
annotations:
author: pingcap

spec:
version: v8.5.2
volumes:
- name: data
mounts:
- type: data
storage: 100Gi

Create the TiKV component:
kubectl apply -f tikv.yaml --server-side

The following is an example configuration for the TiDB component:
apiVersion: core.pingcap.com/v1alpha1

22

kind: TiDBGroup
metadata:
name: tidb
namespace: db

spec:
cluster:
name: basic

replicas: 2
template:
metadata:
annotations:
author: pingcap

spec:
version: v8.5.2

Create the TiDB component:
kubectl apply -f tidb.yaml --server-side

Option 2: Deploy all components at once. You can save all component YAML files in
a local directory and execute the following command:
kubectl apply -f ./<directory> --server-side

3. Check the status of the TiDB cluster:
kubectl get cluster -n db
kubectl get group -n db

4.3 Access the TiDB Cluster on Kubernetes

This document describes how to access a TiDB cluster through a Kubernetes Service.
You can configure the Service as one of the following types, depending on your access re-
quirements:

• ClusterIP: for access from within the Kubernetes cluster only.
• NodePort: for access from outside the cluster (recommended for test environments).
• LoadBalancer: for access through your cloud provider’s LoadBalancer feature (recom-

mended for production environments).

4.3.1 ClusterIP

The ClusterIP Service type exposes the TiDB cluster using an internal IP address. It
is only accessible from within the Kubernetes cluster.

You can access the TiDB cluster using one of the following DNS formats:

23

https://kubernetes.io/docs/concepts/services-networking/service/

• basic-tidb: access is limited to the same namespace.
• basic-tidb.default: support cross-namespace access.
• basic-tidb.default.svc: support cross-namespace access.

In these formats, basic-tidb is the Service name, and default is the namespace. For
more information, see DNS for Services and Pods.

Each TiDBGroup automatically creates a Service that provides access to all TiDB in-
stances in that group. For example, the TiDBGroup tidb-0 creates an internal Service
named tidb-0-tidb.

Note:
It is not recommended to directly use the default Service to access TiDB.
Instead, create custom Services based on your specific needs.

The following YAML example defines a Service that provides access to all TiDB nodes
in the db cluster:
apiVersion: v1
kind: Service
metadata:
name: tidb

spec:
selector:
pingcap.com/managed-by: tidb-operator
pingcap.com/cluster: db
pingcap.com/component: tidb

ports:
- name: mysql
protocol: TCP
port: 4000
targetPort: mysql-client

The following YAML example defines a Service that provides access to all TiDB nodes
in the TiDBGroup tidb-0 of the cluster db:
apiVersion: v1
kind: Service
metadata:
name: tidb-0

spec:
selector:

24

https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/#namespaces-of-services

pingcap.com/managed-by: tidb-operator
pingcap.com/cluster: db
pingcap.com/component: tidb
pingcap.com/group: tidb-0

ports:
- name: mysql
protocol: TCP
port: 4000
targetPort: mysql-client

4.3.2 NodePort

In environments without a LoadBalancer, you can use a NodePort Service to expose
TiDB outside the Kubernetes cluster. This allows access using the node’s IP address and a
specific port. For more information, see NodePort.

Note:
It is not recommended to use NodePort in production environments. For
production environments on cloud platforms, use the LoadBalancer type in-
stead.

The following is an example:
apiVersion: v1
kind: Service
metadata:
name: tidb-0

spec:
type: NodePort
selector:
pingcap.com/managed-by: tidb-operator
pingcap.com/cluster: db
pingcap.com/component: tidb
pingcap.com/group: tidb-0

ports:
- name: mysql
protocol: TCP
port: 4000
targetPort: mysql-client

25

https://kubernetes.io/docs/concepts/services-networking/service/#type-nodeport

4.3.3 LoadBalancer

On cloud platforms that support LoadBalancer (such as Google Cloud or AWS), it is
recommended to use the platform’s LoadBalancer feature to expose TiDB. This approach
provides higher availability and better load balancing.

For more information, see the following documents:

• AWS Load Balancer Controller
• Google Cloud LoadBalancer Service
• Azure Load Balancer Service

To learn more about Kubernetes Service types and cloud provider support for LoadBal-
ancer, see the Kubernetes Service documentation.

5 Monitor and Alert

5.1 Deploy Monitoring and Alerts for a TiDB Cluster

This document describes how to monitor a TiDB cluster deployed using TiDB Operator
and how to configure alerts for the cluster.

5.1.1 Monitor the TiDB cluster

TiDB cluster monitoring consists of two parts: monitoring data and dashboards. You can
collect metrics using open-source tools such as Prometheus or VictoriaMetrics, and display
the metrics using Grafana.

26

https://kubernetes-sigs.github.io/aws-load-balancer-controller/latest/
https://cloud.google.com/kubernetes-engine/docs/concepts/service-load-balancer
https://learn.microsoft.com/en-us/azure/aks/load-balancer-standard
https://kubernetes.io/docs/concepts/services-networking/service/
https://prometheus.io/
https://victoriametrics.com/
https://grafana.com/

Figure 1: Monitoring architecture of TiDB clusters

5.1.1.1 Collect monitoring data

5.1.1.1.1 Collect monitoring data using Prometheus
To collect monitoring data using Prometheus, perform the following steps:

1. Deploy Prometheus Operator in your Kubernetes cluster by following the Prometheus
Operator official documentation. This document uses version v0.82.0 as an example.

2. Create a PodMonitor Custom Resource (CR) in the namespace of your TiDB cluster:
apiVersion: monitoring.coreos.com/v1
kind: PodMonitor
metadata:
name: tidb-cluster-pod-monitor
namespace: ${tidb_cluster_namespace}

27

https://prometheus-operator.dev/docs/getting-started/installation/
https://prometheus-operator.dev/docs/getting-started/installation/

labels:
monitor: tidb-cluster

spec:
jobLabel: "pingcap.com/component"
namespaceSelector:
matchNames:
- ${tidb_cluster_namespace}

selector:
matchLabels:
app.kubernetes.io/managed-by: tidb-operator

podMetricsEndpoints:
- interval: 15s
If TLS is enabled in the TiDB cluster, set the scheme to https.

↪→ Otherwise, set it to http.
scheme: https
honorLabels: true
Configure tlsConfig only if TLS is enabled in the TiDB cluster.
tlsConfig:
ca:
secret:
name: db-cluster-client-secret
key: ca.crt

cert:
secret:
name: db-cluster-client-secret
key: tls.crt

keySecret:
name: db-cluster-client-secret
key: tls.key

metricRelabelings:
- action: labeldrop
regex: container

relabelings:
- sourceLabels: [

↪→ __meta_kubernetes_pod_annotation_prometheus_io_scrape]
action: keep
regex: "true"

- sourceLabels:
- __meta_kubernetes_pod_name
- __meta_kubernetes_pod_label_app_kubernetes_io_instance
- __meta_kubernetes_pod_label_app_kubernetes_io_component
- __meta_kubernetes_namespace
- __meta_kubernetes_pod_annotation_prometheus_io_port

action: replace
regex: (.+);(.+);(.+);(.+);(.+)

28

replacement: $1.$2-$3-peer.$4:$5
targetLabel: __address__

- sourceLabels: [
↪→ __meta_kubernetes_pod_annotation_prometheus_io_path]

targetLabel: __metrics_path__
- sourceLabels: [__meta_kubernetes_namespace]
targetLabel: kubernetes_namespace

- sourceLabels: [
↪→ __meta_kubernetes_pod_label_app_kubernetes_io_instance]

targetLabel: cluster
- sourceLabels: [__meta_kubernetes_pod_name]
targetLabel: instance

- sourceLabels: [
↪→ __meta_kubernetes_pod_label_app_kubernetes_io_component]

targetLabel: component
- sourceLabels:

- __meta_kubernetes_namespace
- __meta_kubernetes_pod_label_app_kubernetes_io_instance

separator: '-'
targetLabel: tidb_cluster

3. Create a Prometheus CR to collect metrics. Follow the Prometheus Operator offi-
cial documentation and make sure the appropriate permissions are granted to the
ServiceAccount:
apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:
name: prometheus
namespace: monitoring

spec:
serviceAccountName: prometheus
externalLabels:
k8s_cluster: ${your_k8s_cluster_name}

podMonitorSelector:
matchLabels:
monitor: tidb-cluster

An empty podMonitorNamespaceSelector means PodMonitors in all
↪→ namespaces are collected.

podMonitorNamespaceSelector: {}

4. Execute the following kubectl port-forward command to access Prometheus through
port forwarding:
kubectl port-forward -n monitoring prometheus-prometheus-0 9090:9090

↪→ &>/tmp/portforward-prometheus.log &

29

https://prometheus-operator.dev/docs/platform/platform-guide/#deploying-prometheus
https://prometheus-operator.dev/docs/platform/platform-guide/#deploying-prometheus

Then, you can access http://localhost:9090/targets in your browser view the monitor-
ing data collection status.

5.1.1.1.2 Collect monitoring data using VictoriaMetrics
To collect monitoring data using VictoriaMetrics, perform the following steps:

1. Deploy VictoriaMetrics Operator in your Kubernetes cluster by following the Victori-
aMetrics official documentation. This document uses version v0.58.1 as an example.

2. Create a VMSingle Custom Resource (CR) to store monitoring data:
apiVersion: victoriametrics.com/v1beta1
kind: VMSingle
metadata:
name: demo
namespace: monitoring

3. Create a VMAgent CR to collect monitoring data:
apiVersion: victoriametrics.com/v1beta1
kind: VMAgent
metadata:
name: demo
namespace: monitoring

spec:
Configure remoteWrite to write collected monitoring metrics to

↪→ VMSingle.
remoteWrite:
- url: "http://vmsingle-demo.monitoring.svc:8429/api/v1/write"

externalLabels:
k8s_cluster: ${your_k8s_cluster_name}

selectAllByDefault: true

4. Create a VMPodScrape CR in the TiDB cluster namespace to discover Pods and gener-
ate scrape configs for VMAgent:
apiVersion: victoriametrics.com/v1beta1
kind: VMPodScrape
metadata:
name: tidb-cluster-pod-scrape
namespace: ${tidb_cluster_namespace}

spec:
jobLabel: "pingcap.com/component"

30

http://localhost:9090/targets
https://docs.victoriametrics.com/operator/quick-start/
https://docs.victoriametrics.com/operator/quick-start/

namespaceSelector:
matchNames:
- ${tidb_cluster_namespace}

selector:
matchLabels:
app.kubernetes.io/managed-by: tidb-operator

podMetricsEndpoints:
- interval: 15s
If TLS is enabled in the TiDB cluster, set the scheme to https.

↪→ Otherwise, set it to http.
scheme: https
honorLabels: true
Configure tlsConfig only if TLS is enabled in the TiDB cluster.
tlsConfig:
ca:
secret:
name: db-cluster-client-secret
key: ca.crt

cert:
secret:
name: db-cluster-client-secret
key: tls.crt

keySecret:
name: db-cluster-client-secret
key: tls.key

metricRelabelConfigs:
- action: labeldrop
regex: container

relabelConfigs:
- sourceLabels: [

↪→ __meta_kubernetes_pod_annotation_prometheus_io_scrape]
action: keep
regex: "true"

- sourceLabels:
- __meta_kubernetes_pod_name
- __meta_kubernetes_pod_label_app_kubernetes_io_instance
- __meta_kubernetes_pod_label_app_kubernetes_io_component
- __meta_kubernetes_namespace
- __meta_kubernetes_pod_annotation_prometheus_io_port

action: replace
regex: (.+);(.+);(.+);(.+);(.+)
replacement: $1.$2-$3-peer.$4:$5
targetLabel: __address__

- sourceLabels: [
↪→ __meta_kubernetes_pod_annotation_prometheus_io_path]

31

targetLabel: __metrics_path__
- sourceLabels: [__meta_kubernetes_namespace]
targetLabel: kubernetes_namespace

- sourceLabels: [
↪→ __meta_kubernetes_pod_label_app_kubernetes_io_instance]

targetLabel: cluster
- sourceLabels: [__meta_kubernetes_pod_name]
targetLabel: instance

- sourceLabels: [
↪→ __meta_kubernetes_pod_label_app_kubernetes_io_component]

targetLabel: component
- sourceLabels:

- __meta_kubernetes_namespace
- __meta_kubernetes_pod_label_app_kubernetes_io_instance

separator: '-'
targetLabel: tidb_cluster

5. Execute the following kubectl port-forward command to access VMAgent through
port forwarding:
kubectl port-forward -n monitoring svc/vmagent-demo 8429:8429 &>/tmp/

↪→ portforward-vmagent.log &

Then, you can access http://localhost:8429/targets in your browser view the monitor-
ing data collection status.

5.1.1.2 Configure monitoring dashboards
To configure the monitoring dashboard, perform the following steps:

1. Follow the Grafana official documentation to deploy Grafana. This document uses
version 12.0.0-security-01 as an example.

2. Execute the following kubectl port-forward command to access Grafana through
port forwarding:
kubectl port-forward -n ${namespace} ${grafana_pod_name} 3000:3000 &>/

↪→ tmp/portforward-grafana.log &

3. Then, you can access http://localhost:3000 in your browser. The default username
and password are both admin. If you install Grafana using Helm, execute the following
command to get the password of admin:
kubectl get secret --namespace ${namespace} ${grafana_secret_name} -o

↪→ jsonpath="{.data.admin-password}" | base64 --decode ; echo

32

http://localhost:8429/targets
https://grafana.com/docs/grafana/latest/setup-grafana/installation/kubernetes/#deploy-grafana-on-kubernetes
http://localhost:3000

4. Add a data source of type Prometheus in Grafana and set the Prometheus Server URL
based on your monitoring setup:

• For Prometheus, set the URL to http://prometheus-operated.monitoring.
↪→ svc:9090.

• For VictoriaMetrics, set the URL to http://vmsingle-demo.monitoring.svc
↪→ :8429.

5. Download Grafana dashboards for TiDB components using the get-grafana-
↪→ dashboards.sh script and import them manually into Grafana.

5.1.2 Configure alerts

You can manage and send alerts using Alertmanager. For specific deployment and con-
figuration steps, refer to the Alertmanager official documentation.

5.1.3 Monitor multiple clusters using Grafana

To monitor multiple clusters in Grafana, perform the following steps:

1. In the Grafana dashboard, click Dashboard settings to open the Settings page.
2. On the Settings page, select the tidb_cluster variable under Variables, and set the

Hide property of the tidb_cluster variable to empty.
3. Return to the dashboard. You will see a cluster selector dropdown. Each option follows

the ${namespace}-${tidb_cluster_name} format.
4. Click Save dashboard to apply the changes.

5.2 Kubernetes Observability: Monitoring, Alerts, and Log Col-
lection

This document describes how to monitor, configure alerts, and collect logs in a Kuber-
netes cluster. These practices help you assess the health and status of your cluster and its
components.

5.2.1 Monitoring

5.2.1.1 Monitor TiDB components
The TiDB monitoring system deployed with the cluster only focuses on the operation

of the TiDB components themselves, and does not include the monitoring of container re-
sources, hosts, Kubernetes components, or TiDB Operator. To monitor these components
or resources, you need to deploy a monitoring system across the entire Kubernetes cluster.

33

https://raw.githubusercontent.com/pingcap/tidb-operator/refs/tags/v2.0.0-beta.0/hack/get-grafana-dashboards.sh
https://raw.githubusercontent.com/pingcap/tidb-operator/refs/tags/v2.0.0-beta.0/hack/get-grafana-dashboards.sh
https://github.com/prometheus/alertmanager
https://prometheus.io/docs/alerting/alertmanager/

5.2.1.2 Monitor the host
Monitoring the host and its resources works in the same way as monitoring physical

resources of a traditional server.
If you already have a monitoring system for your physical server in your existing infras-

tructure, you only need to add the host that holds Kubernetes to the existing monitoring
system by conventional means. If there is no monitoring system available, or if you want to
deploy a separate monitoring system to monitor the host that holds Kubernetes, then you
can use any monitoring system that you are familiar with.

The newly deployed monitoring system can run on a separate server, directly on the host
that holds Kubernetes, or in a Kubernetes cluster. Different deployment methods might have
differences in the deployment configuration and resource utilization, but there are no major
differences in usage.

The following lists some common open source monitoring systems that can be used to
monitor server resources:

• Prometheus and node_exporter
• VictoriaMetrics
• CollectD
• Nagios
• Zabbix

Some cloud service providers or specialized performance monitoring service providers
also have their own free or paid monitoring solutions that you can choose from.

It is recommended to deploy a host monitoring system in the Kubernetes cluster using
Prometheus Operator based on Node Exporter and Prometheus. This solution can also be
compatible with and used for monitoring the Kubernetes’ own components.

5.2.1.3 Monitor Kubernetes components
For monitoring Kubernetes components, you can refer to the solutions provided in the

Kubernetes official documentation or use other Kubernetes-compatible monitoring systems.
Some cloud service providers might provide their own solutions for monitoring Kuber-

netes components. Some specialized performance monitoring service providers have their
own Kubernetes integration solutions that you can choose from.

TiDB Operator is actually a container running in Kubernetes. For this reason, you can
monitor TiDB Operator by choosing any monitoring system that can monitor the status and
resources of a Kubernetes container without deploying additional monitoring components.

It is recommended to deploy a host monitoring system using Prometheus Operator based
on Node Exporter and Prometheus. This solution can also be compatible with and used for
monitoring host resources.

34

https://prometheus.io/
https://github.com/prometheus/node_exporter
https://victoriametrics.com/
https://collectd.org/
https://www.nagios.org/
https://www.zabbix.com/
https://github.com/prometheus-operator/prometheus-operator
https://github.com/prometheus/node_exporter
https://kubernetes.io/docs/tasks/debug/debug-cluster/resource-usage-monitoring/
https://github.com/prometheus-operator/prometheus-operator
https://github.com/prometheus/node_exporter

5.2.2 Alerts

If you deploy a monitoring system for Kubernetes hosts and services using Prometheus
Operator, some alert rules are configured by default, and an AlertManager service is de-
ployed. For details, see kube-prometheus.

If you monitor Kubernetes hosts and services by using other tools or services, you can
consult the corresponding information provided by the tool or service provider.

5.2.3 Log collection

5.2.3.1 Collect TiDB and Kubernetes component runtime logs
When you deploy TiDB using TiDB Operator, all components write runtime logs the

container’s stdout and stderr by default. On Kubernetes, these logs are stored in the /
↪→ var/log/containers directory on host machines, and filenames include the Pod and
container names. You can collect application logs in the container directly from the host.

If you already have a log collection system in your existing infrastructure, you only need
to add the /var/log/containers/*.log files from the Kubernetes hosts to your collection
scope. If there is no log collection system available, or if you want to deploy a separate log
collection system, then you can use any log collection system that you are familiar with.

The following lists some common open source tools for Kubernetes log collection:

• Vector
• Fluentd
• Fluent Bit
• Filebeat
• Logstash

You can typically aggregate collected logs and store them on a central server or in a
dedicated storage and analysis system such as Elasticsearch.

Some cloud service providers or performance monitoring service providers also offer free
or paid log collection solutions.

5.2.3.2 Collect system logs
You can collect system logs from Kubernetes hosts using standard methods. If you

already have a log collection system in your existing infrastructure, you only need to add
the relevant servers and log files to the collection scope. If there is no log collection system
available, or if you want to deploy a separate log collection system, then you can use any log
collection system that you are familiar with.

All tools listed in the Collect TiDB and Kubernetes component runtime logs section
support system log collection. Additionally, some cloud service providers or performance
monitoring service providers also offer free or paid log collection solutions.

35

https://github.com/prometheus-operator/kube-prometheus
https://vector.dev/
https://www.fluentd.org/
https://fluentbit.io/
https://www.elastic.co/products/beats/filebeat
https://www.elastic.co/logstash/
https://www.elastic.co/elasticsearch/

6 Configure

6.1 Component Configuration

This document describes how to configure parameters for TiDB, TiKV, PD, TiProxy,
TiFlash, and TiCDC in a Kubernetes cluster.

By default, TiDB Operator applies configuration changes by performing a rolling restart
of the related components.

6.1.1 Configure TiDB parameters

You can configure TiDB parameters using the spec.template.spec.config field in the
TiDBGroup CR.
apiVersion: core.pingcap.com/v1alpha1
kind: TiDBGroup
metadata:
name: tidb

spec:
template:
spec:
config: |
split-table = true
oom-action = "log"

For a full list of configurable TiDB parameters, see TiDB Configuration File.

6.1.2 Configure TiKV parameters

You can configure TiKV parameters using the spec.template.spec.config field in the
TiKVGroup CR.
apiVersion: core.pingcap.com/v1alpha1
kind: TiKVGroup
metadata:
name: tikv

spec:
template:
spec:
config: |
[storage]
[storage.block-cache]
capacity = "16GB"

[log.file]

36

https://docs.pingcap.com/tidb/stable/tidb-configuration-file

max-days = 30
max-backups = 30

For a full list of configurable TiKV parameters, see TiKV Configuration File.

Note:
The RocksDB logs of TiKV are stored in the /var/lib/tikv data directory
by default. It is recommended to configure max-days and max-backups to
automatically clean up log files.

6.1.3 Configure PD parameters

You can configure PD parameters using the spec.template.spec.config field in the
PDGroup CR.
apiVersion: core.pingcap.com/v1alpha1
kind: PDGroup
metadata:
name: pd

spec:
template:
spec:
config: |
lease = 3
enable-prevote = true

For a full list of configurable PD parameters, see PD Configuration File.

Note:
After the cluster is started for the first time, some PD configuration items
are persisted in etcd. The persisted configuration in etcd takes precedence
over that in PD. Therefore, after the first start, you cannot modify some
PD configuration using parameters. You need to dynamically modify the
configuration using SQL statements, pd-ctl, or PD server API. Currently,
among all the configuration items listed in Modify PD configuration online,
except log.level, all the other configuration items cannot be modified using
parameters after the first start.

37

https://docs.pingcap.com/tidb/stable/tikv-configuration-file
https://docs.pingcap.com/tidb/stable/pd-configuration-file
https://docs.pingcap.com/tidb/stable/dynamic-config/#modify-pd-configuration-dynamically
https://docs.pingcap.com/tidb/stable/pd-control#config-show--set-option-value--placement-rules
https://docs.pingcap.com/tidb/stable/dynamic-config/#modify-configuration-dynamically

6.1.3.1 Configure PD microservices

Note:

• Starting from v8.0.0, PD supports the microservice mode.
• PD microservice mode can only be enabled during initial deployment

and cannot be changed afterward.

To enable PD microservice mode, set spec.template.spec.mode to "ms" in the PDGroup
CR:
apiVersion: core.pingcap.com/v1alpha1
kind: PDGroup
metadata:
name: pd

spec:
template:
spec:
mode: "ms"

Currently, PD supports the tso and scheduling microservices. You can configure them
using the TSOGroup and SchedulerGroup CRs.
apiVersion: core.pingcap.com/v1alpha1
kind: TSOGroup
metadata:
name: tso

spec:
template:
spec:
config: |
[log.file]
filename = "/pdms/log/tso.log"

apiVersion: core.pingcap.com/v1alpha1
kind: SchedulerGroup
metadata:
name: scheduling

spec:
template:
spec:
config: |
[log.file]

38

https://docs.pingcap.com/tidb/dev/pd-microservices

filename = "/pdms/log/scheduling.log"

To get complete configuration parameters for the PD microservice, tso microservice,
and scheduling microservice, see the following documents:

• PD Configuration File
• TSO Configuration File
• Scheduling Configuration File

Note:

• If you enable the PD microservice mode when you deploy a TiDB cluster,
some configuration items of PD microservices are persisted in etcd. The
persisted configuration in etcd takes precedence over that in PD.

• Hence, after the first startup of PD microservices, you cannot modify
these configuration items using parameters. Instead, you can modify
them dynamically using SQL statements, pd-ctl, or PD server API. Cur-
rently, among all the configuration items listed in Modify PD configu-
ration dynamically, except log.level, all the other configuration items
cannot be modified using parameters after the first startup of PD mi-
croservices.

6.1.4 Configure TiProxy parameters

You can configure TiProxy parameters using the spec.template.spec.config field in
the TiProxyGroup CR.
apiVersion: core.pingcap.com/v1alpha1
kind: TiProxyGroup
metadata:
name: tiproxy

spec:
template:
spec:
config: |
[log]
level = "info"

For a full list of configurable TiProxy parameters, see TiProxy Configuration File.

39

https://docs.pingcap.com/tidb/stable/pd-configuration-file
https://docs.pingcap.com/tidb/stable/tso-configuration-file/
https://docs.pingcap.com/tidb/stable/scheduling-configuration-file/
https://docs.pingcap.com/tidb/stable/dynamic-config/#modify-pd-configuration-dynamically
https://docs.pingcap.com/tidb/stable/pd-control/#config-show--set-option-value--placement-rules
https://docs.pingcap.com/tidb/stable/dynamic-config/#modify-pd-configuration-dynamically
https://docs.pingcap.com/tidb/stable/dynamic-config/#modify-pd-configuration-dynamically
https://docs.pingcap.com/tidb/stable/tiproxy-configuration

6.1.5 Configure TiFlash parameters

You can configure TiFlash parameters using the spec.template.spec.config field in
the TiFlashGroup CR.
apiVersion: core.pingcap.com/v1alpha1
kind: TiFlashGroup
metadata:
name: tiflash

spec:
template:
spec:
config: |
[flash]
[flash.flash_cluster]
log = "/data0/logs/flash_cluster_manager.log"

[logger]
count = 10
level = "information"
errorlog = "/data0/logs/error.log"
log = "/data0/logs/server.log"

For a full list of configurable TiFlash parameters, see TiFlash Configuration File.

6.1.6 Configure TiCDC startup parameters

You can configure TiCDC startup parameters using the spec.template.spec.config
field in the TiCDCGroup CR.
apiVersion: core.pingcap.com/v1alpha1
kind: TiCDCGroup
metadata:
name: ticdc

spec:
template:
spec:
config: |
gc-ttl = 86400
log-level = "info"

For a full list of configurable TiCDC startup parameters, see TiCDC Configuration File.

6.2 Storage Volume Configuration

This document describes how to configure storage volumes for TiDB cluster components
in TiDB Operator and how to modify existing storage volumes.

40

https://docs.pingcap.com/tidb/stable/tiflash-configuration
https://github.com/pingcap/tiflow/blob/bf29e42c75ae08ce74fbba102fe78a0018c9d2ea/pkg/cmd/util/ticdc.toml

6.2.1 Overview

In TiDB Operator, storage volumes provide persistent storage for TiDB cluster compo-
nents. Components such as PD, TiKV, and TiFlash require configured volumes to store
data. The structure for configuring a volume is as follows:
volumes:
- name: <volume-name>
mounts:
- type: <mount-type>
mountPath: <mount-path>
subPath: <sub-path>

storage: <storage-size>
storageClassName: <storage-class-name>
volumeAttributesClassName: <volume-attributes-class-name>

Field descriptions:

• name: the name of the volume, which must be unique within the same component.
• mounts: defines the mount information for the volume, including:

– type: specifies the mount type. Supported types vary by component.
– mountPath (optional): specifies the mount path. If not specified, the default path

is used.
– subPath (optional): specifies the sub-path within the volume.

• storage: specifies the storage capacity, such as 100Gi.
• storageClassName (optional): specifies the name of the Kubernetes storage class.
• volumeAttributesClassName (optional): specifies the volume attributes class for mod-

ifying volume attributes. This feature is supported in Kubernetes 1.29 and later ver-
sions.

6.2.2 Component-specific volume configuration

6.2.2.1 PD storage volume configuration
Supported mount types for PD:

• data: PD data directory. The default path is /var/lib/pd.

Example:
apiVersion: core.pingcap.com/v1alpha1
kind: PDGroup
metadata:
name: pd

spec:

41

template:
spec:
volumes:
- name: data
mounts:
- type: data
storage: 20Gi

6.2.2.2 TiKV storage volume configuration
Supported mount types for TiKV:

• data: TiKV data directory. The default path is /var/lib/tikv.

Example:
apiVersion: core.pingcap.com/v1alpha1
kind: TiKVGroup
metadata:
name: tikv

spec:
template:
spec:
volumes:
- name: data
mounts:
- type: data
storage: 100Gi

6.2.2.3 TiDB storage volume configuration
Supported mount types for TiDB:

• data: TiDB data directory. The default path is /var/lib/tidb.
• slowlog: TiDB slow log directory. The default path is /var/log/tidb.

Example:
apiVersion: core.pingcap.com/v1alpha1
kind: TidbGroup
metadata:
name: tidb

spec:
template:

42

spec:
volumes:
- name: slowlog
mounts:
- type: slowlog

storage: 10Gi

6.2.2.4 TiFlash storage volume configuration
Supported mount types for TiFlash:

• data: TiFlash data directory. The default path is /var/lib/tiflash.

Example:
apiVersion: core.pingcap.com/v1alpha1
kind: TiFlashGroup
metadata:
name: tiflash

spec:
template:
spec:
volumes:
- name: data
mounts:
- type: data
storage: 100Gi

6.2.3 Modify storage volumes

6.2.3.1 Modify the storage size
By modifying the volumes.storage field in the component group CR, TiDB Operator

automatically updates the corresponding PVC to adjust the storage size.

Note:

• You can only modify storage size when the allowVolumeExpansion set-
ting of the StorageClass in use is set to true.

• Only volume scale-out is supported. Scale-in is not supported.

43

6.2.3.2 Change volume attributes
For TiDB clusters that use cloud provider storages, TiDB Operator supports the follow-

ing two methods to modify storage volume attributes (such as IOPS and throughput):

• (Recommended) Kubernetes native method
• Cloud provider API

6.2.3.2.1 Method 1: Kubernetes native
The Kubernetes native method uses the Volume Attributes Classes feature to modify

volume attributes.
Prerequisites:

• Kubernetes 1.29 or later versions.
• The Volume Attributes Classes feature of Kubernetes is enabled.

To modify volume attributes using the Kubernetes native method, perform the following:

1. Enable the VolumeAttributesClass feature in the TidbCluster CR:
apiVersion: core.pingcap.com/v1alpha1
kind: Cluster
metadata:
name: basic

spec:
featureGates:
- name: VolumeAttributesClass

2. Create a VolumeAttributesClass resource:
apiVersion: storage.k8s.io/v1beta1
kind: VolumeAttributesClass
metadata:
name: silver

driverName: pd.csi.storage.gke.io
parameters:
provisioned-iops: "3000"
provisioned-throughput: "50"

3. Modify volume attributes by modifying the volumes.volumeAttributesClassName
field in the component group CR to use the VolumeAttributesClass created in step
2:

44

https://kubernetes.io/docs/concepts/storage/volume-attributes-classes/
https://kubernetes.io/docs/concepts/storage/volume-attributes-classes/

spec:
template:
spec:
volumes:
- name: data
mounts:
- type: data
storage: 100Gi
volumeAttributesClassName: silver

6.2.3.2.2 Method 2: cloud provider API

Note:
When using the cloud provider API method, you need to configure the corre-
sponding cloud provider permissions for TiDB Operator.

When the VolumeAttributesClass feature is not enabled, TiDB Operator calls cloud
provider APIs directly to modify storage volume attributes. Currently, modifications to the
following cloud provider storage volumes are supported:

• AWS EBS: modify EBS volume size, IOPS, and throughput using the AWS EC2 API.
• Azure Disk: modify Managed Disk size, IOPS, and throughput using the Azure API.

Using AWS EBS as an example, assume that the current storage volume configuration
is:
spec:
template:
spec:
volumes:
- name: data
mounts:
- type: data
storage: 100Gi
storageClassName: gp3-2000-100

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:

45

name: gp3-2000-100
parameters:
csi.storage.k8s.io/fstype: ext4
encrypted: "true"
iops: "2000"
throughput: "100"
type: gp3

provisioner: ebs.csi.aws.com
reclaimPolicy: Delete
volumeBindingMode: WaitForFirstConsumer
allowVolumeExpansion: true

You can create a StorageClass with higher IOPS and throughput:
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: gp3-4000-400

parameters:
csi.storage.k8s.io/fstype: ext4
encrypted: "true"
iops: "4000"
throughput: "400"
type: gp3

provisioner: ebs.csi.aws.com
reclaimPolicy: Delete
volumeBindingMode: WaitForFirstConsumer
allowVolumeExpansion: true

Then, modify the .spec.template.spec.volumes.storageClassName field in the com-
ponent group CR to gp3-4000-400. TiDB Operator automatically calls cloud provider APIs
to perform the modification.

Because the StorageClass of a PVC cannot be modified directly, TiDB Operator adds
the following annotations to the PVC to track the update:

• spec.tidb.pingcap.com/revision: desired spec revision number.
• spec.tidb.pingcap.com/storage-class: desired storage class.
• spec.tidb.pingcap.com/storage-size: desired storage size.
• status.tidb.pingcap.com/revision: current spec revision number.
• status.tidb.pingcap.com/storage-class: current storage class.
• status.tidb.pingcap.com/storage-size: current storage size.

46

6.2.4 FAQ

6.2.4.1 How do I configure different storage sizes for different TiKV instances?

All instances in the same TiKVGroup share the same storage configuration. To configure
different storage for different TiKV instances, you can create multiple TiKVGroups resources.

6.2.4.2 Why does the volume modification not take effect immediately?
Storage volume modifications might not take effect immediately for the following reasons:

• Some cloud providers have cooldown period restrictions for volume modifications. For
example, AWS EBS has a 6-hour cooldown period.

• File system expansion might take some time to complete.

6.3 Customize the Configuration of Kubernetes Native Resources

This document describes how to use the Overlay feature of TiDB Operator to customize
Kubernetes native resource configurations.

The Overlay feature is a configuration mechanism in TiDB Operator that enables you
to customize the configuration of native resources in Kubernetes clusters (such as Pods and
PersistentVolumeClaims (PVCs)) without modifying the TiDB Operator source code. This
enables you to meet specific deployment requirements.

6.3.1 Supported resource types

Currently, TiDB Operator supports customizing the following resource types through
the Overlay feature:

• Pod: modify the Pod metadata (such as labels and annotations) and the spec field.
• PersistentVolumeClaim (PVC): modify PVC metadata (such as labels and anno-

tations).

Note:
It is not supported to modify the spec field of a PVC.

47

https://kubernetes.io/docs/concepts/overview/working-with-objects/#object-spec-and-status

6.3.2 Usage

6.3.2.1 Customize Pod configurations (Pod Overlay)
Pod Overlay enables you to modify the Pod metadata (such as labels and annotations)

and the spec field. You can configure this using the spec.template.spec.overlay.pod
field in the Custom Resource (CR) of a component group (such as PDGroup, TiDBGroup,
TiKVGroup, TiFlashGroup, TiProxyGroup, or TiCDCGroup).

The following example shows how to add an environment variable named CUSTOM_ENV_VAR
↪→ to the PD container:
apiVersion: core.pingcap.com/v1alpha1
kind: PDGroup
metadata:
name: pd

spec:
template:
spec:
overlay:
pod:
spec:
containers:
- name: pd
env:
- name: "CUSTOM_ENV_VAR"
value: "custom_value"

6.3.2.2 Customize PVC configurations (PVC Overlay)
PVC Overlay enables you to modify the PVC metadata (such as labels and annota-

tions) and the spec field. You can configure this using the spec.template.spec.overlay.
↪→ volumeClaims field in the Custom Resource (CR) of a component group (such as PDGroup
↪→ , TiDBGroup, TiKVGroup, TiFlashGroup, TiProxyGroup, or TiCDCGroup).

The following example shows how to add a custom label named custom-label to the
PVC of the TiKV component:
apiVersion: core.pingcap.com/v1alpha1
kind: TiKVGroup
metadata:
name: tikv

spec:
template:
spec:
volumes:
- name: data

48

mounts:
- type: data

storage: 100Gi
overlay:
volumeClaims:
- name: data
volumeClaim:
metadata:
labels:
custom-label: "value"

6.3.3 Notes

When using the Overlay feature, note the following:

• The Overlay feature merges the configuration you define in the spec.template.spec
↪→ .overlay field with the default configuration automatically generated by TiDB
Operator. If conflicts exist, the configuration defined in Overlay takes precedence.

• For map-type fields such as nodeSelector and labels, the Overlay feature appends
the key-value pairs you define while preserving existing configurations, rather than
replacing them entirely.

• Before modifying configurations using the Overlay feature, ensure that you fully under-
stand the potential impact of these changes, especially for critical configurations such
as securityContext and resource limits.

• The fields that can be modified through Overlay depend on the Kubernetes API version
used by TiDB Operator.

6.3.4 Example use cases

This section provides common examples of using the Overlay feature to help you under-
stand and apply it for customizing Kubernetes resource configurations.

6.3.4.1 Configure Pod resource limits and affinity
The following example shows how to use Overlay to configure resource request limits and

affinity for TiDB Pods:
spec:
template:
spec:
overlay:
pod:
spec:
containers:

49

- name: tidb
resources:
limits:
cpu: "4"
memory: "8Gi"

requests:
cpu: "2"
memory: "4Gi"

affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: dedicated
operator: In
values:
- tidb

6.3.4.2 Configure Pod security context
The following example shows how to configure Pod sysctls parameters using Overlay:

spec:
template:
spec:
overlay:
pod:
spec:
securityContext:
sysctls:
- name: net.core.somaxconn
value: "1024"

6.3.4.3 Update Pod and PVC labels or annotations in place
Using Overlay, you can update Pod and PVC labels or annotations without restarting

the Pod:
spec:
template:
spec:
overlay:
pod:
metadata:
labels:

50

custom-label: "value"
annotations:
custom-annotation: "value"

volumeClaims:
- name: data
volumeClaim:
metadata:
labels:
custom-label: "value"

annotations:
custom-annotation: "value"

6.3.4.4 Inject a sidecar container
You can use Overlay to inject a sidecar container into a Pod for purposes such as moni-

toring or log collection:
spec:
template:
spec:
overlay:
pod:
spec:
initContainers:
- name: logshipper
image: alpine:latest
restartPolicy: Always
command: ['sh', '-c', 'tail -F /opt/logs.txt']

7 Manage

7.1 Security

7.1.1 Enable TLS for the MySQL Client

This document describes how to enable TLS for MySQL client of the TiDB cluster on
Kubernetes. To enable TLS for the MySQL client, perform the following steps:

1. Issue two sets of certificates: a set of server-side certificates for the TiDB server,
and a set of client-side certificates for the MySQL client. Create two Secret objects,
${tidb_group_name}-tidb-server-secret and ${tidb_group_name}-tidb-client
↪→ -secret, respectively including these two sets of certificates.

51

https://kubernetes.io/docs/concepts/workloads/pods/sidecar-containers/

Note:
• The Secret objects you created must follow the preceding naming

convention. Otherwise, the deployment of the TiDB cluster will fail.
• Explicitly specifying the MySQL TLS Secret will be supported in a

future release.
• The default naming convention for Secrets differs between TiDB Op-

erator v2 and v1:
– For TiDB clusters created by TiDB Operator v1, the default

Secret names are ${cluster_name}-tidb-server-secret and
${cluster_name}-tidb-client-secret.

– In TiDB Operator v2, different TiDBGroup objects support
different TLS certificates. Therefore, the default Secret
names are ${tidb_group_name}-tidb-server-secret and ${
↪→ tidb_group_name}-tidb-client-secret.

2. Deploy the cluster, and set the .spec.template.spec.security.tls.mysql.enabled
field in TiDBGroup to true.

Note:
Enabling or modifying the TLS configuration of a running TiDBGroup
↪→ triggers a rolling restart of TiDB Pods. Perform this operation with
caution.

3. Configure the MySQL client to use an encrypted connection.

There are multiple ways to issue certificates. This document provides two methods, and
you can also issue certificates for TiDB clusters as needed. The two methods are:

• Use the cfssl system to issue certificates
• (Recommended) Use the cert-manager system to issue certificates

To renew existing TLS certificates, see Renew and Replace the TLS Certificate.

7.1.1.1 Step 1: Issue two sets of certificates for the TiDB cluster

7.1.1.1.1 Use cfssl to issue certificates

1. Download cfssl and initialize the certificate issuer:

52

mkdir -p ~/bin
curl -s -L -o ~/bin/cfssl https://pkg.cfssl.org/R1.2/cfssl_linux-amd64
curl -s -L -o ~/bin/cfssljson https://pkg.cfssl.org/R1.2/

↪→ cfssljson_linux-amd64
chmod +x ~/bin/{cfssl,cfssljson}
export PATH=$PATH:~/bin

mkdir -p cfssl
cd cfssl
cfssl print-defaults config > ca-config.json
cfssl print-defaults csr > ca-csr.json

2. Configure the client auth (CA) option in ca-config.json:
{

"signing": {
"default": {

"expiry": "8760h"
},
"profiles": {

"server": {
"expiry": "8760h",
"usages": [

"signing",
"key encipherment",
"server auth"

]
},
"client": {

"expiry": "8760h",
"usages": [

"signing",
"key encipherment",
"client auth"

]
}

}
}

}

3. Change the certificate signing request (CSR) of ca-csr.json:
{

"CN": "TiDB Server",
"CA": {

53

"expiry": "87600h"
},
"key": {

"algo": "rsa",
"size": 2048

},
"names": [

{
"C": "US",
"L": "CA",
"O": "PingCAP",
"ST": "Beijing",
"OU": "TiDB"

}
]

}

4. Generate CA by the configured option:
cfssl gencert -initca ca-csr.json | cfssljson -bare ca -

5. Generate the server-side certificate:
First, create the default server.json file:
cfssl print-defaults csr > server.json

Then, edit this file to change the CN and hosts attributes:
...

"CN": "TiDB Server",
"hosts": [
"127.0.0.1",
"::1",
"${tidb_group_name}-tidb",
"${tidb_group_name}-tidb.${namespace}",
"${tidb_group_name}-tidb.${namespace}.svc",
"*.${tidb_group_name}-tidb",
"*.${tidb_group_name}-tidb.${namespace}",
"*.${tidb_group_name}-tidb.${namespace}.svc",
"*.${tidb_group_name}-tidb-peer",
"*.${tidb_group_name}-tidb-peer.${namespace}",
"*.${tidb_group_name}-tidb-peer.${namespace}.svc"

],
...

54

${tidb_group_name} is the name of TiDBGroup. ${namespace} is the namespace in
which the TiDB cluster is deployed. You can also add your customized hosts.
Finally, generate the server-side certificate:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -

↪→ profile=server server.json | cfssljson -bare server

6. Generate the client-side certificate:
First, create the default client.json file:
cfssl print-defaults csr > client.json

Then, edit this file to change the CN and hosts attributes. You can leave the hosts
empty:
...

"CN": "TiDB Client",
"hosts": [],

...

Finally, generate the client-side certificate:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -

↪→ profile=client client.json | cfssljson -bare client

7. Create the Kubernetes Secret object.
If you have already generated two sets of certificates as described in the above steps,
create the Secret object for the TiDB cluster by the following command:
kubectl create secret generic ${tidb_group_name}-tidb-server-secret --

↪→ namespace=${namespace} --from-file=tls.crt=server.pem --from-file
↪→ =tls.key=server-key.pem --from-file=ca.crt=ca.pem

kubectl create secret generic ${tidb_group_name}-tidb-client-secret --
↪→ namespace=${namespace} --from-file=tls.crt=client.pem --from-file
↪→ =tls.key=client-key.pem --from-file=ca.crt=ca.pem

You have created two Secret objects for the server-side and client-side certificates:

• The TiDB server loads one Secret object when it starts
• The MySQL client uses the other Secret object when it connects to the TiDB

cluster

You can generate multiple sets of client-side certificates. At least one set of client-side
certificates is needed for the internal components of TiDB Operator to access the TiDB
server.

55

7.1.1.1.2 Use cert-manager to issue certificates

1. Install cert-manager.
Refer to cert-manager installation on Kubernetes.

2. Create an Issuer to issue certificates for the TiDB cluster.
To configure cert-manager, create the Issuer resources.
First, create a directory to save the files that cert-manager needs to create certificates:
mkdir -p cert-manager
cd cert-manager

Then, create a tidb-server-issuer.yaml file with the following content:
apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
name: ${cluster_name}-selfsigned-ca-issuer
namespace: ${namespace}

spec:
selfSigned: {}

apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${cluster_name}-ca
namespace: ${namespace}

spec:
secretName: ${cluster_name}-ca-secret
commonName: "TiDB CA"
isCA: true
duration: 87600h # 10yrs
renewBefore: 720h # 30d
issuerRef:
name: ${cluster_name}-selfsigned-ca-issuer
kind: Issuer

apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
name: ${cluster_name}-cert-issuer
namespace: ${namespace}

spec:
ca:
secretName: ${cluster_name}-ca-secret

56

https://docs.cert-manager.io/en/release-0.11/getting-started/install/kubernetes.html

This .yaml file creates three objects:

• An Issuer object of SelfSigned class, used to generate the CA certificate needed
by the Issuer of the CA class

• A Certificate object, whose isCa is set to true
• An Issuer, used to issue TLS certificates for the TiDB server

Finally, execute the following command to create an Issuer:
kubectl apply -f tidb-server-issuer.yaml

3. Generate the server-side certificate.
In cert-manager, the Certificate resource represents the certificate interface. This
certificate is issued and updated by the Issuer created in Step 2.
First, create a tidb-server-cert.yaml file with the following content:
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${tidb_group_name}-tidb-server-secret
namespace: ${namespace}

spec:
secretName: ${tidb_group_name}-tidb-server-secret
duration: 8760h # 365d
renewBefore: 360h # 15d
subject:
organizations:
- PingCAP

commonName: "TiDB"
usages:
- server auth

dnsNames:
- "${tidb_group_name}-tidb"
- "${tidb_group_name}-tidb.${namespace}"
- "${tidb_group_name}-tidb.${namespace}.svc"
- "*.${tidb_group_name}-tidb"
- "*.${tidb_group_name}-tidb.${namespace}"
- "*.${tidb_group_name}-tidb.${namespace}.svc"
- "*.${tidb_group_name}-tidb-peer"
- "*.${tidb_group_name}-tidb-peer.${namespace}"
- "*.${tidb_group_name}-tidb-peer.${namespace}.svc"

ipAddresses:
- 127.0.0.1
- ::1

issuerRef:

57

name: ${cluster_name}-cert-issuer
kind: Issuer
group: cert-manager.io

${cluster_name} is the name of the cluster. ${tidb_group_name} is the name of
TiDBGroup:

• Set spec.secretName to ${tidb_group_name}-tidb-server-secret
• Add server auth in usages.
• Add the following six DNSs in dnsNames. You can also add other DNSs according

to your needs:
• ${tidb_group_name}-tidb
• ${tidb_group_name}-tidb.${namespace}
• ${tidb_group_name}-tidb.${namespace}.svc
• *.${tidb_group_name}-tidb
• *.${tidb_group_name}-tidb.${namespace}
• *.${tidb_group_name}-tidb.${namespace}.svc
• *.${tidb_group_name}-tidb-peer
• *.${tidb_group_name}-tidb-peer.${namespace}
• *.${tidb_group_name}-tidb-peer.${namespace}.svc
• Add the following two IPs in ipAddresses. You can also add other IPs according

to your needs:
• 127.0.0.1
• ::1
• Add the preceding created Issuer in the issuerRef
• For other attributes, refer to cert-manager API.

Execute the following command to generate the certificate:
kubectl apply -f tidb-server-cert.yaml

After the object is created, cert-manager generates a ${tidb_group_name}-tidb-
↪→ server-secret Secret object to be used by the TiDB server.

4. Generate the client-side certificate:
Create a tidb-client-cert.yaml file with the following content:
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${tidb_group_name}-tidb-client-secret
namespace: ${namespace}

spec:
secretName: ${tidb_group_name}-tidb-client-secret
duration: 8760h # 365d
renewBefore: 360h # 15d

58

https://cert-manager.io/docs/reference/api-docs/#cert-manager.io/v1.CertificateSpec

subject:
organizations:
- PingCAP

commonName: "TiDB"
usages:
- client auth

issuerRef:
name: ${cluster_name}-cert-issuer
kind: Issuer
group: cert-manager.io

${cluster_name} is the name of the cluster. ${tidb_group_name} is the name of
TiDBGroup:

• Set spec.secretName to ${tidb_group_name}-tidb-client-secret
• Add client auth in usages
• dnsNames and ipAddresses are not required
• Add the Issuer created above in the issuerRef
• For other attributes, refer to cert-manager API

Execute the following command to generate the certificate:
kubectl apply -f tidb-client-cert.yaml

After the object is created, cert-manager generates a ${tidb_group_name}-tidb-
↪→ client-secret Secret object to be used by the TiDB client.

Note:
• The ca.crt included in the Secret issued by cert-manager is the CA

that signed the certificate, not the CA used to validate the peer’s
mTLS certificate.

• In this example, the client and server TLS certificates are issued by
the same CA, so they can be used directly. If the client and server
certificates are issued by different CAs, it is recommended to use the
Trust Manager to distribute the appropriate ca.crt.

7.1.1.2 Step 2: Deploy the TiDBGroup
The following configuration example shows how to create a TiDBGroup with MySQL TLS

enabled:
apiVersion: core.pingcap.com/v1alpha1
kind: TiDBGroup
metadata:

59

https://cert-manager.io/docs/reference/api-docs/#cert-manager.io/v1.CertificateSpec
https://cert-manager.io/docs/trust/trust-manager/

name: tidb
spec:
cluster:
name: tls

version: v8.5.2
replicas: 1
template:
spec:
security:
tls:
mysql:
enabled: true

config: |
[security]
cluster-verify-cn = ["TiDB"]

7.1.1.3 Step 3: Configure the MySQL client to use an encrypted connection
To connect the MySQL client with the TiDB cluster, use the client-side certificate created

above and take the following methods. For details, refer to Configure the MySQL client to
use TLS connections.

Execute the following command to acquire the client-side certificate and connect to the
TiDB server:
kubectl get secret -n ${namespace} ${tidb_group_name}-tidb-client-secret -

↪→ ojsonpath='{.data.tls\.crt}' | base64 --decode > client-tls.crt
kubectl get secret -n ${namespace} ${tidb_group_name}-tidb-client-secret -

↪→ ojsonpath='{.data.tls\.key}' | base64 --decode > client-tls.key
kubectl get secret -n ${namespace} ${tidb_group_name}-tidb-client-secret -

↪→ ojsonpath='{.data.ca\.crt}' | base64 --decode > client-ca.crt

mysql --comments -uroot -p -P 4000 -h ${tidb_host} --ssl-cert=client-tls.crt
↪→ --ssl-key=client-tls.key --ssl-ca=client-ca.crt

Finally, to verify whether TLS is successfully enabled, refer to Check whether the current
connection uses encryption.

7.1.2 Enable TLS Between TiDB Components

This document describes how to enable Transport Layer Security (TLS) between com-
ponents of the TiDB cluster on Kubernetes. The steps are as follows:

1. Generate certificates for each component group of the TiDB cluster to be created:

60

https://docs.pingcap.com/tidb/stable/enable-tls-between-clients-and-servers/#configure-the-mysql-client-to-use-tls-connections
https://docs.pingcap.com/tidb/stable/enable-tls-between-clients-and-servers/#configure-the-mysql-client-to-use-tls-connections
https://docs.pingcap.com/tidb/stable/enable-tls-between-clients-and-servers/#check-whether-the-current-connection-uses-encryption
https://docs.pingcap.com/tidb/stable/enable-tls-between-clients-and-servers/#check-whether-the-current-connection-uses-encryption

Create a separate set of certificates for each component group, and save it as a Kuber-
netes Secret object named ${group_name}-${component_name}-cluster-secret.

Note:
The Secret objects you created must follow the preceding naming conven-
tion. Otherwise, the deployment of the TiDB components will fail.

2. Deploy the cluster and set the .spec.tlsCluster.enabled field to true in the Cluster
Custom Resource (CR).

Note:
After the cluster is created, do not modify this field. Otherwise, the
cluster will fail to upgrade. If you need to modify this field, delete the
cluster and create a new one.

3. Configure pd-ctl and tikv-ctl to connect to the cluster.

Certificates can be issued in multiple methods. This document describes two methods.
You can choose either of them to issue certificates for the TiDB cluster:

• Use cfssl
• Use cert-manager

If you need to renew the existing TLS certificate, refer to Renew and Replace the TLS
Certificate.

7.1.2.1 Step 1. Generate certificates for components of the TiDB cluster
This section describes how to issue certificates using two methods: cfssl and cert-

↪→ manager.

7.1.2.1.1 Use cfssl

1. Download cfssl and initialize the certificate issuer:
mkdir -p ~/bin
curl -s -L -o ~/bin/cfssl https://pkg.cfssl.org/R1.2/cfssl_linux-amd64
curl -s -L -o ~/bin/cfssljson https://pkg.cfssl.org/R1.2/

↪→ cfssljson_linux-amd64
chmod +x ~/bin/{cfssl,cfssljson}
export PATH=$PATH:~/bin

61

mkdir -p cfssl
cd cfssl

2. Generate the ca-config.json configuration file:

Note:
• All TiDB components share the same set of TLS certificates for

inter-component communication to encrypt traffic between clients
and servers. Therefore, when generating the CA configuration, you
must specify both server auth and client auth.

• It is recommended that all component certificates be issued by the
same CA.

cat << EOF > ca-config.json
{

"signing": {
"default": {

"expiry": "8760h"
},
"profiles": {

"internal": {
"expiry": "8760h",
"usages": [

"signing",
"key encipherment",
"server auth",
"client auth"

]
}

}
}

}
EOF

3. Generate the ca-csr.json configuration file:
cat << EOF > ca-csr.json
{

"CN": "TiDB",
"CA": {

"expiry": "87600h"
},

62

"key": {
"algo": "rsa",
"size": 2048

},
"names": [

{
"C": "US",
"L": "CA",
"O": "PingCAP",
"ST": "Beijing",
"OU": "TiDB"

}
]

}
EOF

4. Generate CA by the configured option:
cfssl gencert -initca ca-csr.json | cfssljson -bare ca -

5. Generate certificates:
In this step, you need to generate a set of certificates for each component group of the
TiDB cluster.

• PD certificate
First, generate the default pd.json file:
cfssl print-defaults csr > pd.json

Then, edit this file to change the CN and hosts attributes:
...

"CN": "TiDB",
"hosts": [
"127.0.0.1",
"::1",
"${pd_group_name}-pd",
"${pd_group_name}-pd.${namespace}",
"${pd_group_name}-pd.${namespace}.svc",
"${pd_group_name}-pd-peer",
"${pd_group_name}-pd-peer.${namespace}",
"${pd_group_name}-pd-peer.${namespace}.svc",
"*.${pd_group_name}-pd-peer",
"*.${pd_group_name}-pd-peer.${namespace}",
"*.${pd_group_name}-pd-peer.${namespace}.svc"

],

63

...

${pd_group_name} is the name of PDGroup, and ${namespace} is the namespace
in which the TiDB cluster is deployed. You can also add your customized hosts.
Finally, generate the PD certificate:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json

↪→ -profile=internal pd.json | cfssljson -bare pd

• TiKV certificate
First, generate the default tikv.json file:
cfssl print-defaults csr > tikv.json

Then, edit this file to change the CN and hosts attributes:
...

"CN": "TiDB",
"hosts": [
"127.0.0.1",
"::1",
"${tikv_group_name}-tikv",
"${tikv_group_name}-tikv.${namespace}",
"${tikv_group_name}-tikv.${namespace}.svc",
"${tikv_group_name}-tikv-peer",
"${tikv_group_name}-tikv-peer.${namespace}",
"${tikv_group_name}-tikv-peer.${namespace}.svc",
"*.${tikv_group_name}-tikv-peer",
"*.${tikv_group_name}-tikv-peer.${namespace}",
"*.${tikv_group_name}-tikv-peer.${namespace}.svc"

],
...

${tikv_group_name} is the name of TiKVGroup, and ${namespace} is the
namespace in which the TiDB cluster is deployed. You can also add your
customized hosts.
Finally, generate the TiKV certificate:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json

↪→ -profile=internal tikv.json | cfssljson -bare tikv

• TiDB certificate
First, generate the default tidb.json file:
cfssl print-defaults csr > tidb.json

Then, edit this file to change the CN and hosts attributes:

64

...
"CN": "TiDB",
"hosts": [
"127.0.0.1",
"::1",
"${tidb_group_name}-tidb",
"${tidb_group_name}-tidb.${namespace}",
"${tidb_group_name}-tidb.${namespace}.svc",
"${tidb_group_name}-tidb-peer",
"${tidb_group_name}-tidb-peer.${namespace}",
"${tidb_group_name}-tidb-peer.${namespace}.svc",
"*.${tidb_group_name}-tidb-peer",
"*.${tidb_group_name}-tidb-peer.${namespace}",
"*.${tidb_group_name}-tidb-peer.${namespace}.svc"

],
...

${tidb_group_name} is the name of TiDBGroup, and ${namespace} is the
namespace in which the TiDB cluster is deployed. You can also add your
customized hosts.
Finally, generate the TiDB certificate:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json

↪→ -profile=internal tidb.json | cfssljson -bare tidb

• Other components
In addition to PD, TiKV, and TiDB, other component groups also require their
own TLS certificates. The following example shows the basic steps to generate a
component certificate:
First, generate the default ${component_name}.json file:
cfssl print-defaults csr > ${component_name}.json

Then, edit this file to change the CN and hosts attributes:
...

"CN": "TiDB",
"hosts": [
"127.0.0.1",
"::1",
"${group_name}-${component_name}",
"${group_name}-${component_name}.${namespace}",
"${group_name}-${component_name}.${namespace}.svc",
"${group_name}-${component_name}-peer",
"${group_name}-${component_name}-peer.${namespace}",
"${group_name}-${component_name}-peer.${namespace}.svc",

65

"*.${group_name}-${component_name}-peer",
"*.${group_name}-${component_name}-peer.${namespace}",
"*.${group_name}-${component_name}-peer.${namespace}.svc"

],
...

In this file:
– ${group_name} is the name of the component group.
– ${component_name} is the name of the component (use lowercase letters,

such as pd, tikv, and tidb).
– ${namespace} the namespace in which the TiDB cluster is deployed.
– You can also add your customized hosts.

Finally, generate the component certificate:
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json

↪→ -profile=internal ${component_name}.json | cfssljson -bare $
↪→ {component_name}

6. Create the Kubernetes Secret object:
If you have already generated a set of certificates for each component and a set of
client-side certificates for each client as described in the preceding steps, create the
Secret objects for the TiDB cluster by executing the following command:
Create the Secret for the PD cluster certificate:
kubectl create secret generic ${pd_group_name}-pd-cluster-secret --

↪→ namespace=${namespace} --from-file=tls.crt=pd.pem --from-file=tls
↪→ .key=pd-key.pem --from-file=ca.crt=ca.pem

Create the Secret for the TiKV cluster certificate:
kubectl create secret generic ${tikv_group_name}-tikv-cluster-secret --

↪→ namespace=${namespace} --from-file=tls.crt=tikv.pem --from-file=
↪→ tls.key=tikv-key.pem --from-file=ca.crt=ca.pem

Create the Secret for the TiDB cluster certificate:
kubectl create secret generic ${tidb_group_name}-tidb-cluster-secret --

↪→ namespace=${namespace} --from-file=tls.crt=tidb.pem --from-file=
↪→ tls.key=tidb-key.pem --from-file=ca.crt=ca.pem

Create the Secret for other component certificates:
kubectl create secret generic ${group_name}-${component_name}-cluster-

↪→ secret --namespace=${namespace} --from-file=tls.crt=${
↪→ component_name}.pem --from-file=tls.key=${component_name}-key.pem
↪→ --from-file=ca.crt=ca.pem

66

In this step, separate Secrets are created for the server-side certificates of PD, TiKV,
and TiDB for loading during startup, and another set of client-side certificates is pro-
vided for their client connections.

7.1.2.1.2 Use cert-manager

1. Install cert-manager.
For more information, see cert-manager installation on Kubernetes.

2. Create an Issuer to issue certificates to the TiDB cluster.
To configure cert-manager, create the Issuer resources.
First, create a directory to save the files that cert-manager needs to create certificates:
mkdir -p cert-manager
cd cert-manager

Then, create a tidb-cluster-issuer.yaml file with the following content:
apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
name: ${cluster_name}-selfsigned-ca-issuer
namespace: ${namespace}

spec:
selfSigned: {}

apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${cluster_name}-ca
namespace: ${namespace}

spec:
secretName: ${cluster_name}-ca-secret
commonName: "TiDB"
isCA: true
duration: 87600h # 10yrs
renewBefore: 720h # 30d
issuerRef:
name: ${cluster_name}-selfsigned-ca-issuer
kind: Issuer

apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
name: ${cluster_name}-certs-issuer

67

https://cert-manager.io/docs/installation/

namespace: ${namespace}
spec:
ca:
secretName: ${cluster_name}-ca-secret

${cluster_name} is the name of the cluster. The preceding YAML file creates three
objects:

• An Issuer object of the SelfSigned type, used to generate the CA certificate needed
by Issuer of the CA type.

• A Certificate object, whose isCa is set to true.
• An Issuer, used to issue TLS certificates between TiDB components.

Finally, execute the following command to create an Issuer:
kubectl apply -f tidb-cluster-issuer.yaml

3. Generate the component certificate.
In cert-manager, the Certificate resource represents the certificate interface. This
certificate is issued and updated by the Issuer created in step 2.
According to Enable TLS Between TiDB Components, each component needs a certifi-
cate.

• PD certificate
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${pd_group_name}-pd-cluster-secret
namespace: ${namespace}

spec:
secretName: ${pd_group_name}-pd-cluster-secret
duration: 8760h # 365d
renewBefore: 360h # 15d
subject:
organizations:
- PingCAP

commonName: "TiDB"
usages:
- server auth
- client auth

dnsNames:
- "${pd_group_name}-pd"
- "${pd_group_name}-pd.${namespace}"
- "${pd_group_name}-pd.${namespace}.svc"

68

https://docs.pingcap.com/tidb/stable/enable-tls-between-components

- "${pd_group_name}-pd-peer"
- "${pd_group_name}-pd-peer.${namespace}"
- "${pd_group_name}-pd-peer.${namespace}.svc"
- "*.${pd_group_name}-pd-peer"
- "*.${pd_group_name}-pd-peer.${namespace}"
- "*.${pd_group_name}-pd-peer.${namespace}.svc"
ipAddresses:
- 127.0.0.1
- ::1
issuerRef:
name: ${cluster_name}-certs-issuer
kind: Issuer
group: cert-manager.io

${pd_group_name} is the name of PDGroup, and ${cluster_name} is the name
of the cluster. Configure the items as follows:

– Set spec.secretName to ${pd_group_name}-pd-cluster-secret.
– Add server auth and client auth in usages.
– Add the following DNSs in dnsNames. You can also add other DNSs according

to your needs:
– ${pd_group_name}-pd
– ${pd_group_name}-pd.${namespace}
– ${pd_group_name}-pd.${namespace}.svc
– ${pd_group_name}-pd-peer
– ${pd_group_name}-pd-peer.${namespace}
– ${pd_group_name}-pd-peer.${namespace}.svc
– *.${pd_group_name}-pd-peer
– *.${pd_group_name}-pd-peer.${namespace}
– *.${pd_group_name}-pd-peer.${namespace}.svc
– Add the following two IPs in ipAddresses. You can also add other IPs

according to your needs:
– 127.0.0.1
– ::1
– Add the preceding created Issuer in issuerRef.
– For other attributes, refer to cert-manager API.

After the object is created, cert-manager generates a ${pd_group_name}-pd-
↪→ cluster-secret Secret object to be used by the PD component of the TiDB
cluster.

• TiKV certificate
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${tikv_group_name}-tikv-cluster-secret
namespace: ${namespace}

69

https://cert-manager.io/docs/reference/api-docs/#cert-manager.io/v1.CertificateSpec

spec:
secretName: ${tikv_group_name}-tikv-cluster-secret
duration: 8760h # 365d
renewBefore: 360h # 15d
subject:
organizations:
- PingCAP

commonName: "TiDB"
usages:
- server auth
- client auth

dnsNames:
- "${tikv_group_name}-tikv"
- "${tikv_group_name}-tikv.${namespace}"
- "${tikv_group_name}-tikv.${namespace}.svc"
- "${tikv_group_name}-tikv-peer"
- "${tikv_group_name}-tikv-peer.${namespace}"
- "${tikv_group_name}-tikv-peer.${namespace}.svc"
- "*.${tikv_group_name}-tikv-peer"
- "*.${tikv_group_name}-tikv-peer.${namespace}"
- "*.${tikv_group_name}-tikv-peer.${namespace}.svc"
ipAddresses:
- 127.0.0.1
- ::1
issuerRef:
name: ${cluster_name}-certs-issuer
kind: Issuer
group: cert-manager.io

${tikv_group_name} is the name of TiKVGroup, and ${cluster_name} is the
name of the cluster. Configure the items as follows:

– Set spec.secretName to ${tikv_group_name}-tikv-cluster-secret.
– Add server auth and client auth in usages.
– Add the following DNSs in dnsNames. You can also add other DNSs according

to your needs:
– ${tikv_group_name}-tikv
– ${tikv_group_name}-tikv.${namespace}
– ${tikv_group_name}-tikv.${namespace}.svc
– ${tikv_group_name}-tikv-peer
– ${tikv_group_name}-tikv-peer.${namespace}
– ${tikv_group_name}-tikv-peer.${namespace}.svc
– *.${tikv_group_name}-tikv-peer
– *.${tikv_group_name}-tikv-peer.${namespace}
– *.${tikv_group_name}-tikv-peer.${namespace}.svc
– Add the following two IPs in ipAddresses. You can also add other IPs

70

according to your needs:
– 127.0.0.1
– ::1
– Add the preceding created Issuer in issuerRef.
– For other attributes, refer to cert-manager API.

After the object is created, cert-manager generates a ${tikv_group_name}-
↪→ tikv-cluster-secret Secret object to be used by the TiKV component of
the TiDB server.

• TiDB certificate
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${tidb_group_name}-tidb-cluster-secret
namespace: ${namespace}

spec:
secretName: ${tidb_group_name}-tidb-cluster-secret
duration: 8760h # 365d
renewBefore: 360h # 15d
subject:
organizations:
- PingCAP

commonName: "TiDB"
usages:
- server auth
- client auth

dnsNames:
- "${tidb_group_name}-tidb"
- "${tidb_group_name}-tidb.${namespace}"
- "${tidb_group_name}-tidb.${namespace}.svc"
- "${tidb_group_name}-tidb-peer"
- "${tidb_group_name}-tidb-peer.${namespace}"
- "${tidb_group_name}-tidb-peer.${namespace}.svc"
- "*.${tidb_group_name}-tidb-peer"
- "*.${tidb_group_name}-tidb-peer.${namespace}"
- "*.${tidb_group_name}-tidb-peer.${namespace}.svc"
ipAddresses:
- 127.0.0.1
- ::1
issuerRef:
name: ${cluster_name}-certs-issuer
kind: Issuer
group: cert-manager.io

${tidb_group_name} is the name of TiDBGroup, and ${cluster_name} is the

71

https://cert-manager.io/docs/reference/api-docs/#cert-manager.io/v1.CertificateSpec

name of the cluster. Configure the items as follows:
– Set spec.secretName to ${tidb_group_name}-tidb-cluster-secret.
– Add server auth and client auth in usages.
– Add the following DNSs in dnsNames. You can also add other DNSs according

to your needs:
– ${tidb_group_name}-tidb
– ${tidb_group_name}-tidb.${namespace}
– ${tidb_group_name}-tidb.${namespace}.svc
– ${tidb_group_name}-tidb-peer
– ${tidb_group_name}-tidb-peer.${namespace}
– ${tidb_group_name}-tidb-peer.${namespace}.svc
– *.${tidb_group_name}-tidb-peer
– *.${tidb_group_name}-tidb-peer.${namespace}
– *.${tidb_group_name}-tidb-peer.${namespace}.svc
– Add the following two IPs in ipAddresses. You can also add other IPs

according to your needs:
– 127.0.0.1
– ::1
– Add the preceding created Issuer in issuerRef.
– For other attributes, refer to cert-manager API.

After the object is created, cert-manager generates a ${tidb_group_name}-
↪→ tidb-cluster-secret Secret object to be used by the TiDB component of
the TiDB server.

• Other component:
apiVersion: cert-manager.io/v1
kind: Certificate
metadata:
name: ${group_name}-${component_name}-cluster-secret
namespace: ${namespace}

spec:
secretName: ${group_name}-${component_name}-cluster-secret
duration: 8760h # 365d
renewBefore: 360h # 15d
subject:
organizations:
- PingCAP

commonName: "TiDB"
usages:
- server auth
- client auth

dnsNames:
- "${group_name}-${component_name}"
- "${group_name}-${component_name}.${namespace}"

72

https://cert-manager.io/docs/reference/api-docs/#cert-manager.io/v1.CertificateSpec

- "${group_name}-${component_name}.${namespace}.svc"
- "${group_name}-${component_name}-peer"
- "${group_name}-${component_name}-peer.${namespace}"
- "${group_name}-${component_name}-peer.${namespace}.svc"
- "*.${group_name}-${component_name}-peer"
- "*.${group_name}-${component_name}-peer.${namespace}"
- "*.${group_name}-${component_name}-peer.${namespace}.svc"
ipAddresses:
- 127.0.0.1
- ::1
issuerRef:
name: ${cluster_name}-certs-issuer
kind: Issuer
group: cert-manager.io

${group_name} is the name of the component group, ${component_name} is the
name of the component, and ${cluster_name} is the name of the cluster. Con-
figure the items as follows:

– Set spec.secretName to ${group_name}-${component_name}-cluster-
↪→ secret.

– Add server auth and client auth in usages.
– Add the following DNSs in dnsNames. You can also add other DNSs according

to your needs:
– ${group_name}-${component_name}
– ${group_name}-${component_name}.${namespace}
– ${group_name}-${component_name}.${namespace}.svc
– ${group_name}-${component_name}-peer
– ${group_name}-${component_name}-peer.${namespace}
– ${group_name}-${component_name}-peer.${namespace}.svc
– *.${group_name}-${component_name}-peer
– *.${group_name}-${component_name}-peer.${namespace}
– *.${group_name}-${component_name}-peer.${namespace}.svc
– Add the following two IPs in ipAddresses. You can also add other IPs

according to your needs:
– 127.0.0.1
– ::1
– Add the preceding created Issuer in issuerRef.
– For other attributes, refer to cert-manager API.

After the object is created, cert-manager generates a ${group_name}-$
↪→ {component_name}-cluster-secret Secret object to be used by the
component of the TiDB server.

7.1.2.2 Step 2. Deploy the TiDB cluster

73

https://cert-manager.io/docs/reference/api-docs/#cert-manager.io/v1.CertificateSpec

When you deploy a TiDB cluster, you can enable TLS between TiDB components, and
set the cert-allowed-cn configuration item (for TiDB, the configuration item is cluster-
↪→ verify-cn) to verify the CN (Common Name) of each component’s certificate.

Note:

• For TiDB v8.3.0 and earlier versions, the PD configuration item cert-
↪→ allowed-cn can only be set to a single value. Therefore, the Common
↪→ Name of all authentication objects must be set to the same value.

• Starting from TiDB v8.4.0, the PD configuration item cert-allowed-cn
supports multiple values. You can configure multiple Common Name in
the cluster-verify-cn configuration item for TiDB and in the cert-
↪→ allowed-cn configuration item for other components as needed.

• For more information, see Enable TLS Between TiDB Components.

Perform the following steps to create a TiDB cluster and enable TLS between TiDB
components:

Create the tidb-cluster.yaml file:
apiVersion: core.pingcap.com/v1alpha1
kind: Cluster
metadata:
name: ${cluster_name}
namespace: ${namespace}

spec:
tlsCluster:
enabled: true

apiVersion: core.pingcap.com/v1alpha1
kind: PDGroup
metadata:
name: ${pd_group_name}
namespace: ${namespace}

spec:
cluster:
name: ${cluster_name}

version: v8.5.2
replicas: 3
template:
spec:
config: |
[security]

74

https://docs.pingcap.com/tidb/stable/enable-tls-between-components/

cert-allowed-cn = ["TiDB"]
volumes:
- name: data
mounts:
- type: data
storage: 20Gi

apiVersion: core.pingcap.com/v1alpha1
kind: TiKVGroup
metadata:
name: ${tikv_group_name}
namespace: ${namespace}

spec:
cluster:
name: ${cluster_name}

version: v8.5.2
replicas: 3
template:
spec:
config: |
[security]
cert-allowed-cn = ["TiDB"]

volumes:
- name: data
mounts:
- type: data
storage: 100Gi

apiVersion: core.pingcap.com/v1alpha1
kind: TiDBGroup
metadata:
name: ${tidb_group_name}
namespace: ${namespace}

spec:
cluster:
name: ${cluster_name}

version: v8.5.2
replicas: 1
template:
spec:
config: |
[security]
cluster-verify-cn = ["TiDB"]

Then, execute kubectl apply -f tidb-cluster.yaml to create a TiDB cluster.

75

7.1.3 Run Containers as a Non-Root User

In some Kubernetes environments, containers cannot be run as the root user. For security
reasons, it is recommended to run containers as a non-root user in production environments
to reduce the risk of potential attacks. This document describes how to configure containers
to run as a non-root user using the securityContext.

7.1.3.1 Configure containers related to TiDB Operator
For TiDB Operator containers, configure the securityContext in the Helm values.

↪→ yaml file.
The following is an example configuration:

controllerManager:
securityContext:
runAsUser: 1000
runAsGroup: 2000
fsGroup: 2000

7.1.3.2 Configure containers generated by CR
For containers generated by Custom Resources (CRs), configure the securityContext

in any CR, such as PDGroup, TiDBGroup, TiKVGroup, TiFlashGroup, TiCDCGroup, Backup,
CompactBackup, BackupSchedule, or Restore.

• For CRs such as PDGroup, TiDBGroup, TiKVGroup, TiFlashGroup, and TiCDCGroup
↪→ , configure the securityContext using the Overlay method. The following is an
example configuration for the PDGroup CR:
apiVersion: core.pingcap.com/v1alpha1
kind: PDGroup
metadata:
name: pd

spec:
template:
spec:
overlay:
pod:
spec:
securityContext:
runAsUser: 1000
runAsGroup: 2000
fsGroup: 2000

76

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-security-context-for-a-pod

• For CRs such as Backup, CompactBackup, BackupSchedule, and Restore, configure
the podSecurityContext in the spec field. The following is an example configuration
for the Backup CR:
apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: backup

spec:
podSecurityContext:
runAsUser: 1000
runAsGroup: 2000
fsGroup: 2000

7.1.4 Renew and Replace the TLS Certificate

This document introduces how to renew and replace certificates of the corresponding
components before certificates expire, taking TLS certificates between PD, TiKV, and TiDB
components in the TiDB cluster as an example.

If you need to renew and replace certificates between other components in the TiDB
cluster, TiDB server-side certificate, or MySQL client-side certificate, you can take similar
steps to complete the operation.

The renewal and replacement operations in this document assume that the original certifi-
cates have not expired. If the original certificates expire or become invalid, to generate new
certificates and restart the TiDB cluster, refer to Enable TLS between TiDB components or
Enable TLS for MySQL client.

7.1.4.1 Renew and replace certificates issued by the cfssl system
If the original TLS certificates are issued by the cfssl system and the original certificates

have not expired, you can renew and replace the certificates between PD, TiKV and TiDB
components as follows.

7.1.4.1.1 Renew and replace the CA certificate

Note:
If you don’t need to renew the CA certificate, you can skip the operations
in this section and directly refer to renew and replace certificates between
components.

77

1. Back up the original CA certificate and key.
mv ca.pem ca.old.pem && \
mv ca-key.pem ca-key.old.pem

2. Generate the new CA certificate and key based on the configuration of the original CA
certificate and certificate signing request (CSR).
cfssl gencert -initca ca-csr.json | cfssljson -bare ca -

Note:
If necessary, you can update expiry in the configuration file and in CSR.

3. Back up the new CA certificate and key, and generate a combined CA certificate based
on the original CA certificate and the new CA certificate.
mv ca.pem ca.new.pem && \
mv ca-key.pem ca-key.new.pem && \
cat ca.new.pem ca.old.pem > ca.pem

4. Update each corresponding Kubernetes Secret object based on the combined CA cer-
tificate.
kubectl create secret generic ${pd_group_name}-pd-cluster-secret --

↪→ namespace=${namespace} --from-file=tls.crt=pd-server.pem --from-
↪→ file=tls.key=pd-server-key.pem --from-file=ca.crt=ca.pem --dry-
↪→ run=client -o yaml | kubectl apply -f -

kubectl create secret generic ${tikv_group_name}-tikv-cluster-secret --
↪→ namespace=${namespace} --from-file=tls.crt=tikv-server.pem --from
↪→ -file=tls.key=tikv-server-key.pem --from-file=ca.crt=ca.pem --dry
↪→ -run=client -o yaml | kubectl apply -f -

kubectl create secret generic ${tidb_group_name}-tidb-cluster-secret --
↪→ namespace=${namespace} --from-file=tls.crt=tidb-server.pem --from
↪→ -file=tls.key=tidb-server-key.pem --from-file=ca.crt=ca.pem --dry
↪→ -run=client -o yaml | kubectl apply -f -

In the preceding command, ${pd_group_name}, ${tikv_group_name}, and ${
↪→ tidb_group_name} are the names of the component groups, and ${namespace} is
the namespace in which the TiDB cluster is deployed.

Note:
The preceding command only renews the server-side CA certificate and
the client-side CA certificate between PD, TiKV, and TiDB components.

78

If you need to renew the server-side CA certificates for other components,
such as TiCDC, TiFlash and TiProxy, you can execute the similar com-
mand.

5. Perform the rolling restart to components that need to load the combined CA certifi-
cate.
After the completion of the rolling restart, based on the combined CA certificate, each
component can accept the certificate issued by either the original CA certificate or the
new CA certificate at the same time.

7.1.4.1.2 Renew and replace certificates between components

Note:
Before renewing and replacing certificates between components, make sure
that the CA certificate can verify the certificates between components before
and after the renewal as valid. If you have renewed and replaced the CA
certificate, make sure that the TiDB cluster is restarted based on the new
CA certificate.

1. Generate new server-side and client-side certificates based on the original configuration
information of each component.
cfssl gencert -ca=ca.new.pem -ca-key=ca-key.new.pem -config=ca-config.

↪→ json -profile=internal pd-server.json | cfssljson -bare pd-server
cfssl gencert -ca=ca.new.pem -ca-key=ca-key.new.pem -config=ca-config.

↪→ json -profile=internal tikv-server.json | cfssljson -bare tikv-
↪→ server

cfssl gencert -ca=ca.new.pem -ca-key=ca-key.new.pem -config=ca-config.
↪→ json -profile=internal tidb-server.json | cfssljson -bare tidb-
↪→ server

Note:
• The preceding command assumes that you have renewed and re-

placed the CA certificate and saved the new CA certificate as ca
↪→ .new.pem and the new key as ca-key.new.pem. If you have not
renewed the CA certificate and the key, modify the corresponding
parameters in the command to ca.pem and ca-key.pem.

79

• The preceding command only generates the server-side and the client-
side certificates between PD, TiKV, and TiDB components. If you
need to generate the server-side CA certificates for other components,
such as TiCDC and TiFlash, you can execute the similar command.

2. Update each corresponding Kubernetes Secret object based on the newly generated
server-side and client-side certificates.
kubectl create secret generic ${pd_group_name}-pd-cluster-secret --

↪→ namespace=${namespace} --from-file=tls.crt=pd-server.pem --from-
↪→ file=tls.key=pd-server-key.pem --from-file=ca.crt=ca.pem --dry-
↪→ run=client -o yaml | kubectl apply -f -

kubectl create secret generic ${tikv_group_name}-tikv-cluster-secret --
↪→ namespace=${namespace} --from-file=tls.crt=tikv-server.pem --from
↪→ -file=tls.key=tikv-server-key.pem --from-file=ca.crt=ca.pem --dry
↪→ -run=client -o yaml | kubectl apply -f -

kubectl create secret generic ${tidb_group_name}-tidb-cluster-secret --
↪→ namespace=${namespace} --from-file=tls.crt=tidb-server.pem --from
↪→ -file=tls.key=tidb-server-key.pem --from-file=ca.crt=ca.pem --dry
↪→ -run=client -o yaml | kubectl apply -f -

In the preceding command, ${pd_group_name}, ${tikv_group_name}, and ${
↪→ tidb_group_name} are the names of the component groups, and ${namespace} is
the namespace in which the TiDB cluster is deployed.

Note:
The preceding command only renews the server-side and the client-side
certificate between PD, TiKV, and TiDB components. If you need to
renew the server-side certificates for other components, such as TiCDC,
TiFlash and TiProxy, you can execute the similar command.

3. Perform the rolling restart to components that need to load the new certificates.
After the completion of the rolling restart, each component uses the new certificate for
TLS communication. If you refer to Renew and replace the CA certificate and make
each component load the combined CA certificate, each component can still accept the
certificate issued by the original CA certificate.

7.1.4.1.3 Optional: Remove the original CA certificate from the combined
CA certificate

After you renew and replace the combined CA certificate, server-side and client-side
certificates between components, you might want to remove the original CA certificate (for

80

example, because the CA certificate has expired or the private key is compromised). To
remove the original CA certificate, take steps as follows:

1. Renew the Kubernetes Secret objects based on the new CA certificate.
kubectl create secret generic ${pd_group_name}-pd-cluster-secret --

↪→ namespace=${namespace} --from-file=tls.crt=pd-server.pem --from-
↪→ file=tls.key=pd-server-key.pem --from-file=ca.crt=ca.new.pem --
↪→ dry-run=client -o yaml | kubectl apply -f -

kubectl create secret generic ${tikv_group_name}-tikv-cluster-secret --
↪→ namespace=${namespace} --from-file=tls.crt=tikv-server.pem --from
↪→ -file=tls.key=tikv-server-key.pem --from-file=ca.crt=ca.new.pem
↪→ --dry-run=client -o yaml | kubectl apply -f -

kubectl create secret generic ${tidb_group_name}-tidb-cluster-secret --
↪→ namespace=${namespace} --from-file=tls.crt=tidb-server.pem --from
↪→ -file=tls.key=tidb-server-key.pem --from-file=ca.crt=ca.new.pem
↪→ --dry-run=client -o yaml | kubectl apply -f -

In the preceding command, ${pd_group_name}, ${tikv_group_name}, and ${
↪→ tidb_group_name} are the names of the component groups, and ${namespace} is
the namespace in which the TiDB cluster is deployed.

Note:
• The preceding command assumes that you have renewed and re-

placed the CA certificate and saved the new CA certificate as ca
↪→ .new.pem.

2. Perform the rolling restart to components that need to load the new certificates.
After the completion of the rolling restart, each component can only accept the certifi-
cate issued by the new CA certificate.

7.1.4.2 Renew and replace the certificate issued by cert-manager

If the original TLS certificate is issued by the cert-manager system, and the original
certificate has not expired, the procedure varies with whether to renew the CA certificate.

7.1.4.2.1 Renew and replace the CA certificate

7.1.4.2.2 Only renew and replace certificates between components
When using cert-manager to issue certificates, you can configure the spec.renewBefore

field of the Certificate resource to have cert-manager automatically renew the certificate
before it expires.

81

1. cert-manager supports automatic renewal of component certificates and their corre-
sponding Kubernetes Secret objects before expiration. To renew manually, refer to
Renew certificates using cmctl.

2. For certificates between components, each component automatically reloads the new
certificates when creating the new connection later.

Note:
• Currently, each component does not support reload CA certificates

automatically, you need to refer to renew and replace the CA certifi-
cate and certificates between components.

• For the TiDB server-side certificate, you can manually reload by
referring to any of the following methods:

– Refer to Reload certificate, key, and CA.
– Refer to Rolling restart the TiDB Cluster to perform a rolling

restart of TiDB server.

7.2 Manually Scale TiDB on Kubernetes

This document introduces how to horizontally and vertically scale a TiDB cluster on
Kubernetes.

7.2.1 Horizontal scaling

Horizontal scaling refers to increasing or decreasing the number of Pods in a component
to scale the cluster. You can control the number of Pods by modifying the value of replicas
of a certain component to scale out or scale in.

• To scale out a TiDB cluster, increase the value of replicas of a certain component.
The scaling out operations add Pods until the number of Pods equals the value of
replicas.

• To scale in a TiDB cluster, decrease the value of replicas of a certain component.
The scaling in operations remove Pods until the number of Pods equals the value of
replicas.

To scale a TiDB cluster horizontally, use kubectl to modify the spec.replicas field in
the corresponding Component Group Custom Resource (CR) object to the desired value.

1. Modify the replicas value of a component as needed. For example, configure the
replicas value of PD to 3:

82

https://cert-manager.io/docs/reference/cmctl/#renew
https://docs.pingcap.com/tidb/stable/enable-tls-between-components#reload-certificates
https://docs.pingcap.com/tidb/stable/enable-tls-between-clients-and-servers#reload-certificate-key-and-ca

kubectl patch -n ${namespace} pdgroup ${name} --type merge --patch '{"
↪→ spec":{"replicas":3}}'

2. Verify that the Component Group CR for the corresponding component in the Kuber-
netes cluster has been updated to the expected configuration. For example, run the
following command to check the PDGroup CR:
kubectl get pdgroup ${name} -n ${namespace}

The DESIRED value in the output should match the value you have configured.

3. Check whether the number of Pods has increased or decreased:
kubectl -n ${namespace} get pod -w

When the number of Pods for all components reaches the preset value and all compo-
nents go to the Running state, the horizontal scaling is completed.
PD and TiDB components usually take 10 to 30 seconds to scale in or out.
TiKV components usually take 3 to 5 minutes to scale in or out because the process
involves data migration.

Note:

• When the TiKV component scales in, TiDB Operator calls the PD in-
terface to mark the corresponding TiKV instance as offline, and then
migrates the data on it to other TiKV nodes. During the data migra-
tion, the TiKV Pod is still in the Running state, and the corresponding
Pod is deleted only after the data migration is completed. The time
consumed by scaling in depends on the amount of data on the TiKV in-
stance to be scaled in. You can check whether TiKV is in the Removing
state by running kubectl get -n ${namespace} tikv.

• When the number of Serving TiKV is equal to or less than the value of
the MaxReplicas parameter in the PD configuration, the TiKV compo-
nents cannot be scaled in.

• The TiKV component does not support scaling out while a scale-in oper-
ation is in progress. Forcing a scale-out operation might cause anomalies
in the cluster. If an anomaly already happens, refer to TiKV Store is in
Tombstone status abnormally to fix it.

• The TiFlash component has the same scale-in logic as TiKV.

83

7.2.2 Vertical scaling

Vertically scaling TiDB means that you scale TiDB up or down by increasing or decreas-
ing the limit of resources on the Pod. Vertical scaling is essentially the rolling update of the
Pods.

To vertically scale up or scale down components including PD, TiKV, TiDB, TiProxy,
TiFlash, and TiCDC, use kubectl to modify spec.template.spec.resources in the Com-
ponent Group CR object that corresponds to the cluster to desired values.

Note:
Currently, In-Place Pod Resize is not supported.

7.2.2.1 View the vertical scaling progress
To view the upgrade progress of the cluster, run the following command:

kubectl -n ${namespace} get pod -w

When all Pods are rebuilt and in the Running state, the vertical scaling is completed.

Note:

• If the resource’s requests field is modified during the vertical scaling
process, and if PD, TiKV, TiFlash, and TiCDC use Local PV, they will
be scheduled back to the original node after the upgrade. At this time,
if the original node does not have enough resources, the Pod ends up
staying in the Pending status and thus impacts the service.

• TiDB is a horizontally scalable database, so it is recommended to take
advantage of it simply by adding more nodes rather than upgrading
hardware resources like you do with a traditional database.

7.2.3 Scaling troubleshooting

During the horizontal or vertical scaling operation, Pods might go to the Pending state
because of insufficient resources. See Troubleshoot the Pod in Pending state to resolve it.

84

https://kubernetes.io/docs/tasks/configure-pod-container/resize-container-resources/

7.3 Upgrade

7.3.1 Upgrade TiDB Operator

This document describes how to upgrade TiDB Operator to a specific version.

7.3.1.1 Before you begin
It is not supported to upgrade TiDB Operator from v1.x to v2.x.

7.3.1.2 Upgrade CRDs
To upgrade the Custom Resource Definitions (CRDs) for TiDB Operator, run the fol-

lowing command. Replace ${version} with your target TiDB Operator version, such as
v2.0.0-beta.0:
kubectl apply -f https://github.com/pingcap/tidb-operator/releases/download/

↪→ ${version}/tidb-operator.crds.yaml --server-side

7.3.1.3 Upgrade TiDB Operator components
You can upgrade TiDB Operator components using one of the following methods:

• Method 1: use kubectl apply
• Method 2: use Helm

7.3.1.3.1 Method 1: Upgrade using kubectl apply

To upgrade TiDB Operator components, run the following command:
kubectl apply -f https://github.com/pingcap/tidb-operator/releases/download/

↪→ ${version}/tidb-operator.yaml --server-side

This command upgrades TiDB Operator deployed in the tidb-admin namespace. To
verify that the upgrade is successful, run the following command:
kubectl get pods -n tidb-admin

Example output:
NAME READY STATUS RESTARTS AGE
tidb-operator-6c98b57cc8-ldbnr 1/1 Running 0 2m

85

7.3.1.3.2 Method 2: Upgrade using Helm
If you deploy TiDB Operator using Helm, you can upgrade it using the helm upgrade

command.
To upgrade TiDB Operator, run the following command:

helm upgrade tidb-operator oci://ghcr.io/pingcap/charts/tidb-operator --
↪→ version=${version} --namespace=tidb-admin

In the preceding command:

• tidb-operator: the Helm release name for TiDB Operator. Replace it if you use a
different name.

• ${version}: the target TiDB Operator version, such as v2.0.0-beta.0.
• --namespace=tidb-admin: the namespace where TiDB Operator is deployed. Replace

it with your actual namespace if different.

After the upgrade is complete, you can check the Pod status with the following command
to verify that the upgrade is successful:
kubectl get pods -n tidb-admin

Upgrade with a custom configuration
If you previously used a custom configuration during deployment or previous upgrades

(that is, you modified the values.yaml file), make sure to use these custom configurations
during this upgrade. Perform the following steps:

1. Export the values.yaml file used by the current deployment:
helm get values tidb-operator -n tidb-admin > values.yaml

2. Get the default configuration file values-new.yaml for the target version:
helm show values oci://ghcr.io/pingcap/charts/tidb-operator --version=$

↪→ {version} > values-new.yaml

3. Compare the values.yaml and values-new.yaml files and merge your custom config-
uration items into values-new.yaml.

4. Use the updated values-new.yaml file to perform the upgrade:
helm upgrade tidb-operator oci://ghcr.io/pingcap/charts/tidb-operator

↪→ --version=${version} -f values-new.yaml --namespace=tidb-admin

86

7.3.2 Upgrade a TiDB Cluster on Kubernetes

If you deploy and manage your TiDB clusters on Kubernetes using TiDB Operator, you
can upgrade your TiDB clusters using the rolling update feature. Rolling update can limit
the impact of upgrade on your application. This document describes how to upgrade a TiDB
cluster on Kubernetes using rolling updates.

7.3.2.1 Rolling update introduction
Kubernetes provides the rolling update feature to update your application with zero

downtime.
When you perform a rolling update, TiDB Operator waits for the new version of a Pod

to run successfully before proceeding to the next Pod.
During the rolling update, TiDB Operator automatically completes Leader transfer for

PD and TiKV. Under the highly available deployment topology (minimum requirements:
PD * 3, TiKV * 3, TiDB * 2), performing a rolling update to PD and TiKV servers does not
impact the running application. If your client supports retrying stale connections, performing
a rolling update to TiDB servers does not impact application, either.

Warning:

• For the clients that cannot retry stale connections, performing a
rolling update to TiDB servers closes the client connections
and causes the request to fail. In such cases, it is recommended
to add a retry function for the clients to retry, or to perform a rolling
update to TiDB servers in idle time.

• Before upgrading, refer to ADMIN SHOW DDL [JOBS|JOB QUERIES] to
confirm that there are no DDL operations in progress.

7.3.2.2 Preparations before upgrade

1. Refer to the upgrade caveat to learn about the precautions. Note that all TiDB
versions, including patch versions, currently do not support downgrade or rollback
after upgrade.

2. Refer to TiDB release notes to learn about the compatibility changes in each interme-
diate version. If any changes affect your upgrade, take appropriate measures.
For example, if you upgrade from TiDB v6.4.0 to v6.5.2, you need to check the com-
patibility changes in the following versions:

• TiDB v6.5.0 compatibility changes and deprecated features

87

https://kubernetes.io/docs/tutorials/kubernetes-basics/update/update-intro/
https://docs.pingcap.com/tidb/stable/sql-statement-admin-show-ddl
https://docs.pingcap.com/tidb/dev/upgrade-tidb-using-tiup#upgrade-caveat
https://docs.pingcap.com/tidb/dev/release-notes
https://docs.pingcap.com/tidb/stable/release-6.5.0#compatibility-changes
https://docs.pingcap.com/tidb/stable/release-6.5.0#deprecated-feature

• TiDB v6.5.1 compatibility changes
• TiDB v6.5.2 compatibility changes

If you upgrade from v6.3.0 or an earlier version to v6.5.2, you also need to check the
compatibility changes in all intermediate versions.

7.3.2.3 Upgrade steps

1. Update the version of each component group in the cluster by setting the target
version in the version field. For example:
spec:
template:
spec:
version: v8.5.2

You can use the kubectl apply command to update all components at once, or use
kubectl edit to update each component individually. TiDB Operator automatically
handles the upgrade order and prevents the upgrade from continuing if the precondi-
tions are not met.

Note:
TiDB Operator requires all components in the cluster to use the same
version. Make sure that the spec.template.spec.version field for all
components is set to the same version.

2. Check the upgrade progress:
watch kubectl -n ${namespace} get pod -o wide

After all the Pods finish rebuilding and become Running, the upgrade is completed.

7.4 Backup and Restore

7.4.1 Backup and Restore Overview

This document describes how to perform backup and restore on the TiDB cluster on
Kubernetes. To back up and restore your data, you can use the Dumpling, TiDB Lightning,
and Backup & Restore (BR) tools.

Dumpling is a data export tool, which exports data stored in TiDB or MySQL as SQL
or CSV data files. You can use Dumpling to make a logical full backup or export.

88

https://docs.pingcap.com/tidb/stable/release-6.5.1#compatibility-changes
https://docs.pingcap.com/tidb/stable/release-6.5.2#compatibility-changes
https://docs.pingcap.com/tidb/stable/dumpling-overview

TiDB Lightning is a tool used for fast full data import into a TiDB cluster. TiDB
Lightning supports Dumpling or CSV format data source. You can use TiDB Lightning to
make a logical full data restore or import.

BR is a command-line tool for distributed backup and restoration of the TiDB cluster
data. Compared with Dumpling and Mydumper, BR is more suitable for huge data volumes.
BR only supports TiDB v3.1 and later versions. For incremental backup insensitive to
latency, refer to BR Overview. For real-time incremental backup, refer to TiCDC.

7.4.1.1 Usage scenarios

7.4.1.1.1 Back up data
If you have the following backup needs, you can use BR to make a backup of your TiDB

cluster data:

• To back up a large volume of data (more than 1 TiB) at a fast speed
• To get a direct backup of data as SST files (key-value pairs)
• To perform incremental backup that is insensitive to latency

For more information, see the following documents:

• Back Up Data to S3-Compatible Storage Using BR
• Back Up Data to GCS Using BR
• Back Up Data to Azure Blob Storage Using BR

7.4.1.1.2 Restore data
To recover the SST files exported by BR to a TiDB cluster, use BR. For more information,

see the following documents:

• Restore Data from S3-Compatible Storage Using BR
• Restore Data from GCS Using BR
• Restore Data from Azure Blob Storage Using BR

7.4.1.2 Backup and restore process
To make a backup of the TiDB cluster on Kubernetes, you need to create a Backup CR

object to describe the backup or create a BackupSchedule CR object to describe a scheduled
backup.

To restore data to the TiDB cluster on Kubernetes, you need to create a Restore CR
object to describe the restore.

After creating the CR object, according to your configuration, TiDB Operator chooses
the corresponding tool and performs the backup or restore.

89

https://docs.pingcap.com/tidb/stable/get-started-with-tidb-lightning
https://docs.pingcap.com/tidb/stable/backup-and-restore-overview
https://docs.pingcap.com/tidb/stable/backup-and-restore-overview
https://docs.pingcap.com/tidb/stable/ticdc-overview
https://docs.pingcap.com/tidb/stable/backup-and-restore-tool

7.4.1.3 Delete the Backup CR
You can delete the Backup CR or BackupSchedule CR by running the following com-

mands:
kubectl delete backup ${name} -n ${namespace}
kubectl delete backupschedule ${name} -n ${namespace}

If you set the value of spec.cleanPolicy to Delete, TiDB Operator cleans the backup
data when it deletes the CR.

TiDB Operator automatically attempts to stop running log backup tasks when you delete
the Custom Resource (CR). This automatic stop feature only applies to log backup tasks
that are running normally and does not handle tasks in an error or failed state.

In such cases, if you need to delete the namespace, it is recommended that you first
delete all the Backup or BackupSchedule CRs and then delete the namespace.

If you delete the namespace before you delete the Backup or BackupSchedule CR, TiDB
Operator will keep creating jobs to clean the backup data. However, because the namespace is
in Terminating state, TiDB Operator fails to create such a job, which causes the namespace
to be stuck in this state.

To address this issue, delete finalizers by running the following command:
kubectl patch -n ${namespace} backup ${name} --type merge -p '{"metadata":{"

↪→ finalizers":[]}}'

7.4.1.3.1 Clean backup data
TiDB Operator cleans the backup data by deleting the backup files in batches. For the

batch deletion, the deletion methods are different depending on the type of backend storage
used for backups.

• For the S3-compatible backend storage, TiDB Operator uses the concurrent batch dele-
tion method, which deletes files in batch concurrently. TiDB Operator starts multiple
goroutines concurrently, and each goroutine uses the batch delete API DeleteObjects
to delete multiple files.

• For other types of backend storage, TiDB Operator uses the concurrent deletion
method, which deletes files concurrently. TiDB Operator starts multiple goroutines,
and each goroutine deletes one file at a time.

You can configure the following fields in the Backup CR to control the clean behavior:

• .spec.cleanOption.pageSize: Specifies the number of files to be deleted in each
batch at a time. The default value is 10000.

90

https://docs.aws.amazon.com/AmazonS3/latest/API/API_DeleteObjects.html

• .spec.cleanOption.disableBatchConcurrency: If the value of this field is true,
TiDB Operator disables the concurrent batch deletion method and uses the concurrent
deletion method.
If your S3-compatible backend storage does not support the DeleteObjects API, the
default concurrent batch deletion method fails. You need to configure this field to true
to use the concurrent deletion method.

• .spec.cleanOption.batchConcurrency: Specifies the number of goroutines to start
for the concurrent batch deletion method. The default value is 10.

• .spec.cleanOption.routineConcurrency: Specifies the number of goroutines to
start for the concurrent deletion method. The default value is 100.

7.4.2 Backup and Restore Custom Resources

This document describes the fields in the Backup, CompactBackup, Restore, and
BackupSchedule custom resources (CR). You can use these fields to better perform the
backup or restore of TiDB clusters on Kubernetes.

7.4.2.1 Backup CR fields
To back up data for a TiDB cluster on Kubernetes, you can create a Backup custom

resource (CR) object. For detailed backup process, refer to documents listed in Back up
data. This section introduces the fields in the Backup CR.

7.4.2.1.1 General fields

• .spec.toolImage: the tool image used by Backup.

– If the field is not specified or the value is empty, the pingcap/br:${tikv_version
↪→ } image is used for backup by default.

– If the BR version is specified in this field, such as .spec.toolImage: pingcap/
↪→ br:v8.5.2, the image of the specified version is used for backup.

– If an image is specified without the version, such as .spec.toolImage: private
↪→ /registry/br, the private/registry/br:${tikv_version} image is used
for backup.

• .spec.backupType: the backup type. This field is valid only when you use BR for
backup. Currently, the following three types are supported, and this field can be
combined with the .spec.tableFilter field to configure table filter rules:

– full: back up all databases in a TiDB cluster.
– db: back up a specified database in a TiDB cluster.
– table: back up a specified table in a TiDB cluster.

91

• .spec.backupMode: the backup mode. The default value is snapshot. This field has
two value options currently:

– snapshot: back up data through snapshots in the KV layer.
– log: back up log data in real time in the KV layer.

• .spec.logSubcommand: the subcommand for controlling the log backup status in the
Backup CR. This field provides three options for managing a log backup task:

– log-start: initiates a new log backup task or resumes a paused task. Use this
command to start the log backup process or resume a task from a paused state.

– log-stop: permanently stops the log backup task. After executing this command,
the Backup CR enters a stopped state and cannot be restarted.

– log-pause: temporarily pauses the currently running log backup task. After
pausing, you can use the log-start command to resume the task.

• .spec.cleanPolicy: The cleaning policy for the backup data when the backup CR is
deleted. If this field is not configured, or if you configure a value other than the three
policies above, the backup data is retained. You can choose one of the following three
clean policies:

– Retain: under any circumstances, retain the backup data when deleting the
backup CR.

– Delete: under any circumstances, delete the backup data when deleting the
backup CR.

– OnFailure: if the backup fails, delete the backup data when deleting the backup
CR.

• .spec.cleanOption: the clean behavior for the backup files when the backup CR is
deleted after the cluster backup. For details, refer to Clean backup data.

• .spec.storageClassName: the persistent volume (PV) type specified for the backup
operation.

• .spec.storageSize: the PV size specified for the backup operation (100 GiB by
default). This value must be greater than the size of the TiDB cluster to be backed
up. The PVC name corresponding to the Backup CR of a TiDB cluster is fixed. If
the PVC already exists in the cluster namespace and the size is smaller than .spec.
↪→ storageSize, you need to first delete this PVC and then run the Backup job.

• .spec.resources: the resource requests and limits for the Pod that runs the backup
job.

• .spec.env: the environment variables for the Pod that runs the backup job.

• .spec.affinity: the affinity configuration for the Pod that runs the backup job. For
details on affinity, refer to Affinity and anti-affinity.

92

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity

• .spec.tolerations: specifies that the Pod that runs the backup job can schedule
onto nodes with matching taints. For details on taints and tolerations, refer to Taints
and Tolerations.

• .spec.podSecurityContext: the security context configuration for the Pod that runs
the backup job, which allows the Pod to run as a non-root user. For details on
podSecurityContext, refer to Run Containers as a Non-root User.

• .spec.priorityClassName: the name of the priority class for the Pod that runs the
backup job, which sets priority for the Pod. For details on priority classes, refer to
Pod Priority and Preemption.

• .spec.imagePullSecrets: the imagePullSecrets for the Pod that runs the backup
job.

• .spec.serviceAccount: the name of the ServiceAccount used for the backup.

• .spec.useKMS: whether to use AWS-KMS to decrypt the S3 storage key used for the
backup.

• .spec.tableFilter: specifies tables that match the table filter rules for BR. This field
can be ignored by default. When the field is not configured, BR backs up all schemas
except the system schema.

Note:
If you want to back up all tables except db.table using the "!db.table"
rule, you need to first add the *.* rule to include all tables. For example:
tableFilter:
- "*.*"
- "!db.table"

• .spec.backoffRetryPolicy: the retry policy for abnormal failures (such as Kuber-
netes killing the node due to insufficient resources) of the Job/Pod during the backup.
This configuration currently only takes effect on the snapshot backup.

– minRetryDuration: the minimum retry interval after an abnormal failure is
found. The retry interval increases with the number of failures. RetryDuration
↪→ = minRetryDuration << (retryNum -1). The time format is specified in
func ParseDuration, and the default value is 300s.

– maxRetryTimes: the maximum number of retries. The default value is 2.
– retryTimeout: the retry timeout. The timeout starts from the first abnormal

failure. The time format is specified in func ParseDuration, and the default
value is 30m.

93

https://kubernetes.io/docs/reference/glossary/?all=true#term-taint
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/
https://kubernetes.io/docs/concepts/containers/images/#specifying-imagepullsecrets-on-a-pod
https://docs.pingcap.com/tidb/stable/table-filter/
https://golang.org/pkg/time/#ParseDuration
https://golang.org/pkg/time/#ParseDuration

7.4.2.1.2 BR fields

• .spec.br.cluster: the name of the cluster to be backed up.
• .spec.br.clusterNamespace: the namespace of the cluster to be backed up.
• .spec.br.logLevel: the log level (info by default).
• .spec.br.statusAddr: the listening address through which BR provides statistics. If

not specified, BR does not listen to any status address by default.
• .spec.br.concurrency: the number of threads used by each TiKV process during

backup. Defaults to 4 for backup and 128 for restore.
• .spec.br.rateLimit: the speed limit, in MB/s. If set to 4, the speed limit is 4 MB/s.

The speed limit is not set by default.
• .spec.br.checksum: whether to verify the files after the backup is completed. Defaults

to true.
• .spec.br.timeAgo: backs up the data before timeAgo. If the parameter value is not

specified (empty by default), it means backing up the current data. It supports data
formats such as "1.5h" and "2h45m". See ParseDuration for more information.

• .spec.br.sendCredToTikv: whether the BR process passes its AWS, Google Cloud,
or Azure permissions to the TiKV process. Defaults to true.

• .spec.br.onLine: whether to enable the online restore feature when restoring data.
• .spec.br.options: the extra arguments that BR supports. It accepts an array of

strings and can be used to specify the last backup timestamp lastbackupts for incre-
mental backup.

7.4.2.1.3 S3 storage fields

• .spec.s3.provider: the supported S3-compatible storage provider.
All supported providers are as follows:

– alibaba: Alibaba Cloud Object Storage System (OSS), formerly Aliyun
– digitalocean: Digital Ocean Spaces
– dreamhost: Dreamhost DreamObjects
– ibmcos: IBM COS S3
– minio: Minio Object Storage
– netease: Netease Object Storage (NOS)
– wasabi: Wasabi Object Storage
– other: any other S3 compatible provider

• .spec.s3.region: if you want to use Amazon S3 for backup storage, configure this
field as the region where Amazon S3 is located.

• .spec.s3.bucket: the bucket name of the S3-compatible storage.

• .spec.s3.prefix: if you set this field, the value is used to make up the remote storage
path s3://${.spec.s3.bucket}/${.spec.s3.prefix}/backupName.

94

https://golang.org/pkg/time/#ParseDuration
https://docs.pingcap.com/tidb/stable/use-br-command-line-tool#online-restore-experimental-feature

• .spec.s3.path: specifies the storage path of backup files on the remote storage. This
field is valid only when the data is backed up using Dumpling or restored using TiDB
Lightning. For example, s3://test1-demo1/backup-2019-12-11T04:32:12Z.tgz.

• .spec.s3.endpoint: the endpoint of S3 compatible storage service, for example, http
↪→ ://minio.minio.svc.cluster.local:9000.

• .spec.s3.secretName: the name of secret which stores S3 compatible storage’s access
key and secret key.

• .spec.s3.sse: specifies the S3 server-side encryption method. For example, aws:kms.

• .spec.s3.acl: the supported access-control list (ACL) policies.
Amazon S3 supports the following ACL options:

– private
– public-read
– public-read-write
– authenticated-read
– bucket-owner-read
– bucket-owner-full-control

If the field is not configured, the policy defaults to private. For more information on
the ACL policies, refer to AWS documentation.

• .spec.s3.storageClass: the supported storage class.
Amazon S3 supports the following storage class options:

– STANDARD
– REDUCED_REDUNDANCY
– STANDARD_IA
– ONEZONE_IA
– GLACIER
– DEEP_ARCHIVE

If the field is not configured, the storage class defaults to STANDARD_IA. For more
information on storage classes, refer to AWS documentation.

7.4.2.1.4 GCS fields

• .spec.gcs.projectId: the unique identifier of the user project on Google Cloud. To
obtain the project ID, refer to Google Cloud documentation.

• .spec.gcs.location: the location of the GCS bucket. For example, us-west2.

95

https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/storage-class-intro.html
https://cloud.google.com/resource-manager/docs/creating-managing-projects

• .spec.gcs.path: the storage path of backup files on the remote storage. This field
is valid only when the data is backed up using Dumpling or restored using TiDB
Dumpling. For example, gcs://test1-demo1/backup-2019-11-11T16:06:05Z.tgz.

• .spec.gcs.secretName: the name of the secret that stores the GCS account creden-
tial.

• .spec.gcs.bucket: the name of the bucket which stores data.

• .spec.gcs.prefix: if you set this field, the value is used to make up the path of the
remote storage: gcs://${.spec.gcs.bucket}/${.spec.gcs.prefix}/backupName.

• .spec.gcs.storageClass: the supported storage class. GCS supports the following
storage class options:

– MULTI_REGIONAL
– REGIONAL
– NEARLINE
– COLDLINE
– DURABLE_REDUCED_AVAILABILITY

If the field is not configured, the storage class defaults to COLDLINE. For more infor-
mation on storage classes, refer to GCS documentation.

• .spec.gcs.objectAcl: the supported object access-control list (ACL) policies.
GCS supports the following object ACL options:

– authenticatedRead
– bucketOwnerFullControl
– bucketOwnerRead
– private
– projectPrivate
– publicRead

If the field is not configured, the policy defaults to private. For more information on
the ACL policies, refer to GCS documentation.

• .spec.gcs.bucketAcl: the supported bucket access-control list (ACL) policies.
GCS supports the following bucket ACL options:

– authenticatedRead
– private
– projectPrivate
– publicRead
– publicReadWrite

If the field is not configured, the policy defaults to private. For more information on
the ACL policies, refer to GCS documentation.

96

https://cloud.google.com/storage/docs/storage-classes
https://cloud.google.com/storage/docs/access-control/lists
https://cloud.google.com/storage/docs/access-control/lists

7.4.2.1.5 Azure Blob Storage fields

• .spec.azblob.secretName: the name of the secret which stores Azure Blob Storage
account credential.

• .spec.azblob.container: the name of the container which stores data.

• .spec.azblob.prefix: if you set this field, the value is used to make up the re-
mote storage path azure://${.spec.azblob.container}/${.spec.azblob.prefix
↪→ }/backupName.

• .spec.azblob.accessTier: the access tier of the uploaded data.
Azure Blob Storage supports the following access tier options:

– Hot
– Cool
– Archive

If this field is not configured, Cool is used by default.

7.4.2.1.6 Local storage fields

• .spec.local.prefix: the storage directory of the persistent volumes. If you set this
field, the value is used to make up the storage path of the persistent volume: local
↪→ ://${.spec.local.volumeMount.mountPath}/${.spec.local.prefix}/.

• .spec.local.volume: the persistent volume configuration.
• .spec.local.volumeMount: the persistent volume mount configuration.

7.4.2.2 CompactBackup CR fields
For TiDB v9.0.0 and later versions, you can use CompactBackup to accelerate PITR

(Point-in-time recovery). To compact log backup data into structured SST files, you can
create a custom CompactBackup CR object to define a backup task. The following introduces
the fields in the CompactBackup CR:

• .spec.startTs: the start timestamp for log compaction backup.
• .spec.endTs: the end timestamp for log compaction backup.
• .spec.concurrency: the maximum number of concurrent log compaction tasks. The

default value is 4.
• .spec.maxRetryTimes: the maximum number of retries for failed compaction tasks.

The default value is 6.
• .spec.toolImage: the tool image used by CompactBackup. BR is the only tool image

used in CompactBackup. When using BR for backup, you can specify the BR version
with this field:

97

– If not specified or left empty, the pingcap/br:${tikv_version} image is used
for backup by default.

– If a BR version is specified, such as .spec.toolImage: pingcap/br:v9.0.0, the
image of the specified version is used for backup.

– If an image is specified without a version, such as .spec.toolImage: private
↪→ /registry/br, the private/registry/br:${tikv_version} image is used
for backup.

• .spec.env: the environment variables for the Pod that runs the compaction task.
• .spec.affinity: the affinity configuration for the Pod that runs the compaction task.

For details on affinity, refer to Affinity and anti-affinity.
• .spec.tolerations: specifies that the Pod that runs the compaction task can schedule

onto nodes with matching taints. For details on taints and tolerations, refer to Taints
and Tolerations.

• .spec.podSecurityContext: the security context configuration for the Pod that runs
the compaction task, which allows the Pod to run as a non-root user. For details on
podSecurityContext, refer to Run Containers as a Non-root User.

• .spec.priorityClassName: the name of the priority class for the Pod that runs the
compaction task, which sets priority for the Pod. For details on priority classes, refer
to Pod Priority and Preemption.

• .spec.imagePullSecrets: the imagePullSecrets for the Pod that runs the compaction
task.

• .spec.serviceAccount: the name of the ServiceAccount used for compact.
• .spec.useKMS: whether to use AWS-KMS to decrypt the S3 storage key used for the

backup.
• .spec.br: BR-related configuration. For more information, refer to BR fields.
• .spec.s3: S3-related configuration. For more information, refer to S3 storage fields.
• .spec.gcs: GCS-related configuration. For more information, refer to GCS fields.
• .spec.azblob: Azure Blob Storage-related configuration. For more information, refer

to Azure Blob Storage fields.

7.4.2.3 Restore CR fields
To restore data to a TiDB cluster on Kubernetes, you can create a Restore CR ob-

ject. For detailed restore process, refer to documents listed in Restore data. This section
introduces the fields in the Restore CR.

• .spec.toolImage: the tools image used by Restore. For example, spec.toolImage:
↪→ pingcap/br:v8.5.2. If not specified, pingcap/br:${tikv_version} is used for
restoring by default.

• .spec.backupType: the restore type. This field is valid only when you use BR to
restore data. Currently, the following three types are supported, and this field can be
combined with the .spec.tableFilter field to configure table filter rules:

– full: restore all databases in a TiDB cluster.

98

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/reference/glossary/?all=true#term-taint
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/
https://kubernetes.io/docs/concepts/containers/images/#specifying-imagepullsecrets-on-a-pod

– db: restore a specified database in a TiDB cluster.
– table: restore a specified table in a TiDB cluster.

• .spec.resources: the resource requests and limits for the Pod that runs the restore
job.

• .spec.env: the environment variables for the Pod that runs the restore job.

• .spec.affinity: the affinity configuration for the Pod that runs the restore job. For
details on affinity, refer to Affinity and anti-affinity.

• .spec.tolerations: specifies that the Pod that runs the restore job can schedule onto
nodes with matching taints. For details on taints and tolerations, refer to Taints and
Tolerations.

• .spec.podSecurityContext: the security context configuration for the Pod that runs
the restore job, which allows the Pod to run as a non-root user. For details on
podSecurityContext, refer to Run Containers as a Non-root User.

• .spec.priorityClassName: the name of the priority class for the Pod that runs the
restore job, which sets priority for the Pod. For details on priority classes, refer to Pod
Priority and Preemption.

• .spec.imagePullSecrets: the imagePullSecrets for the Pod that runs the restore job.

• .spec.serviceAccount: the name of the ServiceAccount used for restore.

• .spec.useKMS: whether to use AWS-KMS to decrypt the S3 storage key used for the
backup.

• .spec.storageClassName: the persistent volume (PV) type specified for the restore
operation.

• .spec.storageSize: the PV size specified for the restore operation. This value must
be greater than the size of the backup data.

• .spec.tableFilter: specifies tables that match the table filter rules for BR. This
field can be ignored by default. When the field is not configured, BR restores all the
schemas in the backup file.

Note:
If you want to back up all tables except db.table using the "!db.table"
rule, you need to first add the *.* rule to include all tables. For example:
tableFilter:
- "*.*"
- "!db.table"

99

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/reference/glossary/?all=true#term-taint
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/
https://kubernetes.io/docs/concepts/containers/images/#specifying-imagepullsecrets-on-a-pod
https://docs.pingcap.com/tidb/stable/table-filter/

• .spec.br: BR-related configuration. Refer to BR fields.

• .spec.s3: S3-related configuration. Refer to S3 storage fields.

• .spec.gcs: GCS-related configuration. Refer to GCS fields.

• .spec.azblob: Azure Blob Storage-related configuration. Refer to Azure Blob Storage
fields.

• .spec.local: persistent volume-related configuration. Refer to Local storage fields.

7.4.2.4 BackupSchedule CR fields
The backupSchedule configuration consists of three parts: the configuration of the

snapshot backup backupTemplate, the configuration of the log backup logBackupTemplate,
and the unique configuration of backupSchedule.

• backupTemplate: the configuration of the snapshot backup. Specifies the configuration
related to the cluster and remote storage of the snapshot backup, which is the same as
the spec configuration of the Backup CR.

• logBackupTemplate: the configuration of the log backup. Specifies the configuration
related to the cluster and remote storage of the log backup, which is the same as the
spec configuration of the Backup CR. The log backup is created and deleted along
with backupSchedule and recycled according to .spec.maxReservedTime. The log
backup name is saved in status.logBackup.

• compactBackupTemplate: the configuration template of the log compaction backup.
The fields are the same as those in the spec configuration of the CompactBackup
↪→ CR. The compaction backup is created and deleted along with backupSchedule.
The log backup names are stored in status.logBackup. The storage settings of the
compaction backup should be the same as that of logBackupTemplate in the same
backupSchedule.

Note:
Before you delete the log backup data, you need to stop the log backup
task to avoid resource waste or the inability to restart the log backup
task in the future because the log backup task in TiKV is not stopped.

• The unique configuration items of backupSchedule are as follows:

– .spec.maxBackups: a backup retention policy, which determines the maximum
number of backup files to be retained. When the number of backup files exceeds
this value, the outdated backup file will be deleted. If you set this field to 0, all
backup items are retained.

100

– .spec.maxReservedTime: a backup retention policy based on time. For example,
if you set the value of this field to 24h, only backup files within the recent 24
hours are retained. All backup files older than this value are deleted. For the
time format, refer to func ParseDuration. If you have set .spec.maxBackups
and .spec.maxReservedTime at the same time, the latter takes effect.

– .spec.schedule: the time scheduling format of Cron. Refer to Cron for details.
– .spec.pause: false by default. If this field is set to true, the scheduled schedul-

ing is paused. In this situation, the backup operation will not be performed even
if the scheduling time point is reached. During this pause, the backup garbage
collection runs normally. If you change true to false, the scheduled snapshot
backup process is restarted. Because currently, log backup does not support
pause, this configuration does not take effect for log backup.

7.4.3 Grant Permissions to Remote Storage

This document describes how to grant permissions to access remote storage for backup
and restore. During the backup process, TiDB cluster data is backed up to the remote
storage. During the restore process, the backup data is restored from the remote storage to
the TiDB cluster.

7.4.3.1 Grant permissions to an AWS account
Amazon Web Services (AWS) provides different methods to grant permissions for differ-

ent types of Kubernetes clusters. This document introduces the following three methods:

• Grant permissions by AccessKey and SecretKey: applicable to self-managed Kuber-
netes clusters and AWS EKS clusters.

• Grant permissions by associating IAM with Pod: applicable to self-managed Kuber-
netes clusters.

• Grant permissions by associating IAM with ServiceAccount: applicable only to AWS
EKS clusters.

7.4.3.1.1 Grant permissions by AccessKey and SecretKey
To grant permissions to S3-compatible storage using AccessKey and SecretKey, perform

the following steps:

1. Create an IAM user by following Create an IAM user in your AWS account and grant
the required permissions. Because backup and restore operations require access to
AWS S3 storage, grant the AmazonS3FullAccess permission to the IAM user.

2. Create an access key by following Create an access key for yourself (console). After
completion, you can obtain the AccessKey and SecretKey.

101

https://golang.org/pkg/time/#ParseDuration
https://en.wikipedia.org/wiki/Cron
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-key-self-managed.html#Using_CreateAccessKey

3. Create a Kubernetes Secret named s3-secret using the following command and enter
the AccessKey and SecretKey obtained in the previous step. This Secret stores the
credentials required to access S3-compatible storage services.
kubectl create secret generic s3-secret --from-literal=access_key=<your

↪→ -access-key> --from-literal=secret_key=<your-secret-key> --
↪→ namespace=<your-namespace>

4. AWS clients support obtaining associated user permissions through the process envi-
ronment variables AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY. Therefore, you
can grant pods access to S3-compatible storage services by setting the corresponding
environment variables.
The following example shows how to configure environment variables for TiKVGroup
using Overlay (the configuration method for TiFlashGroup is the same):
apiVersion: core.pingcap.com/v1alpha1
kind: TiKVGroup
metadata:
name: tikv
labels:
pingcap.com/group: tikv
pingcap.com/component: tikv
pingcap.com/cluster: demo

spec:
template:
spec:
overlay:
pod:
spec:
containers:
- name: tikv
env:
- name: "AWS_ACCESS_KEY_ID"
valueFrom:
secretKeyRef:
name: "s3-secret"
key: "access_key"

- name: "AWS_SECRET_ACCESS_KEY"
valueFrom:
secretKeyRef:
name: "s3-secret"
key: "secret_key"

The following example shows how to configure environment variables for the Backup
resource:

102

apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: backup-s3

spec:
env:
- name: "AWS_ACCESS_KEY_ID"
valueFrom:
secretKeyRef:
name: "s3-secret"
key: "access_key"

- name: "AWS_SECRET_ACCESS_KEY"
valueFrom:
secretKeyRef:
name: "s3-secret"
key: "secret_key"

The following example shows how to configure environment variables for the Restore
resource:
apiVersion: br.pingcap.com/v1alpha1
kind: Restore
metadata:
name: restore-s3

spec:
env:
- name: "AWS_ACCESS_KEY_ID"
valueFrom:
secretKeyRef:
name: "s3-secret"
key: "access_key"

- name: "AWS_SECRET_ACCESS_KEY"
valueFrom:
secretKeyRef:
name: "s3-secret"
key: "secret_key"

7.4.3.1.2 Grant permissions by associating IAM with Pod
The method of granting permissions by associating IAM with a Pod is supported by the

open-source tool kube2iam. It enables processes within a Pod to inherit the permissions of
an IAM role by associating the role with the Pod.

103

https://github.com/jtblin/kube2iam
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Note:

• kube2iam is only applicable to Kubernetes clusters running on AWS EC2
instances. It does not support other types of nodes.

• To use this authorization method, see the kube2iam documentation to
set up the kube2iam environment in your Kubernetes cluster, and deploy
TiDB Operator and the TiDB cluster.

• This method is not compatible with Pods that use the hostNetwork
network mode.

To grant permissions by associating IAM with a Pod, perform the following steps:

1. Follow the IAM role creation document to create an IAM role in your AWS account
and grant it the AmazonS3FullAccess policy.

2. Use the Overlay feature to associate the IAM role with the target component (TiKV or
TiFlash). The following example shows how to associate the role with a TiKVGroup:
apiVersion: core.pingcap.com/v1alpha1
kind: TiKVGroup
metadata:
name: tikv

spec:
template:
spec:
overlay:
pod:
annotations:
iam.amazonaws.com/role: arn:aws:iam::123456789012:role/user

Note:
Replace arn:aws:iam::123456789012:role/user with the actual ARN
of the IAM role you created in step 1.

7.4.3.1.3 Grant permissions by associating IAM with ServiceAccount
By associating a user’s IAM role with a ServiceAccount resource in Kubernetes, any

Pod using that ServiceAccount will inherit the permissions of the IAM role.
To grant permissions by associating IAM with a ServiceAccount, perform the following

steps:

104

https://github.com/jtblin/kube2iam#usage
https://kubernetes.io/docs/concepts/policy/pod-security-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
https://aws.amazon.com/iam/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#serviceaccount

1. Follow the IAM role creation document to create an IAM role in your AWS account
and grant it the AmazonS3FullAccess policy.

2. Follow the instructions in Create an IAM OIDC provider for your cluster to create an
IAM OIDC provider for your EKS cluster.

3. Create a Kubernetes ServiceAccount named br-s3, and assign the IAM role to it as
described in Assign IAM roles to Kubernetes service accounts.

4. Use the Overlay feature to associate the ServiceAccount with the Pod in the TiKV-
Group or TiFlashGroup. The following example shows how to associate it in a TiKV-
Group:
apiVersion: core.pingcap.com/v1alpha1
kind: TiKVGroup
metadata:
name: tikv

spec:
template:
spec:
overlay:
pod:
spec:
serviceAccountName: br-s3

5. Specify the serviceAccount in the backup or restore configuration. The following
example shows how to specify it in a Backup resource:
apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: backup-s3

spec:
serviceAccount: br-s3

7.4.3.2 Grant permissions to a Google Cloud account

7.4.3.2.1 Grant permissions by the service account
To grant permissions using a Google Cloud service account key, perform the following

steps:

1. Follow the Create service accounts document to create a service account and generate
a service account key file. Save the file as google-credentials.json.

105

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
https://docs.aws.amazon.com/eks/latest/userguide/enable-iam-roles-for-service-accounts.html
https://docs.aws.amazon.com/eks/latest/userguide/associate-service-account-role.html
https://cloud.google.com/iam/docs/service-accounts-create

2. Create a Kubernetes Secret named gcp-secret to store the credentials for accessing
Google Cloud Storage:
kubectl create secret generic gcp-secret --from-file=credentials=./

↪→ google-credentials.json -n <your-namespace>

3. Follow the instructions in Add a principal to a bucket-level policy to grant the service
account created in step 1 access to the target storage bucket, and assign the roles/
↪→ storage.objectUser role.

4. Set environment variables for the Pod. The following example shows how to configure
it for a TiKVGroup:
apiVersion: core.pingcap.com/v1alpha1
kind: TiKVGroup
metadata:
name: tikv

spec:
template:
spec:
overlay:
pod:
spec:
containers:
- name: tikv
env:
- name: "GOOGLE_APPLICATION_CREDENTIALS"
valueFrom:
secretKeyRef:
name: "gcp-secret"
key: "credentials"

The following example shows how to configure the Backup resource to use the Secret:
```yaml
apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: backup-gcp

spec:
gcs:
secretName: gcp-secret

```

The following example shows how to configure the Restore resource to use the Secret:

106

https://cloud.google.com/storage/docs/access-control/using-iam-permissions#bucket-add


```yaml
apiVersion: br.pingcap.com/v1alpha1
kind: Restore
metadata:
name: restore-gcp

spec:
gcs:
secretName: gcp-secret

```

7.4.3.3 Grant permissions to an Azure account
Azure Blob Storage provides different methods to grant permissions for different types

of Kubernetes clusters. This document introduces the following two methods:

• Grant permissions by access key: applicable to all types of Kubernetes clusters.
• Grant permissions by Azure AD: suitable for scenarios requiring fine-grained access

control and key rotation.

7.4.3.3.1 Grant permissions by access key
Azure clients can read credentials from the environment variables AZURE_STORAGE_ACCOUNT

↪→ and AZURE_STORAGE_KEY. To grant permissions using this method, perform the following
steps:

1. Create a Kubernetes Secret named azblob-secret that stores the storage account
name and key:
kubectl create secret generic azblob-secret \
--from-literal=AZURE_STORAGE_ACCOUNT=<your-storage-account> \
--from-literal=AZURE_STORAGE_KEY=<your-storage-key> \
--namespace=<your-namespace>

2. Use the Overlay feature to inject the Secret as environment variables into the TiKV-
Group or TiFlashGroup Pod. The following example shows how to configure it for a
TiKVGroup:
apiVersion: core.pingcap.com/v1alpha1
kind: TiKVGroup
metadata:
name: tikv

spec:
template:
spec:

107

overlay:
pod:
spec:
containers:
- name: tikv
env:
- name: "AZURE_STORAGE_ACCOUNT"
valueFrom:
secretKeyRef:
name: "azblob-secret"
key: "AZURE_STORAGE_ACCOUNT"

- name: "AZURE_STORAGE_KEY"
valueFrom:
secretKeyRef:
name: "azblob-secret"
key: "AZURE_STORAGE_KEY"

7.4.3.3.2 Grant permissions by Azure AD
Azure clients can obtain access through the environment variables AZURE_STORAGE_ACCOUNT

↪→ , AZURE_CLIENT_ID, AZURE_TENANT_ID, and AZURE_CLIENT_SECRET. This method is
ideal for higher security and automatic key rotation.

1. Create a Kubernetes Secret named azblob-secret-ad to store credentials for accessing
Azure Blob Storage:
kubectl create secret generic azblob-secret-ad \
--from-literal=AZURE_STORAGE_ACCOUNT=<your-storage-account> \
--from-literal=AZURE_CLIENT_ID=<your-client-id> \
--from-literal=AZURE_TENANT_ID=<your-tenant-id> \
--from-literal=AZURE_CLIENT_SECRET=<your-client-secret> \
--namespace=<your-namespace>

2. Use the Overlay feature to inject the Secret as environment variables into the TiKV-
Group or TiFlashGroup Pod. The following example shows how to configure it for a
TiKVGroup:

Note:
• When granting permissions by Azure AD, ensure the service principal

has access to the target storage account.
• Restart the Pods after modifying the Secret to apply updated envi-

ronment variables.

108

apiVersion: core.pingcap.com/v1alpha1
kind: TiKVGroup
metadata:
name: tikv

spec:
template:
spec:
overlay:
pod:
spec:
containers:
- name: tikv
envFrom:
secretRef:
name: "azblob-secret-ad"

7.4.4 Amazon S3 Compatible Storage

7.4.4.1 Back Up Data to S3-Compatible Storage Using BR
This document describes how to back up the data of a TiDB cluster on AWS Kubernetes

to AWS storage. There are two backup types:

• Snapshot backup. With snapshot backup, you can restore a TiDB cluster to the
time point of the snapshot backup using full restoration.

• Log backup. With snapshot backup and log backup, you can restore a TiDB cluster
to any point in time. This is also known as Point-in-Time Recovery (PITR).

The backup method described in this document is implemented based on CustomRe-
sourceDefinition (CRD) in TiDB Operator. For the underlying implementation, BR is used
to get the backup data of the TiDB cluster, and then send the data to the AWS storage.
BR stands for Backup & Restore, which is a command-line tool for distributed backup and
recovery of the TiDB cluster data.

7.4.4.1.1 Usage scenarios
If you have the following backup needs, you can use BR’s snapshot backup method

to make an ad-hoc backup or scheduled snapshot backup of the TiDB cluster data to S3-
compatible storages.

• To back up a large volume of data (more than 1 TiB) at a fast speed
• To get a direct backup of data as SST files (key-value pairs)

109

https://docs.pingcap.com/tidb/stable/backup-and-restore-overview

If you have the following backup needs, you can use BR log backup to make an ad-hoc
backup of the TiDB cluster data to S3-compatible storages (you can combine log backup
and snapshot backup to restore data more efficiently):

• To restore data of any point in time to a new cluster
• The recovery point object (RPO) is within several minutes.

For other backup needs, refer to Backup and Restore Overview to choose an appropriate
backup method.

Note:

• Snapshot backup is only applicable to TiDB v3.1 or later releases.
• Log backup is only applicable to TiDB v6.3 or later releases.
• Data backed up using BR can only be restored to TiDB instead of other

databases.

7.4.4.1.2 Ad-hoc backup
Ad-hoc backup includes snapshot backup and log backup. For log backup, you can start

or stop a log backup task and clean log backup data.
To get an ad-hoc backup, you need to create a Backup Custom Resource (CR) object to

describe the backup details. Then, TiDB Operator performs the specific backup operation
based on this Backup object. If an error occurs during the backup process, TiDB Operator
does not retry, and you need to handle this error manually.

This document provides an example about how to back up the data of the demo1 TiDB
cluster in the test1 Kubernetes namespace to the AWS storage. The following are the
detailed steps.

Prerequisites: Prepare for an ad-hoc backup

Note:

• BR uses a fixed ServiceAccount name that must be tidb-backup-
↪→ manager.

• Starting from TiDB Operator v2, the apiGroup for resources such as
Backup and Restore changes from pingcap.com to br.pingcap.com.

110

1. Save the following content as the backup-rbac.yaml file to create the required role-
based access control (RBAC) resources:

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: tidb-backup-manager
labels:
app.kubernetes.io/component: tidb-backup-manager

rules:
- apiGroups: [""]
resources: ["events"]
verbs: ["*"]

- apiGroups: ["br.pingcap.com"]
resources: ["backups", "restores"]
verbs: ["get", "watch", "list", "update"]

kind: ServiceAccount
apiVersion: v1
metadata:
name: tidb-backup-manager

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: tidb-backup-manager
labels:
app.kubernetes.io/component: tidb-backup-manager

subjects:
- kind: ServiceAccount
name: tidb-backup-manager

roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: tidb-backup-manager

2. Execute the following command to create the RBAC resources in the test1 namespace:
kubectl apply -f backup-rbac.yaml -n test1

3. Grant permissions to the remote storage for the test1 namespace:

111

• If you are using Amazon S3 to back up your cluster, you can grant permissions
in three methods. For more information, refer to AWS account permissions.

• If you are using other S3-compatible storage (such as Ceph and MinIO) to back
up your cluster, you can grant permissions by using AccessKey and SecretKey.

Snapshot backup
Depending on which method you choose to grant permissions to the remote storage when

preparing for the ad-hoc backup, export your data to the S3-compatible storage by doing
one of the following:

• Method 1: If you grant permissions by importing AccessKey and SecretKey, create the
Backup CR to back up cluster data as follows:
kubectl apply -f full-backup-s3.yaml

The content of full-backup-s3.yaml is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-full-backup-s3
namespace: test1

spec:
backupType: full
br:
cluster: demo1
logLevel: info
statusAddr: ${status_addr}
concurrency: 4
rateLimit: 0
timeAgo: ${time}
checksum: true
sendCredToTikv: true
options:
- --lastbackupts=420134118382108673

s3:
provider: aws
secretName: s3-secret
region: us-west-1
bucket: my-bucket
prefix: my-full-backup-folder

• Method 2: If you grant permissions by associating IAM with Pod, create the Backup
CR to back up cluster data as follows:

112

kubectl apply -f full-backup-s3.yaml

The content of full-backup-s3.yaml is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-full-backup-s3
namespace: test1
annotations:
iam.amazonaws.com/role: arn:aws:iam::123456789012:role/user

spec:
backupType: full
br:
cluster: demo1
sendCredToTikv: false
logLevel: info
statusAddr: ${status_addr}
concurrency: 4
rateLimit: 0
timeAgo: ${time}
checksum: true
options:
- --lastbackupts=420134118382108673

s3:
provider: aws
region: us-west-1
bucket: my-bucket
prefix: my-full-backup-folder

• Method 3: If you grant permissions by associating IAM with ServiceAccount, create
the Backup CR to back up cluster data as follows:
kubectl apply -f full-backup-s3.yaml

The content of full-backup-s3.yaml is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-full-backup-s3
namespace: test1

spec:

113

backupType: full
serviceAccount: tidb-backup-manager
br:
cluster: demo1
sendCredToTikv: false
logLevel: info
statusAddr: ${status_addr}
concurrency: 4
rateLimit: 0
timeAgo: ${time}
checksum: true
options:
- --lastbackupts=420134118382108673

s3:
provider: aws
region: us-west-1
bucket: my-bucket
prefix: my-full-backup-folder

When configuring full-backup-s3.yaml, note the following:

• Since TiDB Operator v1.1.6, if you want to back up data incrementally, you only need
to specify the last backup timestamp --lastbackupts in spec.br.options. For the
limitations of incremental backup, refer to Use BR to Back up and Restore Data.

• You can ignore the acl, endpoint, storageClass configuration items of Amazon S3.
For more information about S3-compatible storage configuration, refer to S3 storage
fields.

• Some parameters in .spec.br are optional, such as logLevel and statusAddr. For
more information about BR configuration, refer to BR fields.

• For v4.0.8 or a later version, BR can automatically adjust tikv_gc_life_time. You
do not need to configure spec.tikvGCLifeTime and spec.from fields in the Backup
CR.

• For more information about the Backup CR fields, refer to Backup CR fields.

View the snapshot backup status
After you create the Backup CR, TiDB Operator starts the backup automatically. You

can view the backup status by running the following command:
kubectl get backup -n test1 -o wide

From the output, you can find the following information for the Backup CR named demo1
↪→ -full-backup-s3. The COMMITTS field indicates the time point of the snapshot backup:

114

https://docs.pingcap.com/tidb/stable/br-usage-backup#back-up-incremental-data

NAME TYPE MODE STATUS BACKUPPATH
↪→ COMMITTS ...

demo1-full-backup-s3 full snapshot Complete s3://my-bucket/my-full-backup-
↪→ folder/ 436979621972148225 ...

Log backup
You can use a Backup CR to describe the start and stop of a log backup task and manage

the log backup data. Log backup grants permissions to remote storages in the same way
as snapshot backup. In this section, the example shows log backup operations by taking
a Backup CR named demo1-log-backup-s3 as an example. Note that these operations
assume that permissions to remote storages are granted using accessKey and secretKey. See
the following detailed steps.

Description of the logSubcommand field
In the Backup Custom Resource (CR), you can use the logSubcommand field to control

the state of a log backup task. The logSubcommand field supports the following commands:

• log-start: initiates a new log backup task or resumes a paused task. Use this com-
mand to start the log backup process or resume a task from a paused state.

• log-pause: temporarily pauses the currently running log backup task. After pausing,
you can use the log-start command to resume the task.

• log-stop: permanently stops the log backup task. After executing this command, the
Backup CR enters a stopped state and cannot be restarted.

These commands provide fine-grained control over the lifecycle of log backup tasks,
enabling you to start, pause, resume, and stop tasks effectively to manage log data retention
in Kubernetes environments.

In TiDB Operator v1.5.4, v1.6.0, and earlier versions, you can use the logStop: true
↪→ /false field to stop or start log backup tasks. This field is no longer supported in
TiDB Operator v2. It is recommended to use the logSubcommand field to ensure clear and
consistent configuration.

Start log backup

1. In the test1 namespace, create a Backup CR named demo1-log-backup-s3.
kubectl apply -f log-backup-s3.yaml

The content of log-backup-s3.yaml is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: Backup

115

metadata:
name: demo1-log-backup-s3
namespace: test1

spec:
backupMode: log
br:
cluster: demo1
sendCredToTikv: true

s3:
provider: aws
secretName: s3-secret
region: us-west-1
bucket: my-bucket
prefix: my-log-backup-folder

2. Wait for the start operation to complete:
kubectl get jobs -n test1

NAME COMPLETIONS ...
backup-demo1-log-backup-s3-log-start 1/1 ...

3. View the newly created Backup CR:
kubectl get backup -n test1

NAME MODE STATUS
demo1-log-backup-s3 log Running

View the log backup status
You can view the log backup status by checking the information of the Backup CR:

kubectl describe backup -n test1

From the output, you can find the following information for the Backup CR named demo1
↪→ -log-backup-s3. The Log Checkpoint Ts field indicates the latest point in time that
can be recovered:
Status:
Backup Path: s3://my-bucket/my-log-backup-folder/
Commit Ts: 436568622965194754
Conditions:

Last Transition Time: 2022-10-10T04:45:20Z
Status: True
Type: Scheduled

116

Last Transition Time: 2022-10-10T04:45:31Z
Status: True
Type: Prepare
Last Transition Time: 2022-10-10T04:45:31Z
Status: True
Type: Running

Log Checkpoint Ts: 436569119308644661

Pause log backup
You can pause a log backup task by setting the logSubcommand field of the Backup

Custom Resource (CR) to log-pause. The following example shows how to pause the
demo1-log-backup-s3 CR created in Start log backup.
kubectl edit backup demo1-log-backup-s3 -n test1

To pause the log backup task, change the value of logSubcommand from log-start to
log-pause, then save and exit the editor. The modified content is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-log-backup-s3
namespace: test1

spec:
backupMode: log
logSubcommand: log-pause
br:
cluster: demo1
sendCredToTikv: true

s3:
provider: aws
secretName: s3-secret
region: us-west-1
bucket: my-bucket
prefix: my-log-backup-folder

You can verify that the STATUS of the demo1-log-backup-s3 Backup CR changes from
Running to Pause:
kubectl get backup -n test1

NAME MODE STATUS
demo1-log-backup-s3 log Pause

Resume log backup

117

If a log backup task is paused, you can resume it by setting the logSubcommand field
to log-start. The following example shows how to resume the demo1-log-backup-s3 CR
that was paused in Pause Log Backup.

Note:
This operation applies only to tasks in the Pause state. You cannot resume
tasks in the Fail or Stopped state.

kubectl edit backup demo1-log-backup-s3 -n test1

To resume the log backup task, change the value of logSubcommand from log-pause to
log-start, then save and exit the editor. The modified content is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-log-backup-s3
namespace: test1

spec:
backupMode: log
logSubcommand: log-start
br:
cluster: demo1
sendCredToTikv: true

s3:
provider: aws
secretName: s3-secret
region: us-west-1
bucket: my-bucket
prefix: my-log-backup-folder

You can verify that the STATUS of the demo1-log-backup-s3 Backup CR changes from
Pause to Running:
kubectl get backup -n test1

NAME MODE STATUS
demo1-log-backup-s3 log Running

Stop log backup

118

You can stop a log backup task by setting the logSubcommand field of the Backup
Custom Resource (CR) to log-stop. The following example shows how to stop the demo1-
↪→ log-backup-s3 CR created in Start log backup.
kubectl edit backup demo1-log-backup-s3 -n test1

Change the value of logSubcommand to log-stop, then save and exit the editor. The
modified content is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-log-backup-s3
namespace: test1

spec:
backupMode: log
logSubcommand: log-stop
br:
cluster: demo1
sendCredToTikv: true

s3:
provider: aws
secretName: s3-secret
region: us-west-1
bucket: my-bucket
prefix: my-log-backup-folder

You can verify that the STATUS of the Backup CR named demo1-log-backup-s3 changes
from Running to Stopped:
kubectl get backup -n test1

NAME MODE STATUS
demo1-log-backup-s3 log Stopped

Stopped is the terminal state for log backup. In this state, you cannot change the backup
state again, but you can still clean up the log backup data.

In TiDB Operator v1.5.4, v1.6.0, and earlier versions, you can use the logStop: true
↪→ /false field to stop or start log backup tasks. This field is retained for backward com-
patibility.

Clean log backup data

1. Because you already created a Backup CR named demo1-log-backup-s3 when you
started log backup, you can clean the log data backup by modifying the same Backup
↪→ CR. The following example shows how to clean log backup data generated before
2022-10-10T15:21:00+08:00.

119

kubectl edit backup demo1-log-backup-s3 -n test1

In the last line of the CR, append spec.logTruncateUntil: "2022-10-10T15
↪→ :21:00+08:00". Then save and exit the editor. The modified content is as
follows:

apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-log-backup-s3
namespace: test1

spec:
backupMode: log
logSubcommand: log-start/log-pause/log-stop
br:
cluster: demo1
sendCredToTikv: true

s3:
provider: aws
secretName: s3-secret
region: us-west-1
bucket: my-bucket
prefix: my-log-backup-folder

logTruncateUntil: "2022-10-10T15:21:00+08:00"

2. Wait for the clean operation to complete:
kubectl get jobs -n test1

NAME COMPLETIONS ...
...
backup-demo1-log-backup-s3-log-truncate 1/1 ...

3. View the Backup CR information:
kubectl describe backup -n test1

...
Log Success Truncate Until: 2022-10-10T15:21:00+08:00
...

You can also view the information by running the following command:
kubectl get backup -n test1 -o wide

120

NAME MODE STATUS ... LOGTRUNCATEUNTIL
demo1-log-backup-s3 log Stopped ... 2022-10-10T15:21:00+08:00

Compact log backup
For TiDB v9.0.0 and later versions, you can use a CompactBackup CR to compact log

backup data into SST format, accelerating downstream PITR (Point-in-time recovery).
This section explains how to compact log backup based on the log backup example from

previous sections.

1. In the test1 namespace, create a CompactBackup CR named demo1-compact-backup.
kubectl apply -f compact-backup-demo1.yaml

The content of compact-backup-demo1.yaml is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: CompactBackup
metadata:
name: demo1-compact-backup
namespace: test1

spec:
startTs: "***"
endTs: "***"
concurrency: 8
maxRetryTimes: 2
br:
cluster: demo1
sendCredToTikv: true

s3:
provider: aws
secretName: s3-secret
region: us-west-1
bucket: my-bucket
prefix: my-log-backup-folder

The startTs and endTs fields specify the time range for the logs to be compacted
by demo1-compact-backup. Any log that contains at least one write within this time
range will be included in the compaction process. As a result, the final compacted
data might include data written outside this range.
The s3 settings should be the same as the storage settings of the log backup to be com-
pacted. CompactBackup reads log files from the corresponding location and compacts
them.

121

View the status of log backup compaction
After creating the CompactBackup CR, TiDB Operator automatically starts compacting

the log backup. You can check the backup status using the following command:
kubectl get cpbk -n test1

From the output, you can find the status of the CompactBackup CR named demo1-
↪→ compact-backup. An example output is as follows:
NAME STATUS PROGRESS

↪→ MESSAGE
demo1-compact-backup Complete [READ_META(17/17),COMPACT_WORK(1291/1291)]

If the STATUS field displays Complete, the compact log backup process has finished
successfully.

Backup CR examples
Back up data of all clusters

apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-s3
namespace: test1

spec:
backupType: full
serviceAccount: tidb-backup-manager
br:
cluster: demo1
sendCredToTikv: false

s3:
provider: aws
region: us-west-1
bucket: my-bucket
prefix: my-folder

Back up data of a single database
The following example backs up data of the db1 database.

apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-s3
namespace: test1

122

spec:
backupType: full
serviceAccount: tidb-backup-manager
tableFilter:
- "db1.*"
br:
cluster: demo1
sendCredToTikv: false

s3:
provider: aws
region: us-west-1
bucket: my-bucket
prefix: my-folder

Back up data of a single table
The following example backs up data of the db1.table1 table.

apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-s3
namespace: test1

spec:
backupType: full
serviceAccount: tidb-backup-manager
tableFilter:
- "db1.table1"
br:
cluster: demo1
sendCredToTikv: false

s3:
provider: aws
region: us-west-1
bucket: my-bucket
prefix: my-folder

Back up data of multiple tables using the table filter
The following example backs up data of the db1.table1 table and db1.table2 table.

apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-s3

123

namespace: test1
spec:
backupType: full
serviceAccount: tidb-backup-manager
tableFilter:
- "db1.table1"
- "db1.table2"
...
br:
cluster: demo1
sendCredToTikv: false

s3:
provider: aws
region: us-west-1
bucket: my-bucket
prefix: my-folder

7.4.4.1.3 Scheduled snapshot backup
You can set a backup policy to perform scheduled backups of the TiDB cluster, and set

a backup retention policy to avoid excessive backup items. A scheduled snapshot backup is
described by a custom BackupSchedule CR object. A snapshot backup is triggered at each
backup time point. Its underlying implementation is the ad-hoc snapshot backup.

Prerequisites: Prepare for a scheduled snapshot backup
The steps to prepare for a scheduled snapshot backup are the same as those of Prepare

for an ad-hoc backup.
Perform a scheduled snapshot backup
Depending on which method you choose to grant permissions to the remote storage,

perform a scheduled snapshot backup by doing one of the following:

• Method 1: If you grant permissions by importing AccessKey and SecretKey, create the
BackupSchedule CR, and back up cluster data as follows:
kubectl apply -f backup-scheduler-aws-s3.yaml

The content of backup-scheduler-aws-s3.yaml is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: demo1-backup-schedule-s3
namespace: test1

spec:

124

#maxBackups: 5
#pause: true
maxReservedTime: "3h"
schedule: "*/2 * * * *"
backupTemplate:
backupType: full
Clean outdated backup data based on maxBackups or maxReservedTime

↪→ . If not configured, the default policy is Retain
cleanPolicy: Delete
br:
cluster: demo1
logLevel: info
statusAddr: ${status_addr}
concurrency: 4
rateLimit: 0
timeAgo: ${time}
checksum: true
sendCredToTikv: true

s3:
provider: aws
secretName: s3-secret
region: us-west-1
bucket: my-bucket
prefix: my-folder

• Method 2: If you grant permissions by associating IAM with the Pod, create the
BackupSchedule CR, and back up cluster data as follows:
kubectl apply -f backup-scheduler-aws-s3.yaml

The content of backup-scheduler-aws-s3.yaml is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: demo1-backup-schedule-s3
namespace: test1
annotations:
iam.amazonaws.com/role: arn:aws:iam::123456789012:role/user

spec:
#maxBackups: 5
#pause: true
maxReservedTime: "3h"
schedule: "*/2 * * * *"
backupTemplate:

125

backupType: full
Clean outdated backup data based on maxBackups or maxReservedTime

↪→ . If not configured, the default policy is Retain
cleanPolicy: Delete
br:
cluster: demo1
sendCredToTikv: false
logLevel: info
statusAddr: ${status_addr}
concurrency: 4
rateLimit: 0
timeAgo: ${time}
checksum: true

s3:
provider: aws
region: us-west-1
bucket: my-bucket
prefix: my-folder

• Method 3: If you grant permissions by associating IAM with ServiceAccount, create
the BackupSchedule CR, and back up cluster data as follows:
kubectl apply -f backup-scheduler-aws-s3.yaml

The content of backup-scheduler-aws-s3.yaml is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: demo1-backup-schedule-s3
namespace: test1

spec:
#maxBackups: 5
#pause: true
maxReservedTime: "3h"
schedule: "*/2 * * * *"
backupTemplate:
backupType: full
serviceAccount: tidb-backup-manager
Clean outdated backup data based on maxBackups or maxReservedTime

↪→ . If not configured, the default policy is Retain
cleanPolicy: Delete
br:
cluster: demo1
sendCredToTikv: false

126

logLevel: info
statusAddr: ${status_addr}
concurrency: 4
rateLimit: 0
timeAgo: ${time}
checksum: true

s3:
provider: aws
region: us-west-1
bucket: my-bucket
prefix: my-folder

In the preceding example of backup-scheduler-aws-s3.yaml, the backupSchedule con-
figuration consists of two parts. One is the unique configuration of backupSchedule, and
the other is backupTemplate.

• For the unique configuration of backupSchedule, refer to BackupSchedule CR fields.
• backupTemplate specifies the configuration related to the cluster and remote storage,

which is the same as the spec configuration of the Backup CR.

After creating the scheduled snapshot backup, use the following command to check the
backup status:
kubectl get bks -n test1 -o wide

During cluster recovery, you need to specify the backup path. You can use the following
command to check all the backup items. The names of these backups are prefixed with the
scheduled snapshot backup name:
kubectl get bk -l tidb.pingcap.com/backup-schedule=demo1-backup-schedule-s3

↪→ -n test1

7.4.4.1.4 Integrated management of scheduled snapshot backup and log
backup

You can use the BackupSchedule CR to integrate the management of scheduled snapshot
backup and log backup for TiDB clusters. By setting the backup retention time, you can
regularly recycle the scheduled snapshot backup and log backup, and ensure that you can
perform PITR recovery through the scheduled snapshot backup and log backup within the
retention period.

The following example creates a BackupSchedule CR named integrated-backup-
↪→ schedule-s3. In this example, accessKey and secretKey are used to access the remote
storage. For more information about the authorization method, refer to AWS account
permissions.

127

Prerequisites: Prepare for a scheduled snapshot backup environment
The steps to prepare for a scheduled snapshot backup are the same as those of Prepare

for an ad-hoc backup.
Create BackupSchedule

1. Create a BackupSchedule CR named integrated-backup-schedule-s3 in the test1
namespace.
kubectl apply -f integrated-backup-schedule-s3.yaml

The content of integrated-backup-schedule-s3.yaml is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: integrated-backup-schedule-s3
namespace: test1

spec:
maxReservedTime: "3h"
schedule: "* */2 * * *"
backupTemplate:
backupType: full
cleanPolicy: Delete
br:
cluster: demo1
sendCredToTikv: true

s3:
provider: aws
secretName: s3-secret
region: us-west-1
bucket: my-bucket
prefix: my-folder-snapshot

logBackupTemplate:
backupMode: log
br:
cluster: demo1
sendCredToTikv: true

s3:
provider: aws
secretName: s3-secret
region: us-west-1
bucket: my-bucket
prefix: my-folder-log

128

In the preceding example of integrated-backup-schedule-s3.yaml, the backupSchedule
↪→ configuration consists of three parts: the unique configuration of backupSchedule,
the configuration of the snapshot backup backupTemplate, and the configuration of
the log backup logBackupTemplate.
For the field description of backupSchedule, refer to BackupSchedule CR fields.

2. After creating backupSchedule, use the following command to check the backup status:
kubectl get bks -n test1 -o wide

A log backup task is created together with backupSchedule. You can check the log
backup name through the status.logBackup field of the backupSchedule CR.
kubectl describe bks integrated-backup-schedule-s3 -n test1

3. To perform data restoration for a cluster, you need to specify the backup path. You
can use the following command to check all the backup items under the scheduled
snapshot backup.
kubectl get bk -l tidb.pingcap.com/backup-schedule=integrated-backup-

↪→ schedule-s3 -n test1

The MODE field in the output indicates the backup mode. snapshot indicates the
scheduled snapshot backup, and log indicates the log backup.
NAME MODE STATUS
integrated-backup-schedule-s3-2023-03-08t02-45-00 snapshot Complete

↪→
log-integrated-backup-schedule-s3 log Running

7.4.4.1.5 Integrated management of scheduled snapshot backup, log backup,
and compact log backup

To accelerate downstream recovery, you can enable CompactBackup CR in the
BackupSchedule CR. This feature periodically compacts log backup files in remote storage.
You must enable log backup before using log backup compaction. This section extends the
configuration from the previous section.

Prerequisites: Prepare for a scheduled snapshot backup
The steps to prepare for a scheduled snapshot backup are the same as that of Prepare

for an ad-hoc backup.
Create BackupSchedule

1. Create a BackupSchedule CR named integrated-backup-schedule-s3 in the test1
namespace.

129

kubectl apply -f integrated-backup-schedule-s3.yaml

The content of integrated-backup-schedule-s3.yaml is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: integrated-backup-schedule-s3
namespace: test1

spec:
maxReservedTime: "3h"
schedule: "* */2 * * *"
compactInterval: "1h"
backupTemplate:
backupType: full
cleanPolicy: Delete
br:
cluster: demo1
sendCredToTikv: true

s3:
provider: aws
secretName: s3-secret
region: us-west-1
bucket: my-bucket
prefix: my-folder-snapshot

logBackupTemplate:
backupMode: log
br:
cluster: demo1
sendCredToTikv: true

s3:
provider: aws
secretName: s3-secret
region: us-west-1
bucket: my-bucket
prefix: my-folder-log

compactBackupTemplate:
br:
cluster: demo1
sendCredToTikv: true

s3:
provider: aws
secretName: s3-secret
region: us-west-1

130

bucket: my-bucket
prefix: my-folder-log

In the preceding example of integrated-backup-schedule-s3.yaml, the backupSchedule
↪→ configuration is based on the previous section, with the following additions for
compactBackup:

• Added the BackupSchedule.spec.compactInterval field to specify the interval
for log backup compaction. It is recommended not to exceed the interval of
scheduled snapshot backups and to keep it between one-half to one-third of the
scheduled snapshot backup interval.

• Added the BackupSchedule.spec.compactBackupTemplate field. Ensure that
the BackupSchedule.spec.compactBackupTemplate.s3 configuration matches
the BackupSchedule.spec.logBackupTemplate.s3 configuration.

For the field description of backupSchedule, refer to BackupSchedule CR fields.

2. After creating backupSchedule, use the following command to check the backup status:
kubectl get bks -n test1 -o wide

A compact log backup task is created together with backupSchedule. You can check
the CompactBackup CR using the following command:
kubectl get cpbk -n test1

7.4.4.1.6 Delete the backup CR
If you no longer need the backup CR, refer to Delete the Backup CR.

7.4.4.1.7 Troubleshooting
If you encounter any problem during the backup process, refer to Common Deployment

Failures.

7.4.4.2 Restore Data from S3-Compatible Storage Using BR
This document describes how to restore the backup data stored in S3-compatible storages

to a TiDB cluster on Kubernetes, including two restoration methods:

• Full restoration. This method takes the backup data of snapshot backup and restores
a TiDB cluster to the time point of the snapshot backup.

• Point-in-time recovery (PITR). This method takes the backup data of both snapshot
backup and log backup and restores a TiDB cluster to any point in time.

131

The restore method described in this document is implemented based on CustomRe-
sourceDefinition (CRD) in TiDB Operator. For the underlying implementation, BR is used
to restore the data. BR stands for Backup & Restore, which is a command-line tool for
distributed backup and recovery of the TiDB cluster data.

PITR allows you to restore a new TiDB cluster to any point in time of the backup cluster.
To use PITR, you need the backup data of snapshot backup and log backup. During the
restoration, the snapshot backup data is first restored to the TiDB cluster, and then the
log backup data between the snapshot backup time point and the specified point in time is
restored to the TiDB cluster.

Note:

• BR is only applicable to TiDB v3.1 or later releases.
• PITR is only applicable to TiDB v6.3 or later releases.
• Data restored by BR cannot be replicated to a downstream cluster, be-

cause BR directly imports SST and LOG files to TiDB and the down-
stream cluster currently cannot access the upstream SST and LOG files.

7.4.4.2.1 Full restoration
This document provides an example about how to restore the backup data from the

spec.s3.prefix folder of the spec.s3.bucket bucket on Amazon S3 to the demo2 TiDB
cluster in the test1 namespace. The following are the detailed steps.

Prerequisites: Complete the snapshot backup
In this example, the my-full-backup-folder folder in the my-bucket bucket of Amazon

S3 stores the snapshot backup data. For steps of performing snapshot backup, refer to Back
up Data to S3 Using BR.

Step 1: Prepare the restore environment
Before restoring backup data on an S3-compatible storage to TiDB using BR, take the

following steps to prepare the restore environment:

Note:

• BR uses a fixed ServiceAccount name that must be tidb-backup-
↪→ manager.

• Starting from TiDB Operator v2, the apiGroup for resources such as
Backup and Restore changes from pingcap.com to br.pingcap.com.

132

https://docs.pingcap.com/tidb/stable/backup-and-restore-overview

1. Save the following content as the backup-rbac.yaml file to create the required role-
based access control (RBAC) resources:

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: tidb-backup-manager
labels:
app.kubernetes.io/component: tidb-backup-manager

rules:
- apiGroups: [""]
resources: ["events"]
verbs: ["*"]

- apiGroups: ["br.pingcap.com"]
resources: ["backups", "restores"]
verbs: ["get", "watch", "list", "update"]

kind: ServiceAccount
apiVersion: v1
metadata:
name: tidb-backup-manager

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: tidb-backup-manager
labels:
app.kubernetes.io/component: tidb-backup-manager

subjects:
- kind: ServiceAccount
name: tidb-backup-manager

roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: tidb-backup-manager

2. Execute the following command to create the RBAC resources in the test1 namespace:
kubectl apply -f backup-rbac.yaml -n test1

3. Grant permissions to the remote storage for the test1 namespace:

133

• If you are using Amazon S3 to back up your cluster, you can grant permissions
in three methods. For more information, see AWS account permissions.

• If you are using other S3-compatible storage (such as Ceph and MinIO) to back
up your cluster, you can grant permissions by using AccessKey and SecretKey.

Step 2: Restore the backup data to a TiDB cluster
Depending on which method you choose to grant permissions to the remote storage when

preparing the restore environment, you can restore the data by doing one of the following:

• Method 1: If you grant permissions by importing AccessKey and SecretKey, create the
Restore CR to restore cluster data as follows:
kubectl apply -f restore-full-s3.yaml

The content of restore-full-s3.yaml is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: Restore
metadata:
name: demo2-restore-s3
namespace: test1

spec:
br:
cluster: demo2
logLevel: info
statusAddr: ${status_addr}
concurrency: 4
rateLimit: 0
timeAgo: ${time}
checksum: true
sendCredToTikv: true

s3:
provider: aws
secretName: s3-secret
region: us-west-1
bucket: my-bucket
prefix: my-full-backup-folder

• Method 2: If you grant permissions by associating IAM with Pod, create the Restore
CR to restore cluster data as follows:
kubectl apply -f restore-full-s3.yaml

The content of restore-full-s3.yaml is as follows:

134

apiVersion: br.pingcap.com/v1alpha1
kind: Restore
metadata:
name: demo2-restore-s3
namespace: test1
annotations:
iam.amazonaws.com/role: arn:aws:iam::123456789012:role/user

spec:
br:
cluster: demo2
sendCredToTikv: false
logLevel: info
statusAddr: ${status_addr}
concurrency: 4
rateLimit: 0
timeAgo: ${time}
checksum: true

s3:
provider: aws
region: us-west-1
bucket: my-bucket
prefix: my-full-backup-folder

• Method 3: If you grant permissions by associating IAM with ServiceAccount, create
the Restore CR to restore cluster data as follows:
kubectl apply -f restore-full-s3.yaml

The content of restore-full-s3.yaml is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: Restore
metadata:
name: demo2-restore-s3
namespace: test1

spec:
serviceAccount: tidb-backup-manager
br:
cluster: demo2
sendCredToTikv: false
logLevel: info
statusAddr: ${status_addr}
concurrency: 4

135

rateLimit: 0
timeAgo: ${time}
checksum: true

s3:
provider: aws
region: us-west-1
bucket: my-bucket
prefix: my-full-backup-folder

When configuring restore-full-s3.yaml, note the following:

• For more information about S3-compatible storage configuration, refer to S3 storage
fields.

• Some parameters in .spec.br are optional, such as logLevel, statusAddr,
concurrency, rateLimit, checksum, timeAgo, and sendCredToTikv. For more
information about BR configuration, refer to BR fields.

• For v4.0.8 or a later version, BR can automatically adjust tikv_gc_life_time. You
do not need to configure spec.to fields in the Restore CR.

• For more information about the Restore CR fields, refer to Restore CR fields.

After creating the Restore CR, execute the following command to check the restore
status:
kubectl get restore -n test1 -o wide

NAME STATUS ...
demo2-restore-s3 Complete ...

7.4.4.2.2 Point-in-time recovery
This section provides an example about how to perform point-in-time recovery (PITR)

in a demo3 cluster in the test1 namespace. PITR takes two steps:

1. Restore the cluster to the time point of the snapshot backup using the snapshot backup
data in the spec.pitrFullBackupStorageProvider.s3.prefix folder of the spec.
↪→ pitrFullBackupStorageProvider.s3.bucket bucket.

2. Restore the cluster to any point in time using the log backup data in the spec.s3.
↪→ prefix folder of the spec.s3.bucket bucket.

The detailed steps are as follows.
Prerequisites: Complete data backup
In this example, the my-bucket bucket of Amazon S3 stores the following two types of

backup data:

136

• The snapshot backup data generated during the log backup, stored in the my-full-
↪→ backup-folder-pitr folder.

• The log backup data, stored in the my-log-backup-folder-pitr folder.

For detailed steps of how to perform data backup, refer to Back up data to Azure Blob
Storage.

Note:
The specified restoration time point must be between the snapshot backup
time point and the log backup checkpoint-ts.

Step 1: Prepare the restoration environment
For more information, see Step 1: Prepare the restore environment.
Step 2: Restore the backup data to a TiDB cluster
The example in this section restores the snapshot backup data to the cluster. The

specified restoration time point must be between the time point of snapshot backup and the
Log Checkpoint Ts of log backup. PITR grants permissions to remote storages in the same
way as snapshot backup. The example in this section grants permissions by using AccessKey
and SecretKey. The detailed steps are as follows:

1. Create a Restore CR named demo3-restore-s3 in the restore-test namespace and
specify the restoration time point as 2022-10-10T17:21:00+08:00:
kubectl apply -f restore-point-s3.yaml

The content of restore-point-s3.yaml is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: Restore
metadata:
name: demo3-restore-s3
namespace: test1

spec:
restoreMode: pitr
br:
cluster: demo3

s3:
provider: aws
region: us-west-1

137

bucket: my-bucket
prefix: my-log-backup-folder-pitr

pitrRestoredTs: "2022-10-10T17:21:00+08:00"
pitrFullBackupStorageProvider:
s3:
provider: aws
region: us-west-1
bucket: my-bucket
prefix: my-full-backup-folder-pitr

When you configure restore-point-s3.yaml, note the following:

• spec.restoreMode: when you perform PITR, set this field to pitr. The default
value of this field is snapshot, which means snapshot backup.

2. Wait for the restoration operation to complete:
kubectl get jobs -n test1

NAME COMPLETIONS ...
restore-demo3-restore-s3 1/1 ...

You can also check the restoration status by using the following command:
kubectl get restore -n test1 -o wide

NAME STATUS ...
demo3-restore-s3 Complete ...

7.4.4.2.3 Troubleshooting
If you encounter any problem during the restore process, refer to Common Deployment

Failures.

7.4.5 Google Cloud Storage

7.4.5.1 Back Up Data to GCS Using BR
This document describes how to back up the data of a TiDB cluster on Kubernetes to

Google Cloud Storage (GCS). There are two backup types:

• Snapshot backup. With snapshot backup, you can restore a TiDB cluster to the
time point of the snapshot backup using full restoration.

• Log backup. With snapshot backup and log backup, you can restore a TiDB cluster
to any point in time. This is also known as Point-in-Time Recovery (PITR).

138

https://cloud.google.com/storage/docs/

The backup method described in this document is implemented based on CustomRe-
sourceDefinition (CRD) in TiDB Operator. For the underlying implementation, BR is used
to get the backup data of the TiDB cluster, and then send the data to the GCS storage.
BR stands for Backup & Restore, which is a command-line tool for distributed backup and
recovery of the TiDB cluster data.

7.4.5.1.1 Usage scenarios
If you have the following backup needs, you can use BR’s snapshot backup method to

make an ad-hoc backup or scheduled snapshot backup of the TiDB cluster data to GCS.

• To back up a large volume of data (more than 1 TiB) at a fast speed
• To get a direct backup of data as SST files (key-value pairs)

If you have the following backup needs, you can use BR log backup to make an ad-hoc
backup of the TiDB cluster data to GCS (you can combine log backup and snapshot backup
to restore data more efficiently):

• To restore data of any point in time to a new cluster
• The recovery point object (RPO) is within several minutes.

For other backup needs, refer to Backup and Restore Overview to choose an appropriate
backup method.

Note:

• Snapshot backup is only applicable to TiDB v3.1 or later releases.
• Log backup is only applicable to TiDB v6.3 or later releases.
• Data backed up using BR can only be restored to TiDB instead of other

databases.

7.4.5.1.2 Ad-hoc backup
Ad-hoc backup includes snapshot backup and log backup. For log backup, you can start

or stop a log backup task and clean log backup data.
To get an ad-hoc backup, you need to create a Backup Custom Resource (CR) object to

describe the backup details. Then, TiDB Operator performs the specific backup operation
based on this Backup object. If an error occurs during the backup process, TiDB Operator
does not retry, and you need to handle this error manually.

This document provides an example about how to back up the data of the demo1 TiDB
cluster in the test1 Kubernetes namespace to GCS. The following are the detailed steps.

Prerequisites: Prepare for an ad-hoc backup

139

https://docs.pingcap.com/tidb/stable/backup-and-restore-overview

Note:

• BR uses a fixed ServiceAccount name that must be tidb-backup-
↪→ manager.

• Starting from TiDB Operator v2, the apiGroup for resources such as
Backup and Restore changes from pingcap.com to br.pingcap.com.

1. Save the following content as the backup-rbac.yaml file to create the required role-
based access control (RBAC) resources:

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: tidb-backup-manager
labels:
app.kubernetes.io/component: tidb-backup-manager

rules:
- apiGroups: [""]
resources: ["events"]
verbs: ["*"]

- apiGroups: ["br.pingcap.com"]
resources: ["backups", "restores"]
verbs: ["get", "watch", "list", "update"]

kind: ServiceAccount
apiVersion: v1
metadata:
name: tidb-backup-manager

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: tidb-backup-manager
labels:
app.kubernetes.io/component: tidb-backup-manager

subjects:
- kind: ServiceAccount
name: tidb-backup-manager

roleRef:

140

apiGroup: rbac.authorization.k8s.io
kind: Role
name: tidb-backup-manager

2. Execute the following command to create the RBAC resources in the test1 namespace:
kubectl apply -f backup-rbac.yaml -n test1

3. Grant permissions to the remote storage for the test1 namespace:
Refer to GCS account permissions.

Snapshot backup
Create the Backup CR to back up cluster data to GCS as follows:

kubectl apply -f full-backup-gcs.yaml

The content of full-backup-gcs.yaml is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-full-backup-gcs
namespace: test1

spec:
backupType: full
br:
cluster: demo1
logLevel: info
statusAddr: ${status-addr}
concurrency: 4
rateLimit: 0
checksum: true
sendCredToTikv: true
options:
- --lastbackupts=420134118382108673

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket
prefix: my-full-backup-folder
location: us-east1
storageClass: STANDARD_IA
objectAcl: private

141

When configuring the full-backup-gcs.yaml, note the following:

• Starting from TiDB Operator v1.1.6, if you want to back up data incrementally, you
only need to specify the last backup timestamp --lastbackupts in spec.br.options.
For the limitations of incremental backup, refer to Use BR to Back up and Restore
Data.

• Some parameters in .spec.br are optional, such as logLevel and statusAddr. For
more information about BR configuration, refer to BR fields.

• Some parameters in spec.gcs are optional, such as location, objectAcl, and
storageClass. For more information about GCS configuration, refer to GCS fields.

• For v4.0.8 or a later version, BR can automatically adjust tikv_gc_life_time. You
do not need to configure spec.tikvGCLifeTime and spec.from fields in the Backup
CR.

• For more information about the Backup CR fields, refer to Backup CR fields.

View the snapshot backup status
After you create the Backup CR, TiDB Operator starts the backup automatically. You

can view the backup status by running the following command:
kubectl get backup -n test1 -o wide

From the output, you can find the following information for the Backup CR named demo1
↪→ -full-backup-gcs. The COMMITTS field indicates the time point of the snapshot backup:
NAME TYPE MODE STATUS BACKUPPATH

↪→ COMMITTS ...
demo1-full-backup-gcs full snapshot Complete gcs://my-bucket/my-full-

↪→ backup-folder/ 436979621972148225 ...

Log backup
You can use a Backup CR to describe the start and stop of a log backup task and manage

the log backup data. Log backup grants permissions to remote storages in the same way
as snapshot backup. In this section, the example shows how to create a Backup CR named
demo1-log-backup-gcs. See the following detailed steps.

Description of the logSubcommand field
In the Backup Custom Resource (CR), you can use the logSubcommand field to control

the state of a log backup task. The logSubcommand field supports the following commands:

• log-start: initiates a new log backup task or resumes a paused task. Use this com-
mand to start the log backup process or resume a task from a paused state.

• log-pause: temporarily pauses the currently running log backup task. After pausing,
you can use the log-start command to resume the task.

142

https://docs.pingcap.com/tidb/stable/br-usage-backup#back-up-incremental-data
https://docs.pingcap.com/tidb/stable/br-usage-backup#back-up-incremental-data

• log-stop: permanently stops the log backup task. After executing this command, the
Backup CR enters a stopped state and cannot be restarted.

These commands provide fine-grained control over the lifecycle of log backup tasks,
enabling you to start, pause, resume, and stop tasks effectively to manage log data retention
in Kubernetes environments.

In TiDB Operator v1.5.4, v1.6.0, and earlier versions, you can use the logStop: true
↪→ /false field to stop or start log backup tasks. This field is no longer supported in
TiDB Operator v2. It is recommended to use the logSubcommand field to ensure clear and
consistent configuration.

Start log backup

1. In the test1 namespace, create a Backup CR named demo1-log-backup-gcs.
kubectl apply -f log-backup-gcs.yaml

The content of log-backup-gcs.yaml is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-log-backup-gcs
namespace: test1

spec:
backupMode: log
logSubcommand: log-start
br:
cluster: demo1
sendCredToTikv: true

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket
prefix: my-log-backup-folder

2. Wait for the start operation to complete:
kubectl get jobs -n test1

NAME COMPLETIONS ...
backup-demo1-log-backup-gcs-log-start 1/1 ...

3. View the newly created Backup CR:

143

kubectl get backup -n test1

NAME MODE STATUS
demo1-log-backup-gcs log Running

View the log backup status
You can view the log backup status by checking the information of the Backup CR:

kubectl describe backup -n test1

From the output, you can find the following information for the Backup CR named demo1
↪→ -log-backup-gcs. The Log Checkpoint Ts field indicates the latest point in time that
can be recovered:
Status:
Backup Path: gcs://my-bucket/my-log-backup-folder/
Commit Ts: 436568622965194754
Conditions:

Last Transition Time: 2022-10-10T04:45:20Z
Status: True
Type: Scheduled
Last Transition Time: 2022-10-10T04:45:31Z
Status: True
Type: Prepare
Last Transition Time: 2022-10-10T04:45:31Z
Status: True
Type: Running

Log Checkpoint Ts: 436569119308644661

Pause log backup
You can pause a log backup task by setting the logSubcommand field of the Backup

Custom Resource (CR) to log-pause. The following example shows how to pause the
demo1-log-backup-gcs CR created in Start log backup.
kubectl edit backup demo1-log-backup-gcs -n test1

To pause the log backup task, change the value of logSubcommand from log-start to
log-pause, then save and exit the editor. The modified content is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-log-backup-gcs

144

namespace: test1
spec:
backupMode: log
logSubcommand: log-pause
br:
cluster: demo1
sendCredToTikv: true

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket
prefix: my-log-backup-folder

You can verify that the STATUS of the demo1-log-backup-gcs Backup CR changes from
Running to Pause:
kubectl get backup -n test1

NAME MODE STATUS
demo1-log-backup-gcs log Pause

Resume log backup
If a log backup task is paused, you can resume it by setting the logSubcommand field to

log-start. The following example shows how to resume the demo1-log-backup-gcs CR
that was paused in Pause Log Backup.

Note:
This operation applies only to tasks in the Pause state. You cannot resume
tasks in the Fail or Stopped state.

kubectl edit backup demo1-log-backup-gcs -n test1

To resume the log backup task, change the value of logSubcommand from log-pause to
log-start, then save and exit the editor. The modified content is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-log-backup-gcs
namespace: test1

145

spec:
backupMode: log
logSubcommand: log-start
br:
cluster: demo1
sendCredToTikv: true

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket
prefix: my-log-backup-folder

You can verify that the STATUS of the demo1-log-backup-gcs Backup CR changes from
Pause to Running:
kubectl get backup -n test1

NAME MODE STATUS
demo1-log-backup-gcs log Running

Stop log backup
You can stop a log backup task by setting the logSubcommand field of the Backup

Custom Resource (CR) to log-stop. The following example shows how to stop the demo1-
↪→ log-backup-gcs CR created in Start log backup.
kubectl edit backup demo1-log-backup-gcs -n test1

Change the value of logSubcommand to log-stop, then save and exit the editor. The
modified content is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-log-backup-gcs
namespace: test1

spec:
backupMode: log
logSubcommand: log-stop
br:
cluster: demo1
sendCredToTikv: true

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket

146

prefix: my-log-backup-folder

You can verify that the STATUS of the Backup CR named demo1-log-backup-gcs
changes from Running to Stopped:
kubectl get backup -n test1

NAME MODE STATUS
demo1-log-backup-gcs log Stopped

Stopped is the terminal state for log backup. In this state, you cannot change the backup
state again, but you can still clean up the log backup data.

In TiDB Operator v1.5.4, v1.6.0, and earlier versions, you can use the logStop: true
↪→ /false field to stop or start log backup tasks. This field is retained for backward com-
patibility.

Clean log backup data

1. Because you already created a Backup CR named demo1-log-backup-gcs when you
started log backup, you can clean the log data backup by modifying the same Backup
↪→ CR. The following example shows how to clean log backup data generated before
2022-10-10T15:21:00+08:00.
kubectl edit backup demo1-log-backup-gcs -n test1

In the last line of the CR, append spec.logTruncateUntil: "2022-10-10T15
↪→ :21:00+08:00". Then save and quit the editor. The modified content is as
follows:

apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-gcs
namespace: test1

spec:
backupMode: log
logSubcommand: log-start/log-pause/log-stop
br:
cluster: demo1
sendCredToTikv: true

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket
prefix: my-log-backup-folder

logTruncateUntil: "2022-10-10T15:21:00+08:00"

147

2. Wait for the clean operation to complete:
kubectl get jobs -n test1

NAME COMPLETIONS ...
...
backup-demo1-log-backup-gcs-log-truncate 1/1 ...

3. View the Backup CR information:
kubectl describe backup -n test1

...
Log Success Truncate Until: 2022-10-10T15:21:00+08:00
...

You can also view the information by running the following command:
kubectl get backup -n test1 -o wide

NAME MODE STATUS ... LOGTRUNCATEUNTIL
demo1-log-backup-gcs log Stopped ... 2022-10-10T15:21:00+08:00

Compact log backup
For TiDB v9.0.0 and later versions, you can use a CompactBackup CR to compact log

backup data into SST format, accelerating downstream PITR (Point-in-time recovery).
This section explains how to compact log backup based on the log backup example from

previous sections.
In the test1 namespace, create a CompactBackup CR named demo1-compact-backup.

kubectl apply -f compact-backup-demo1.yaml

The content of compact-backup-demo1.yaml is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: CompactBackup
metadata:
name: demo1-compact-backup
namespace: test1

spec:
startTs: "***"
endTs: "***"
concurrency: 8
maxRetryTimes: 2

148

br:
cluster: demo1
sendCredToTikv: true

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket
prefix: my-log-backup-folder

The startTs and endTs fields specify the time range for the logs to be compacted by
demo1-compact-backup. Any log that contains at least one data write within this time
range will be included in the compaction process. As a result, the final compacted data
might include data written outside this range.

The gcs settings should be the same as the storage settings of the log backup to be
compacted. CompactBackup reads log files from the corresponding location and compacts
them.

View the status of log backup compaction
After creating the CompactBackup CR, TiDB Operator automatically starts compacting

the log backup. You can check the backup status using the following command:
kubectl get cpbk -n test1

From the output, you can find the status of the CompactBackup CR named demo1-
↪→ compact-backup. An example output is as follows:
NAME STATUS PROGRESS

↪→ MESSAGE
demo1-compact-backup Complete [READ_META(17/17),COMPACT_WORK(1291/1291)]

If the STATUS field displays Complete, the compact log backup process has finished
successfully.

Backup CR examples
Back up data of all clusters

apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-gcs
namespace: test1

spec:
backupType: full
br:
cluster: demo1

149

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: ${bucket}
prefix: ${prefix}
location: us-east1
storageClass: STANDARD_IA
objectAcl: private

Back up data of a single database
The following example backs up data of the db1 database.

apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-gcs
namespace: test1

spec:
backupType: full
tableFilter:
- "db1.*"
br:
cluster: demo1

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: ${bucket}
prefix: ${prefix}
location: us-east1
storageClass: STANDARD_IA
objectAcl: private

Back up data of a single table
The following example backs up data of the db1.table1 table.

apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-gcs
namespace: test1

spec:
backupType: full
tableFilter:

150

- "db1.table1"
br:
cluster: demo1

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: ${bucket}
prefix: ${prefix}
location: us-east1
storageClass: STANDARD_IA
objectAcl: private

Back up data of multiple tables using the table filter
The following example backs up data of the db1.table1 table and db1.table2 table.

apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-gcs
namespace: test1

spec:
backupType: full
tableFilter:
- "db1.table1"
- "db1.table2"
br:
cluster: demo1

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: ${bucket}
prefix: ${prefix}
location: us-east1
storageClass: STANDARD_IA
objectAcl: private

7.4.5.1.3 Scheduled snapshot backup
You can set a backup policy to perform scheduled backups of the TiDB cluster, and set

a backup retention policy to avoid excessive backup items. A scheduled snapshot backup is
described by a custom BackupSchedule CR object. A snapshot backup is triggered at each
backup time point. Its underlying implementation is the ad-hoc snapshot backup.

Prerequisites: Prepare for a scheduled snapshot backup

151

The steps to prepare for a scheduled snapshot backup are the same as those of Prepare
for an ad-hoc backup.

Perform a scheduled snapshot backup

1. Create a BackupSchedule CR to back up cluster data as follows:
kubectl apply -f backup-schedule-gcs.yaml

The content of backup-schedule-gcs.yaml is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: demo1-backup-schedule-gcs
namespace: test1

spec:
#maxBackups: 5
#pause: true
maxReservedTime: "3h"
schedule: "*/2 * * * *"
backupTemplate:
Clean outdated backup data based on maxBackups or maxReservedTime

↪→ . If not configured, the default policy is Retain
cleanPolicy: Delete
br:
cluster: demo1
logLevel: info
statusAddr: ${status-addr}
concurrency: 4
rateLimit: 0
checksum: true
sendCredToTikv: true

gcs:
secretName: gcs-secret
projectId: ${project_id}
bucket: ${bucket}
prefix: ${prefix}
location: us-east1
storageClass: STANDARD_IA
objectAcl: private

From the preceding backup-schedule-gcs.yaml, you can see that the backupSchedule
↪→ configuration consists of two parts. One is the unique configuration of
backupSchedule, and the other is backupTemplate.

152

• For the unique configuration of backupSchedule, refer to BackupSchedule CR
fields.

• backupTemplate specifies the configuration related to the cluster and remote
storage, which is the same as the spec configuration of the Backup CR.

2. After creating the scheduled snapshot backup, use the following command to check the
backup status:
kubectl get bks -n test1 -o wide

Use the following command to check all the backup items:
kubectl get bk -l tidb.pingcap.com/backup-schedule=demo1-backup-

↪→ schedule-gcs -n test1

7.4.5.1.4 Integrated management of scheduled snapshot backup and log
backup

You can use the BackupSchedule CR to integrate the management of scheduled snapshot
backup and log backup for TiDB clusters. By setting the backup retention time, you can
regularly recycle the scheduled snapshot backup and log backup, and ensure that you can
perform PITR recovery through the scheduled snapshot backup and log backup within the
retention period.

The following example creates a BackupSchedule CR named integrated-backup-
↪→ schedule-gcs. For more information about the authorization method, refer to GCS
account permissions.

Prerequisites: Prepare for a scheduled snapshot backup environment
The steps to prepare for a scheduled snapshot backup are the same as those of Prepare

for an ad-hoc backup.
Create BackupSchedule

1. Create a BackupSchedule CR named integrated-backup-schedule-gcs in the
test1 namespace.
kubectl apply -f integrated-backup-scheduler-gcs.yaml

The content of integrated-backup-scheduler-gcs.yaml is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: integrated-backup-schedule-gcs
namespace: test1

spec:

153

maxReservedTime: "3h"
schedule: "* */2 * * *"
backupTemplate:
backupType: full
cleanPolicy: Delete
br:
cluster: demo1
sendCredToTikv: true

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket
prefix: schedule-backup-folder-snapshot

logBackupTemplate:
backupMode: log
br:
cluster: demo1
sendCredToTikv: true

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket
prefix: schedule-backup-folder-log

In the preceding example of integrated-backup-scheduler-gcs.yaml, the
backupSchedule configuration consists of three parts: the unique configuration
of backupSchedule, the configuration of the snapshot backup backupTemplate, and
the configuration of the log backup logBackupTemplate.
For the field description of backupSchedule, refer to BackupSchedule CR fields.

2. After creating backupSchedule, use the following command to check the backup status:
kubectl get bks -n test1 -o wide

A log backup task is created together with backupSchedule. You can check the log
backup name through the status.logBackup field of the backupSchedule CR.
kubectl describe bks integrated-backup-schedule-gcs -n test1

3. To perform data restoration for a cluster, you need to specify the backup path. You
can use the following command to check all the backup items under the scheduled
snapshot backup.
kubectl get bk -l tidb.pingcap.com/backup-schedule=integrated-backup-

↪→ schedule-gcs -n test1

154

The MODE field in the output indicates the backup mode. snapshot indicates the
scheduled snapshot backup, and log indicates the log backup.
NAME MODE STATUS

↪→
integrated-backup-schedule-gcs-2023-03-08t02-50-00 snapshot Complete

↪→
log-integrated-backup-schedule-gcs log Running

↪→

7.4.5.1.5 Integrated management of scheduled snapshot backup, log backup,
and compact log backup

To accelerate downstream recovery, you can enable CompactBackup CR in the
BackupSchedule CR. This feature periodically compacts log backup files in remote storage.
You must enable log backup before using log backup compaction. This section extends the
configuration from the previous section.

Prerequisites: Prepare for a scheduled snapshot backup
The steps to prepare for a scheduled snapshot backup are the same as those of Prepare

for an ad-hoc backup.
Create BackupSchedule

1. Create a BackupSchedule CR named integrated-backup-schedule-gcs in the
test1 namespace.
kubectl apply -f integrated-backup-scheduler-gcs.yaml

The content of integrated-backup-scheduler-gcs.yaml is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: integrated-backup-schedule-gcs
namespace: test1

spec:
maxReservedTime: "3h"
schedule: "* */2 * * *"
compactInterval: "1h"
backupTemplate:
backupType: full
cleanPolicy: Delete
br:
cluster: demo1
sendCredToTikv: true

155

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket
prefix: schedule-backup-folder-snapshot

logBackupTemplate:
backupMode: log
br:
cluster: demo1
sendCredToTikv: true

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket
prefix: schedule-backup-folder-log

compactBackupTemplate:
br:
cluster: demo1
sendCredToTikv: true

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket
prefix: schedule-backup-folder-log

In the preceding example of integrated-backup-schedule-gcs.yaml, the backupSchedule
↪→ configuration is based on the previous section, with the following additions for
compactBackup:

• Added the BackupSchedule.spec.compactInterval field to specify the time in-
terval for log backup compaction. It is recommended not to exceed the interval
of scheduled snapshot backups and to keep it between one-half to one-third of the
scheduled snapshot backup interval.

• Added the BackupSchedule.spec.compactBackupTemplate field. Ensure that
the BackupSchedule.spec.compactBackupTemplate.gcs configuration matches
the BackupSchedule.spec.logBackupTemplate.gcs configuration.

For the field description of backupSchedule, refer to BackupSchedule CR fields.

2. After creating backupSchedule, use the following command to check the backup status:
kubectl get bks -n test1 -o wide

A compact log backup task is created together with backupSchedule. You can check
the CompactBackup CR using the following command:

156

kubectl get cpbk -n test1

7.4.5.1.6 Delete the backup CR
If you no longer need the backup CR, refer to Delete the Backup CR.

7.4.5.1.7 Troubleshooting
If you encounter any problem during the backup process, refer to Common Deployment

Failures.

7.4.5.2 Restore Data from GCS Using BR
This document describes how to restore the backup data stored in Google Cloud Storage

(GCS) to a TiDB cluster on Kubernetes, including two restoration methods:

• Full restoration. This method takes the backup data of snapshot backup and restores
a TiDB cluster to the time point of the snapshot backup.

• Point-in-time recovery (PITR). This method takes the backup data of both snapshot
backup and log backup and restores a TiDB cluster to any point in time.

The restore method described in this document is implemented based on Custom Re-
source Definition (CRD) in TiDB Operator. For the underlying implementation, BR is used
to restore the data. BR stands for Backup & Restore, which is a command-line tool for
distributed backup and recovery of the TiDB cluster data.

PITR allows you to restore a new TiDB cluster to any point in time of the backup cluster.
To use PITR, you need the backup data of snapshot backup and log backup. During the
restoration, the snapshot backup data is first restored to the TiDB cluster, and then the
log backup data between the snapshot backup time point and the specified point in time is
restored to the TiDB cluster.

Note:

• BR is only applicable to TiDB v3.1 or later releases.
• PITR is only applicable to TiDB v6.3 or later releases.
• Data restored by BR cannot be replicated to a downstream cluster, be-

cause BR directly imports SST and LOG files to TiDB and the down-
stream cluster currently cannot access the upstream SST and LOG files.

157

https://cloud.google.com/storage/docs/
https://cloud.google.com/storage/docs/
https://docs.pingcap.com/tidb/stable/backup-and-restore-overview

7.4.5.2.1 Full restoration
This section provides an example about how to restore the backup data from the spec.

↪→ gcs.prefix folder of the spec.gcs.bucket bucket on GCS to the demo2 TiDB cluster
in the test1 namespace. The following are the detailed steps.

Prerequisites: Complete the snapshot backup
In this example, the my-full-backup-folder folder in the my-bucket bucket of GCS

stores the snapshot backup data. For steps of performing snapshot backup, refer to Back up
Data to GCS Using BR.

Step 1: Prepare the restore environment
Before restoring backup data on GCS to TiDB using BR, take the following steps to

prepare the restore environment:

Note:

• BR uses a fixed ServiceAccount name that must be tidb-backup-
↪→ manager.

• Starting from TiDB Operator v2, the apiGroup for resources such as
Backup and Restore changes from pingcap.com to br.pingcap.com.

1. Save the following content as the backup-rbac.yaml file to create the required role-
based access control (RBAC) resources:

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: tidb-backup-manager
labels:
app.kubernetes.io/component: tidb-backup-manager

rules:
- apiGroups: [""]
resources: ["events"]
verbs: ["*"]

- apiGroups: ["br.pingcap.com"]
resources: ["backups", "restores"]
verbs: ["get", "watch", "list", "update"]

kind: ServiceAccount
apiVersion: v1

158

metadata:
name: tidb-backup-manager

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: tidb-backup-manager
labels:
app.kubernetes.io/component: tidb-backup-manager

subjects:
- kind: ServiceAccount
name: tidb-backup-manager

roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: tidb-backup-manager

2. Execute the following command to create the RBAC resources in the test1 namespace:
kubectl apply -f backup-rbac.yaml -n test1

3. Grant permissions to the remote storage for the test1 namespace:
Refer to GCS account permissions.

Step 2: Restore the backup data to a TiDB cluster

1. Create the Restore Custom Resource (CR) to restore the specified data to your cluster:
kubectl apply -f restore-full-gcs.yaml

The content of restore-full-gcs.yaml file is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: Restore
metadata:
name: demo2-restore-gcs
namespace: test1

spec:
backupType: full
br:
cluster: demo2
logLevel: info
statusAddr: ${status-addr}

159

concurrency: 4
rateLimit: 0
checksum: true
sendCredToTikv: true

gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket
prefix: my-full-backup-folder
location: us-east1
storageClass: STANDARD_IA
objectAcl: private

When configuring restore-full-gcs.yaml, note the following:

• For more information about GCS configuration, refer to GCS fields.
• Some parameters in .spec.br are optional, such as logLevel, statusAddr,

concurrency, rateLimit, checksum, timeAgo, and sendCredToTikv. For more
information about BR configuration, refer to BR fields.

• For v4.0.8 or a later version, BR can automatically adjust tikv_gc_life_time.
You do not need to configure spec.to fields in the Restore CR.

• For more information about the Restore CR fields, refer to Restore CR fields.

2. After creating the Restore CR, execute the following command to check the restore
status:
kubectl get restore -n test1 -o wide

NAME STATUS ...
demo2-restore-gcs Complete ...

7.4.5.2.2 Point-in-time recovery
This section provides an example about how to perform point-in-time recovery (PITR)

in a demo3 cluster in the test1 namespace. PITR takes two steps:

1. Restore the cluster to the time point of the snapshot backup using the snapshot backup
data in the spec.pitrFullBackupStorageProvider.gcs.prefix folder of the spec.
↪→ pitrFullBackupStorageProvider.gcs.bucket bucket.

2. Restore the cluster to any point in time using the log backup data in the spec.gcs.
↪→ prefix folder of the spec.gcs.bucket bucket.

The detailed steps are as follows.
Prerequisites: Complete data backup

160

In this example, the my-bucket bucket of GCS stores the following two types of backup
data:

• The snapshot backup data generated during the log backup, stored in the my-full-
↪→ backup-folder-pitr folder.

• The log backup data, stored in the my-log-backup-folder-pitr folder.

For detailed steps of how to perform data backup, refer to Back up data to GCS Using
BR.

Note:
The specified restoration time point must be between the snapshot backup
time point and the log backup checkpoint-ts.

Step 1: Prepare the restoration environment
Refer to Step 1: Prepare the restore environment.
Step 2: Restore the backup data to a TiDB cluster
The example in this section restores the snapshot backup data to the cluster. The

specified restoration time point must be between the time point of snapshot backup and the
Log Checkpoint Ts of log backup. The detailed steps are as follows:

1. Create a Restore CR named demo3-restore-gcs in the test1 namespace and specify
the restoration time point as 2022-10-10T17:21:00+08:00:
kubectl apply -f restore-point-gcs.yaml

The content of restore-point-gcs.yaml is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: Restore
metadata:
name: demo3-restore-gcs
namespace: test1

spec:
restoreMode: pitr
br:
cluster: demo3

gcs:
projectId: ${project_id}

161

secretName: gcs-secret
bucket: my-bucket
prefix: my-log-backup-folder-pitr

pitrRestoredTs: "2022-10-10T17:21:00+08:00"
pitrFullBackupStorageProvider:
gcs:
projectId: ${project_id}
secretName: gcs-secret
bucket: my-bucket
prefix: my-full-backup-folder-pitr

When you configure restore-point-gcs.yaml, note the following:

• spec.restoreMode: when you perform PITR, set this field to pitr. The default
value of this field is snapshot, which means snapshot backup.

2. Wait for the restoration operation to complete:
kubectl get jobs -n test1

NAME COMPLETIONS ...
restore-demo3-restore-gcs 1/1 ...

You can also check the restoration status by using the following command:
kubectl get restore -n test1 -o wide

NAME STATUS ...
demo3-restore-gcs Complete ...

7.4.5.2.3 Troubleshooting
If you encounter any problem during the restore process, refer to Common Deployment

Failures.

7.4.6 Azure Blob Storage

7.4.6.1 Back Up Data to Azure Blob Storage Using BR
This document describes how to back up the data of a TiDB cluster on Kubernetes to

Azure Blob Storage. There are two backup types:

• Snapshot backup. With snapshot backup, you can restore a TiDB cluster to the
time point of the snapshot backup using full restoration.

• Log backup. With snapshot backup and log backup, you can restore a TiDB cluster
to any point in time. This is also known as Point-in-Time Recovery (PITR).

162

The backup method described in this document is implemented based on CustomRe-
sourceDefinition (CRD) in TiDB Operator. For the underlying implementation, BR is used
to get the backup data of the TiDB cluster, and then send the data to Azure Blob Storage.
BR stands for Backup & Restore, which is a command-line tool for distributed backup and
recovery of the TiDB cluster data.

7.4.6.1.1 Usage scenarios
If you have the following backup needs, you can use BR to make an ad-hoc backup or

scheduled snapshot backup of the TiDB cluster data to Azure Blob Storage.

• To back up a large volume of data (more than 1 TiB) at a fast speed.
• To get a direct backup of data as SST files (key-value pairs).

If you have the following backup needs, you can use BR log backup to make an ad-hoc
backup of the TiDB cluster data to Azure Blob Storage (you can combine log backup and
snapshot backup to restore data more efficiently):

• To restore data of any point in time to a new cluster
• The recovery point object (RPO) is within several minutes.

For other backup needs, refer to Backup and Restore Overview to choose an appropriate
backup method.

Note:

• Snapshot backup is only applicable to TiDB v3.1 or later releases.
• Log backup is only applicable to TiDB v6.3 or later releases.
• Data backed up using BR can only be restored to TiDB instead of other

databases.

7.4.6.1.2 Ad-hoc backup
Ad-hoc backup includes snapshot backup and log backup. For log backup, you can start

or stop a log backup task and clean log backup data.
To get an ad-hoc backup, you need to create a Backup Custom Resource (CR) object to

describe the backup details. Then, TiDB Operator performs the specific backup operation
based on this Backup object. If an error occurs during the backup process, TiDB Operator
does not retry, and you need to handle this error manually.

163

https://docs.pingcap.com/tidb/stable/backup-and-restore-overview

This document provides an example about how to back up the data of the demo1 TiDB
cluster in the test1 Kubernetes namespace to Azure Blob Storage. The following are the
detailed steps.

Prerequisites: Prepare an ad-hoc backup environment

1. Create the required role-based access control (RBAC) resources:
kubectl apply -n test1 -f - <<EOF
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
name: tidb-backup-manager
labels:
app.kubernetes.io/component: tidb-backup-manager

rules:
- apiGroups: [""]
resources: ["events"]
verbs: ["*"]

- apiGroups: ["br.pingcap.com"]
resources: ["backups", "restores"]
verbs: ["get", "watch", "list", "update"]

kind: ServiceAccount
apiVersion: v1
metadata:
name: tidb-backup-manager

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: tidb-backup-manager
labels:
app.kubernetes.io/component: tidb-backup-manager

subjects:
- kind: ServiceAccount
name: tidb-backup-manager

roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: tidb-backup-manager

EOF

2. Refer to Grant permissions to an Azure account to grant access to remote storage.
Azure provides two methods for granting permissions. After successful authorization,

164

a Secret object named azblob-secret or azblob-secret-ad should exist in the test1
namespace.

Note:
• The authorized account must have at least write access to Blob data,

such as the Contributor role.
• When creating the Secret object, you can customize its name. For

demonstration purposes, this document uses azblob-secret as the
example Secret name.

Snapshot backup
To perform a snapshot backup, take the following steps:
Create the Backup CR named demo1-full-backup-azblob in the test1 namespace:

kubectl apply -f full-backup-azblob.yaml

The content of full-backup-azblob.yaml is as follows:
apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-full-backup-azblob
namespace: test1

spec:
backupType: full
br:
cluster: demo1
logLevel: info
statusAddr: ${status_addr}
concurrency: 4
rateLimit: 0
timeAgo: ${time}
checksum: true
sendCredToTikv: true
options:
- --lastbackupts=420134118382108673

azblob:
secretName: azblob-secret
container: my-container
prefix: my-full-backup-folder
#accessTier: Hot

When configuring the full-backup-azblob.yaml, note the following:

165

https://learn.microsoft.com/en-us/azure/role-based-access-control/built-in-roles#contributor

• If you want to back up data incrementally, you only need to specify the last backup
timestamp --lastbackupts in spec.br.options. For the limitations of incremental
backup, refer to Use BR to Back up and Restore Data.

• For more information about Azure Blob Storage configuration, refer to Azure Blob
Storage fields.

• Some parameters in .spec.br are optional, such as logLevel and statusAddr. For
more information about BR configuration, refer to BR fields.

• .spec.azblob.secretName: fill in the name you specified when creating the Secret
object, such as azblob-secret.

• For more information about the Backup CR fields, refer to Backup CR fields.

View the snapshot backup status
After you create the Backup CR, TiDB Operator starts the backup automatically. You

can view the backup status by running the following command:
kubectl get backup -n test1 -o wide

From the output, you can find the following information for the Backup CR named
demo1-full-backup-azblob. The COMMITTS field indicates the time point of the snapshot
backup:
NAME TYPE MODE STATUS BACKUPPATH

↪→ COMMITTS ...
demo1-full-backup-azblob full snapshot Complete azure://my-container/my-

↪→ full-backup-folder/ 436979621972148225 ...

Log backup
You can use a Backup CR to describe the start and stop of a log backup task and manage

the log backup data. In this section, the example shows how to create a Backup CR named
demo1-log-backup-azblob. See the following detailed steps.

Description of the logSubcommand field
In the Backup Custom Resource (CR), you can use the logSubcommand field to control

the state of a log backup task. The logSubcommand field supports the following commands:

• log-start: initiates a new log backup task or resumes a paused task. Use this com-
mand to start the log backup process or resume a task from a paused state.

• log-pause: temporarily pauses the currently running log backup task. After pausing,
you can use the log-start command to resume the task.

• log-stop: permanently stops the log backup task. After executing this command, the
Backup CR enters a stopped state and cannot be restarted.

166

https://docs.pingcap.com/tidb/stable/br-usage-backup#back-up-incremental-data

These commands provide fine-grained control over the lifecycle of log backup tasks,
enabling you to start, pause, resume, and stop tasks effectively to manage log data retention
in Kubernetes environments.

Start log backup

1. In the test1 namespace, create a Backup CR named demo1-log-backup-azblob.
kubectl apply -f log-backup-azblob.yaml

The content of log-backup-azblob.yaml is as follows:
apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-log-backup-azblob
namespace: test1

spec:
backupMode: log
logSubcommand: log-start
br:
cluster: demo1
sendCredToTikv: true

azblob:
secretName: azblob-secret
container: my-container
prefix: my-log-backup-folder
#accessTier: Hot

2. Wait for the start operation to complete:
kubectl get jobs -n test1

NAME COMPLETIONS ...
backup-demo1-log-backup-azblob-log-start 1/1 ...

3. View the newly created Backup CR:
kubectl get backup -n test1

NAME MODE STATUS
demo1-log-backup-azblob log Running

View the log backup status
You can view the log backup status by checking the information of the Backup CR:

167

kubectl describe backup -n test1

From the output, you can find the following information for the Backup CR named demo1
↪→ -log-backup-azblob. The Log Checkpoint Ts field indicates the latest point in time
that can be recovered:
Status:
Backup Path: azure://my-container/my-log-backup-folder/
Commit Ts: 436568622965194754
Conditions:

Last Transition Time: 2022-10-10T04:45:20Z
Status: True
Type: Scheduled
Last Transition Time: 2022-10-10T04:45:31Z
Status: True
Type: Prepare
Last Transition Time: 2022-10-10T04:45:31Z
Status: True
Type: Running

Log Checkpoint Ts: 436569119308644661

Pause log backup
You can pause a log backup task by setting the logSubcommand field of the Backup

Custom Resource (CR) to log-pause. The following example shows how to pause the
demo1-log-backup-azblob CR created in Start log backup.
kubectl edit backup demo1-log-backup-azblob -n test1

To pause the log backup task, change the value of logSubcommand from log-start to
log-pause, then save and exit the editor.
kubectl apply -f log-backup-azblob.yaml

The modified content is as follows:
apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-log-backup-azblob
namespace: test1

spec:
backupMode: log
logSubcommand: log-pause
br:
cluster: demo1
sendCredToTikv: true

168

azblob:
secretName: azblob-secret
container: my-container
prefix: my-log-backup-folder

You can verify that the STATUS of the demo1-log-backup-azblob Backup CR changes
from Running to Pause:
kubectl get backup -n test1

NAME MODE STATUS
demo1-log-backup-azblob log Pause

Resume log backup
If a log backup task is paused, you can resume it by setting the logSubcommand field

to log-start. The following example shows how to resume the demo1-log-backup-azblob
CR that was paused in Pause Log Backup.

Note:
This operation applies only to tasks in the Pause state. You cannot resume
tasks in the Fail or Stopped state.

kubectl edit backup demo1-log-backup-azblob -n test1

To resume the log backup task, change the value of logSubcommand from log-pause to
log-start, then save and exit the editor. The modified content is as follows:
apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-log-backup-azblob
namespace: test1

spec:
backupMode: log
logSubcommand: log-start
br:
cluster: demo1
sendCredToTikv: true

azblob:
secretName: azblob-secret
container: my-container
prefix: my-log-backup-folder

169

You can verify that the STATUS of the demo1-log-backup-azblob Backup CR changes
from Pause to Running:
kubectl get backup -n test1

NAME MODE STATUS
demo1-log-backup-azblob log Running

Stop log backup
You can stop a log backup task by setting the logSubcommand field of the Backup

Custom Resource (CR) to log-stop. The following example shows how to stop the demo1-
↪→ log-backup-azblob CR created in Start log backup.
kubectl edit backup demo1-log-backup-azblob -n test1

Change the value of logSubcommand to log-stop, then save and exit the editor. The
modified content is as follows:
apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-log-backup-azblob
namespace: test1

spec:
backupMode: log
logSubcommand: log-stop
br:
cluster: demo1
sendCredToTikv: true

azblob:
secretName: azblob-secret
container: my-container
prefix: my-log-backup-folder
#accessTier: Hot

You can verify that the STATUS of the Backup CR named demo1-log-backup-azblob
changes from Running to Stopped:
kubectl get backup -n test1

NAME MODE STATUS
demo1-log-backup-azblob log Stopped

Stopped is the terminal state for log backup. In this state, you cannot change the backup
state again, but you can still clean up the log backup data.

Clean log backup data

170

1. Because you already created a Backup CR named demo1-log-backup-azblob when
you started log backup, you can clean the log data backup by modifying the same
Backup CR. The following example shows how to clean log backup data generated
before 2022-10-10T15:21:00+08:00.
kubectl edit backup demo1-log-backup-azblob -n test1

In the last line of the CR, append spec.logTruncateUntil: "2022-10-10T15
↪→ :21:00+08:00". Then save and exit the editor. The modified content is as
follows:
apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-log-backup-azblob
namespace: test1

spec:
backupMode: log
logSubcommand: log-start/log-pause/log-stop
br:
cluster: demo1
sendCredToTikv: true

azblob:
secretName: azblob-secret
container: my-container
prefix: my-log-backup-folder
#accessTier: Hot

logTruncateUntil: "2022-10-10T15:21:00+08:00"

2. Wait for the clean operation to complete:
kubectl get jobs -n test1

NAME COMPLETIONS ...
...
backup-demo1-log-backup-azblob-log-truncate 1/1 ...

3. View the Backup CR information:
kubectl describe backup -n test1

...
Log Success Truncate Until: 2022-10-10T15:21:00+08:00
...

You can also view the information by running the following command:

171

kubectl get backup -n test1 -o wide

NAME MODE STATUS ... LOGTRUNCATEUNTIL
demo1-log-backup-azblob log Complete ... 2022-10-10T15

↪→ :21:00+08:00

Compact log backup
For TiDB v9.0.0 and later versions, you can use a CompactBackup CR to compact log

backup data into SST format, accelerating downstream PITR (Point-in-time recovery).
This section explains how to compact log backup based on the log backup example from

previous sections.
In the test1 namespace, create a CompactBackup CR named demo1-compact-backup.

kubectl apply -f compact-backup-demo1.yaml

The content of compact-backup-demo1.yaml is as follows:
apiVersion: br.pingcap.com/v1alpha1
kind: CompactBackup
metadata:
name: demo1-compact-backup
namespace: test1

spec:
startTs: "***"
endTs: "***"
concurrency: 8
maxRetryTimes: 2
br:
cluster: demo1
sendCredToTikv: true

azblob:
secretName: azblob-secret
container: my-container
prefix: my-log-backup-folder

The startTs and endTs fields specify the time range for the logs to be compacted by
demo1-compact-backup. Any log that contains at least one write within this time range will
be included in the compaction process. As a result, the final compacted data might include
data written outside this range.

The azblob settings should be the same as the storage settings of the log backup to be
compacted. CompactBackup reads log files from the corresponding location and compacts
them.

172

View the status of log backup compaction
After creating the CompactBackup CR, TiDB Operator automatically starts compacting

the log backup. You can check the backup status using the following command:
kubectl get cpbk -n test1

From the output, you can find the status of the CompactBackup CR named demo1-
↪→ compact-backup. An example output is as follows:
NAME STATUS PROGRESS

↪→ MESSAGE
demo1-compact-backup Complete [READ_META(17/17),COMPACT_WORK(1291/1291)]

If the STATUS field displays Complete, the compact log backup process has finished
successfully.

Backup CR examples
Back up data of all clusters

apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-azblob
namespace: test1

spec:
backupType: full
serviceAccount: tidb-backup-manager
br:
cluster: demo1
sendCredToTikv: false

azblob:
secretName: azblob-secret-ad
container: my-container
prefix: my-folder

Back up data of a single database
The following example backs up data of the db1 database.

apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-azblob
namespace: test1

spec:
backupType: full
serviceAccount: tidb-backup-manager

173

tableFilter:
- "db1.*"
br:
cluster: demo1
sendCredToTikv: false

azblob:
secretName: azblob-secret-ad
container: my-container
prefix: my-folder

Back up data of a single table
The following example backs up data of the db1.table1 table.

apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-azblob
namespace: test1

spec:
backupType: full
serviceAccount: tidb-backup-manager
tableFilter:
- "db1.table1"
br:
cluster: demo1
sendCredToTikv: false

azblob:
secretName: azblob-secret-ad
container: my-container
prefix: my-folder

Back up data of multiple tables using the table filter
The following example backs up data of the db1.table1 table and db1.table2 table.

apiVersion: br.pingcap.com/v1alpha1
kind: Backup
metadata:
name: demo1-backup-azblob
namespace: test1

spec:
backupType: full
serviceAccount: tidb-backup-manager
tableFilter:
- "db1.table1"
- "db1.table2"

174

...
br:
cluster: demo1
sendCredToTikv: false

azblob:
secretName: azblob-secret-ad
container: my-container
prefix: my-folder

7.4.6.1.3 Scheduled snapshot backup
You can set a backup policy to perform scheduled backups of the TiDB cluster, and set

a backup retention policy to avoid excessive backup items. A scheduled snapshot backup is
described by a custom BackupSchedule CR object. A snapshot backup is triggered at each
backup time point. Its underlying implementation is the ad-hoc snapshot backup.

Prerequisites: Prepare a scheduled backup environment
Refer to Prepare an ad-hoc backup environment.
Perform a scheduled snapshot backup
Depending on which method you choose to grant permissions to the remote storage,

perform a scheduled snapshot backup by doing one of the following:

• Method 1: If you grant permissions by access key, create the BackupSchedule CR,
and back up cluster data as follows:
kubectl apply -f backup-scheduler-azblob.yaml

The content of backup-scheduler-azblob.yaml is as follows:
apiVersion: br.pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: demo1-backup-schedule-azblob
namespace: test1

spec:
#maxBackups: 5
#pause: true
maxReservedTime: "3h"
schedule: "*/2 * * * *"
backupTemplate:
backupType: full
br:
cluster: demo1
logLevel: info
statusAddr: ${status_addr}

175

concurrency: 4
rateLimit: 0
timeAgo: ${time}
checksum: true
sendCredToTikv: true

azblob:
secretName: azblob-secret-ad
container: my-container
prefix: my-folder

• Method 2: If you grant permissions by Azure AD, create the BackupSchedule CR,
and back up cluster data as follows:
kubectl apply -f backup-scheduler-azblob.yaml

The content of backup-scheduler-azblob.yaml is as follows:
apiVersion: br.pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: demo1-backup-schedule-azblob
namespace: test1

spec:
#maxBackups: 5
#pause: true
maxReservedTime: "3h"
schedule: "*/2 * * * *"
backupTemplate:
backupType: full
br:
cluster: demo1
sendCredToTikv: false
logLevel: info
statusAddr: ${status_addr}
concurrency: 4
rateLimit: 0
timeAgo: ${time}
checksum: true

azblob:
secretName: azblob-secret-ad
container: my-container
prefix: my-folder

From the preceding content in backup-scheduler-azblob.yaml, you can see that the
backupSchedule configuration consists of two parts. One is the unique configuration of
backupSchedule, and the other is backupTemplate.

176

• For the unique configuration of backupSchedule, refer to BackupSchedule CR fields.
• backupTemplate specifies the configuration related to the cluster and remote storage,

which is the same as the spec configuration of the Backup CR.

After creating the scheduled snapshot backup, you can run the following command to
check the backup status:
kubectl get bks -n test1 -o wide

You can run the following command to check all the backup items:
kubectl get backup -l tidb.pingcap.com/backup-schedule=demo1-backup-schedule

↪→ -azblob -n test1

7.4.6.1.4 Integrated management of scheduled snapshot backup and log
backup

You can use the BackupSchedule CR to integrate the management of scheduled snapshot
backup and log backup for TiDB clusters. By setting the backup retention time, you can
regularly recycle the scheduled snapshot backup and log backup, and ensure that you can
perform PITR recovery through the scheduled snapshot backup and log backup within the
retention period.

The following example creates a BackupSchedule CR named integrated-backup-
↪→ schedule-azblob. For more information about the authorization method, refer to
Azure account permissions.

Prerequisites: Prepare a scheduled snapshot backup environment
The steps to prepare for a scheduled snapshot backup are the same as those of Prepare

for an ad-hoc backup.
Create BackupSchedule

1. Create a BackupSchedule CR named integrated-backup-schedule-azblob in the
test1 namespace.
kubectl apply -f integrated-backup-scheduler-azblob.yaml

The content of integrated-backup-scheduler-azblob.yaml is as follows:
apiVersion: br.pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: integrated-backup-schedule-azblob
namespace: test1

spec:
maxReservedTime: "3h"

177

schedule: "* */2 * * *"
backupTemplate:
backupType: full
cleanPolicy: Delete
br:
cluster: demo1
sendCredToTikv: true

azblob:
secretName: azblob-secret
container: my-container
prefix: schedule-backup-folder-snapshot
#accessTier: Hot

logBackupTemplate:
backupMode: log
br:
cluster: demo1
sendCredToTikv: true

azblob:
secretName: azblob-secret
container: my-container
prefix: schedule-backup-folder-log
#accessTier: Hot

In the preceding example of integrated-backup-scheduler-azblob.yaml, the
backupSchedule configuration consists of three parts: the unique configuration of
backupSchedule, the configuration of the snapshot backup backupTemplate, and the
configuration of the log backup logBackupTemplate.
For the field description of backupSchedule, refer to BackupSchedule CR fields.

2. After creating backupSchedule, use the following command to check the backup status:
kubectl get bks -n test1 -o wide

A log backup task is created together with backupSchedule. You can check the log
backup name through the status.logBackup field of the backupSchedule CR.
kubectl describe bks integrated-backup-schedule-azblob -n test1

3. To perform data restoration for a cluster, you need to specify the backup path. You
can use the following command to check all the backup items under the scheduled
snapshot backup.
kubectl get bk -l tidb.pingcap.com/backup-schedule=integrated-backup-

↪→ schedule-azblob -n test1

The MODE field in the output indicates the backup mode. snapshot indicates the
scheduled snapshot backup, and log indicates the log backup.

178

NAME MODE STATUS
↪→

integrated-backup-schedule-azblob-2023-03-08t02-48-00 snapshot Complete
↪→

log-integrated-backup-schedule-azblob log Running
↪→

7.4.6.1.5 Integrated management of scheduled snapshot backup, log backup,
and compact log backup

To accelerate downstream recovery, you can enable CompactBackup CR in the
BackupSchedule CR. This feature periodically compacts log backup files in remote storage.
You must enable log backup before using log backup compaction. This section extends the
configuration from the previous section.

Prerequisites: Prepare for a scheduled snapshot backup
The steps to prepare for a scheduled snapshot backup are the same as those of Prepare

for an ad-hoc backup.
Create BackupSchedule

1. Create a BackupSchedule CR named integrated-backup-schedule-azblob in the
test1 namespace.
kubectl apply -f integrated-backup-scheduler-azblob.yaml

The content of integrated-backup-scheduler-azblob.yaml is as follows:
apiVersion: br.pingcap.com/v1alpha1
kind: BackupSchedule
metadata:
name: integrated-backup-schedule-azblob
namespace: test1

spec:
maxReservedTime: "3h"
schedule: "* */2 * * *"
compactInterval: "1h"
backupTemplate:
backupType: full
cleanPolicy: Delete
br:
cluster: demo1
sendCredToTikv: true

azblob:
secretName: azblob-secret

179

container: my-container
prefix: schedule-backup-folder-snapshot
#accessTier: Hot

logBackupTemplate:
backupMode: log
br:
cluster: demo1
sendCredToTikv: true

azblob:
secretName: azblob-secret
container: my-container
prefix: schedule-backup-folder-log
#accessTier: Hot

In the preceding example of integrated-backup-schedule-azblob.yaml, the
backupSchedule configuration is based on the previous section, with the following
additions for compactBackup:

• Added the BackupSchedule.spec.compactInterval field to specify the time in-
terval for log backup compaction. It is recommended not to exceed the interval
of scheduled snapshot backups and to keep it between one-half to one-third of the
scheduled snapshot backup interval.

• Added the BackupSchedule.spec.compactBackupTemplate field. Ensure that
the BackupSchedule.spec.compactBackupTemplate.azblob configuration
matches the BackupSchedule.spec.logBackupTemplate.azblob configuration.

For the field description of backupSchedule, refer to BackupSchedule CR fields.

2. After creating backupSchedule, use the following command to check the backup status:
kubectl get bks -n test1 -o wide

A compact log backup task is created together with backupSchedule. You can check
the CompactBackup CR using the following command:
kubectl get cpbk -n test1

7.4.6.1.6 Delete the backup CR
If you no longer need the backup CR, you can delete it by referring to Delete the Backup

CR.

7.4.6.1.7 Troubleshooting
If you encounter any problem during the backup process, refer to Common Deployment

Failures.

180

7.4.6.2 Restore Data from Azure Blob Storage Using BR
This document describes how to restore the backup data stored in Azure Blob Storage

to a TiDB cluster on Kubernetes, including two restoration methods:

• Full restoration. This method takes the backup data of snapshot backup and restores
a TiDB cluster to the time point of the snapshot backup.

• Point-in-time recovery (PITR). This method takes the backup data of both snapshot
backup and log backup and restores a TiDB cluster to any point in time.

The restore method described in this document is implemented based on Custom Re-
source Definition (CRD) in TiDB Operator. For the underlying implementation, BR is used
to restore the data. BR stands for Backup & Restore, which is a command-line tool for
distributed backup and recovery of the TiDB cluster data.

PITR enables you to restore a new TiDB cluster to any point in time of the backup
cluster. To use PITR, you need the backup data of snapshot backup and log backup. During
the restoration, the snapshot backup data is first restored to the TiDB cluster, and then the
log backup data between the snapshot backup time point and the specified point in time is
restored to the TiDB cluster.

Note:

• BR is only applicable to TiDB v3.1 or later releases.
• PITR is only applicable to TiDB v6.3 or later releases.
• Data restored by BR cannot be replicated to a downstream cluster, be-

cause BR directly imports SST and LOG files to TiDB and the down-
stream cluster currently cannot access the upstream SST and LOG files.

7.4.6.2.1 Full restoration
This section provides an example about how to restore the backup data from the spec.

↪→ azblob.prefix folder of the spec.azblob.container bucket on Azure Blob Storage to
the demo2 TiDB cluster in the test2 namespace. The following are the detailed steps.

Prerequisites: Complete the snapshot backup
In this example, the my-full-backup-folder folder in the my-container bucket of

Azure Blob Storage stores the snapshot backup data. For steps of performing snapshot
backup, refer to Back up Data to Azure Blob Storage Using BR.

Step 1: Prepare the restoration environment
Before restoring backup data on Azure Blob Storage to TiDB using BR, take the following

steps to prepare the restore environment:

181

https://docs.pingcap.com/tidb/stable/backup-and-restore-overview

1. Create the required role-based access control (RBAC) resources:
kubectl apply -n test2 -f - <<EOF
apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
name: tidb-backup-manager
labels:
app.kubernetes.io/component: tidb-backup-manager

rules:
- apiGroups: [""]
resources: ["events"]
verbs: ["*"]

- apiGroups: ["br.pingcap.com"]
resources: ["backups", "restores"]
verbs: ["get", "watch", "list", "update"]

kind: ServiceAccount
apiVersion: v1
metadata:
name: tidb-backup-manager

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: tidb-backup-manager
labels:
app.kubernetes.io/component: tidb-backup-manager

subjects:
- kind: ServiceAccount
name: tidb-backup-manager

roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: tidb-backup-manager

EOF

2. Refer to Grant permissions to an Azure account to grant access to remote storage.
Azure provides two methods for granting permissions. After successful authorization,
a Secret object named azblob-secret or azblob-secret-ad should exist in the names-
pace.

Note:

182

• The authorized account must have at least write access to Blob data,
such as the Contributor role.

• When creating the Secret object, you can customize its name. For
demonstration purposes, this document uses azblob-secret as the
example Secret name.

Step 2: Restore the backup data to a TiDB cluster
Create a Restore CR named demo2-restore-azblob in the test2 namespace to restore

cluster data as follows:
kubectl apply -n test2 -f restore-full-azblob.yaml

The content of restore-full-azblob.yaml is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: Restore
metadata:
name: demo2-restore-azblob
namespace: test2

spec:
br:
cluster: demo2
logLevel: info
statusAddr: ${status_addr}
concurrency: 4
rateLimit: 0
timeAgo: ${time}
checksum: true
sendCredToTikv: true

azblob:
secretName: azblob-secret
container: my-container
prefix: my-full-backup-folder

When configuring restore-full-azblob.yaml, note the following:

• For more information about Azure Blob Storage configuration, refer to Azure Blob
Storage fields.

• Some parameters in .spec.br are optional, such as logLevel, statusAddr,
concurrency, rateLimit, checksum, timeAgo, and sendCredToTikv. For more
information about BR configuration, refer to BR fields.

183

https://learn.microsoft.com/en-us/azure/role-based-access-control/built-in-roles#contributor

• .spec.azblob.secretName: fill in the name you specified when creating the Secret
object, such as azblob-secret.

• For more information about the Restore CR fields, refer to Restore CR fields.

After creating the Restore CR, execute the following command to check the restore
status:
kubectl get restore -n test2 -o wide

NAME STATUS ...
demo2-restore-azblob Complete ...

7.4.6.2.2 Point-in-time recovery
This section provides an example about how to perform point-in-time recovery (PITR)

in a demo3 cluster in the test3 namespace. PITR takes two steps:

1. Restore the cluster to the time point of the snapshot backup using the snapshot
backup data in the spec.pitrFullBackupStorageProvider.azblob.prefix folder of
the spec.pitrFullBackupStorageProvider.azblob.container bucket.

2. Restore the cluster to any point in time using the log backup data in the spec.azblob
↪→ .prefix folder of the spec.azblob.container bucket.

The detailed steps are as follows.
Prerequisites: Complete data backup
In this example, the my-container bucket of Azure Blob Storage stores the following

two types of backup data:

• The snapshot backup data generated during the log backup, stored in the my-full-
↪→ backup-folder-pitr folder.

• The log backup data, stored in the my-log-backup-folder-pitr folder.

For detailed steps of how to perform data backup, refer to Back up data to Azure Blob
Storage.

Note:
The specified restoration time point must be between the snapshot backup
time point and the log backup checkpoint-ts.

184

Step 1: Prepare the restoration environment
The steps to prepare for a PITR are the same as those of Full restoration.
Step 2: Restore the backup data to a TiDB cluster
The example in this section restores the snapshot backup data to the cluster. The

specified restoration time point must be between the time point of snapshot backup and the
Log Checkpoint Ts of log backup. The detailed steps are as follows:

1. Create a Restore CR named demo3-restore-azblob in the test3 namespace and
specify the restoration time point as 2022-10-10T17:21:00+08:00:
kubectl apply -n test3 -f restore-point-azblob.yaml

The content of restore-point-azblob.yaml is as follows:

apiVersion: br.pingcap.com/v1alpha1
kind: Restore
metadata:
name: demo3-restore-azblob
namespace: test3

spec:
restoreMode: pitr
br:
cluster: demo3

azblob:
secretName: azblob-secret
container: my-container
prefix: my-log-backup-folder-pitr

pitrRestoredTs: "2022-10-10T17:21:00+08:00"
pitrFullBackupStorageProvider:
azblob:
secretName: azblob-secret
container: my-container
prefix: my-full-backup-folder-pitr

When you configure restore-point-azblob.yaml, note the following:

• spec.restoreMode: when you perform PITR, set this field to pitr. The default
value of this field is snapshot, which means snapshot backup.

2. Wait for the restoration operation to complete:
kubectl get jobs -n test3

185

NAME COMPLETIONS ...
restore-demo3-restore-azblob 1/1 ...

You can also check the restoration status by using the following command:
kubectl get restore -n test3 -o wide

NAME STATUS ...
demo3-restore-azblob Complete ...

7.4.6.2.3 Troubleshooting
If you encounter any problem during the restoration process, refer to Common Deploy-

ment Failures.

7.5 Maintain

7.5.1 View TiDB Logs on Kubernetes

This document introduces the methods to view logs of TiDB components and TiDB slow
log.

7.5.1.1 View logs of TiDB components
The TiDB components deployed by TiDB Operator output the logs in the stdout and

stderr of the container by default. You can view the log of a single Pod by running the
following command:
kubectl logs -n ${namespace} ${pod_name}

If the Pod has multiple containers, you can also view the logs of a container in this Pod:
kubectl logs -n ${namespace} ${pod_name} -c ${container_name}

For more methods to view Pod logs, run kubectl logs --help.

7.5.1.2 View slow query logs of TiDB components
For TiDB 3.0 or later versions, TiDB separates slow query logs from application logs.

You can view slow query logs from the sidecar container named slowlog:
kubectl logs -n ${namespace} ${pod_name} -c slowlog

186

Note:
The format of TiDB slow query logs is the same as that of MySQL slow query
logs. However, due to the characteristics of TiDB itself, some of the specific
fields might be different. For this reason, the tool for parsing MySQL slow
query logs may not be fully compatible with TiDB slow query logs.

7.5.2 Pause Sync of a TiDB Cluster on Kubernetes

This document introduces how to pause sync of a TiDB cluster on Kubernetes by modi-
fying its configuration.

7.5.2.1 What is sync in TiDB Operator
In TiDB Operator, the controller constantly compares the desired state recorded in the

Custom Resource (CR) object with the actual state. The controller then creates, updates,
or deletes Kubernetes resources to ensure the TiDB cluster matches the desired state. This
ongoing adjustment process is referred to as sync. For more information, see TiDB Operator
Architecture.

7.5.2.2 Usage scenarios
The following lists some cases where you might need to pause sync of a TiDB cluster on

Kubernetes:

• Avoid unexpected rolling update
To prevent new versions of TiDB Operator from introducing compatibility issues into
the clusters, before updating TiDB Operator, you can pause sync of TiDB clusters.
After updating TiDB Operator, you can resume syncing clusters one by one, or specify
a time for resume. In this way, you can observe how the rolling update of TiDB
Operator would affect the cluster.

• Avoid multiple rolling restarts
In some cases, you might need to continuously modify the cluster over a period of time,
but do not want to restart the TiDB cluster many times. To avoid multiple rolling
restarts, you can pause sync of the cluster. During the sync pausing, any change of
the configuration does not take effect on the cluster. After you finish the modification,
resume sync of the TiDB cluster. All changes can be applied in a single rolling restart.

• Maintenance window
In some situations, you can update or restart the TiDB cluster only during a main-
tenance window. When outside the maintenance window, you can pause sync of the

187

TiDB cluster, so that any modification to the specs does not take effect. When inside
the maintenance window, you can resume sync of the TiDB cluster to allow TiDB
cluster to rolling update or restart.

7.5.2.3 Pause TiDB cluster sync
To pause sync of a TiDB cluster, set spec.paused: true in the Cluster CR.

1. Run the following command to modify the TiDB cluster configuration. ${
↪→ cluster_name} represents the name of the TiDB cluster, and ${namespace}
represents the TiDB cluster namespace.
kubectl patch cluster ${cluster_name} -n ${namespace} --type merge -p

↪→ '{"spec":{"paused": true}}'

2. After the sync is paused, you can confirm the cluster status by checking the TiDB
Operator Pod logs. ${pod_name} represents the name of TiDB Operator Pod, and
${namespace} represents the namespace of TiDB Operator.
kubectl logs ${pod_name} -n ${namespace} | grep paused

The following output indicates that the sync of all components in the TiDB cluster is
paused.
```
2025-04-25T09:27:27.866Z INFO TiCDC cluster paused is updating {"from":

↪→ false, "to": true}
2025-04-25T09:27:27.866Z INFO TiDB cluster paused is updating {"from":

↪→ false, "to": true}
2025-04-25T09:27:27.867Z INFO TiFlash cluster paused is updating {"from":

↪→ false, "to": true}
2025-04-25T09:27:27.868Z INFO PD cluster paused is updating {"from":

↪→ false, "to": true}
2025-04-25T09:27:27.868Z INFO TiKV cluster paused is updating {"from":

↪→ false, "to": true}
```

7.5.2.4 Resume TiDB cluster sync
To resume the sync of the TiDB cluster, set spec.paused: false in the Cluster CR.

Once resumed, TiDB Operator immediately processes all configuration changes that accu-
mulated during the pause.

1. Run the following command to modify the TiDB cluster configuration. ${
↪→ cluster_name} represents the name of the TiDB cluster, and ${namespace}
represents the TiDB cluster namespace.

188

kubectl patch cluster ${cluster_name} -n ${namespace} --type merge -p
↪→ '{"spec":{"paused": false}}'

2. After the sync is resumed, you can confirm the cluster status by checking the TiDB
Operator Pod logs. ${pod_name} represents the name of TiDB Operator Pod, and
${namespace} represents the namespace of TiDB Operator.
kubectl logs ${pod_name} -n ${namespace} | grep "paused"

The following output shows that the timestamp when the cluster paused status
changes from true to false is later than the timestamp when it changes from false
to true, indicating that the sync is resumed.
2025-04-25T09:32:38.867Z INFO TiKV cluster paused is updating {"

↪→ from": true, "to": false}
2025-04-25T09:32:38.868Z INFO PD cluster paused is updating {"

↪→ from": true, "to": false}
2025-04-25T09:32:38.868Z INFO TiFlash cluster paused is updating {"

↪→ from": true, "to": false}
2025-04-25T09:32:38.868Z INFO TiCDC cluster paused is updating {"

↪→ from": true, "to": false}
2025-04-25T09:32:38.868Z INFO TiDB cluster paused is updating {"

↪→ from": true, "to": false}

7.5.3 Suspend and Resume a TiDB Cluster on Kubernetes

This document describes how to suspend and resume a TiDB cluster on Kubernetes
by configuring the Cluster object. When you suspend a cluster, all component Pods are
stopped, but the Cluster object and associated resources (such as Services and PVCs) are
retained. This preserves the cluster’s data and configuration for later recovery.

7.5.3.1 Usage scenarios
You can suspend a TiDB cluster in the following scenarios:

• Temporarily release compute resources in a test environment.
• Stop a development cluster that is unused for an extended period.
• Pause a cluster temporarily while retaining its data and configuration.

7.5.3.2 Before you begin
Before you suspend a TiDB cluster, consider the following:

• Suspending the cluster interrupts cluster services.

189

• Existing client connections are terminated forcefully.
• PVCs and data are retained and continue to occupy storage space.
• Services and configurations associated with the cluster remain unchanged.

7.5.3.3 Suspend a TiDB cluster
To suspend a TiDB cluster, perform the following steps:

1. In the Cluster object, set the spec.suspendAction.suspendCompute field to true to
suspend the entire TiDB cluster:
apiVersion: core.pingcap.com/v1alpha1
kind: Cluster
metadata:
name: ${cluster_name}
namespace: ${namespace}

spec:
suspendAction:
suspendCompute: true

...

2. After the cluster is suspended, run the following command to observe the Pods being
gradually deleted:
kubectl -n ${namespace} get pods -w

7.5.3.4 Resume a TiDB cluster
To resume a suspended TiDB cluster, perform the following steps:

1. In the Cluster object, set the spec.suspendAction.suspendCompute field to false
to resume the suspended TiDB cluster:
apiVersion: core.pingcap.com/v1alpha1
kind: Cluster
metadata:
name: ${cluster_name}
namespace: ${namespace}

spec:
suspendAction:
suspendCompute: false

...

2. After the cluster is resumed, run the following command to observe the Pods being
gradually created:
kubectl -n ${namespace} get pods -w

190

7.5.4 Restart a TiDB Cluster on Kubernetes

When using a TiDB cluster, you might need to restart it if a Pod encounters issues such
as memory leaks. This document describes how to perform a graceful rolling restart of all
Pods in a component or a graceful restart of a specific Pod.

Warning:
In production environments, it is strongly recommended not to forcefully
delete Pods in the TiDB cluster. Although TiDB Operator will automatically
recreate deleted Pods, this could cause some requests to the TiDB cluster to
fail.

7.5.4.1 Perform a graceful rolling restart of all Pods in a component
To perform a graceful rolling restart of all Pods in a component (such as PD, TiKV, or

TiDB), modify the corresponding Component Group Custom Resource (CR) configuration
by adding a pingcap.com/restartedAt label or annotation under the .spec.template.
↪→ metadata section and setting its value to a string that ensures idempotency, such as a
timestamp.

The following example shows how to add an annotation for the PD component to trigger
a graceful rolling restart of all PD Pods in the PDGroup:
apiVersion: core.pingcap.com/v1alpha1
kind: PDGroup
metadata:
name: pd

spec:
replicas: 3
template:
metadata:
annotations:
pingcap.com/restartedAt: 2025-06-30T12:00

7.5.4.2 Perform a graceful restart of a single Pod in a component
You can restart a specific Pod in the TiDB cluster. The process differs slightly depending

on the component.
For a TiKV Pod, specify the --grace-period option when deleting the Pod to provide

sufficient time to evict the Region leader. Otherwise, the operation might fail. The following
command sets a 60-second grace period for the TiKV Pod:

191

kubectl -n ${namespace} delete pod ${pod_name} --grace-period=60

For other component Pods, you can delete them directly, because TiDB Operator will
automatically handle a graceful restart:
kubectl -n ${namespace} delete pod ${pod_name}

7.5.5 Destroy TiDB Clusters on Kubernetes

This document describes how to destroy TiDB clusters on Kubernetes.

7.5.5.1 Destroy a TiDB cluster managed by Cluster

To destroy a TiDB cluster managed by Cluster, run the following command:
kubectl delete cluster ${cluster_name} -n ${namespace}

8 Reference

8.1 Architecture

8.1.1 TiDB Operator Architecture

This document introduces the architecture of TiDB Operator and how it works.

8.1.1.1 Architecture
The following diagram shows an overview of the TiDB Operator architecture:

192

Figure 2: TiDB Operator Architecture

The diagram includes several resource objects defined by Custom Resource Definitions
(CRDs), such as Cluster, PDGroup, PD, TiKVGroup, TiKV, TiDBGroup, TiDB, Backup, and
Restore. The following describes some of these resources:

• Cluster: represents a complete TiDB cluster. It contains shared configuration and
feature flags for the TiDB cluster and reflects the overall cluster status. This CRD is
designed as the “namespace” for the TiDB cluster, and all components in the cluster
must reference a Cluster CR.

• ComponentGroup: describes a group of TiDB cluster components with the same con-
figuration. For example:

– PDGroup: a group of PD instances with the same configuration.
– TiKVGroup: a group of TiKV instances with the same configuration.
– TiDBGroup: a group of TiDB instances with the same configuration.

• Component: describes an individual TiDB cluster component. For example:

193

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

– PD: a single PD instance.
– TiKV: a single TiKV instance.
– TiDB: a single TiDB instance.

• Backup: describes a backup task for the TiDB cluster.

• Restore: describes a restore task for the TiDB cluster.

8.1.1.2 Control flow
TiDB Operator uses a declarative API to automate cluster management by continuously

monitoring user-defined resources. The core workflow is as follows:

1. The user creates Cluster and other component Custom Resource (CR) objects through
kubectl, such as PDGroup, TiKVGroup, and TiDBGroup.

2. TiDB Operator continuously watches these CRs and dynamically adjusts the corre-
sponding Pod, PVC, and ConfigMap objects based on the actual cluster state.

Through this control (reconciliation) loop, TiDB Operator can automatically perform
cluster node health checks and failure recovery. Operations such as deployment, upgrades,
and scaling can also be completed with one action by modifying the Cluster and other
component CRs.

The following diagram shows the control flow using TiKV as an example:

Figure 3: TiDB Operator Control Flow

In this workflow:

• TiKVGroup Controller: watches the TiKVGroup CR and creates or updates the corre-
sponding TiKV CR based on its configuration.

• TiKV Controller: watches the TiKV CR and creates or updates related resources such
as Pod, PVC, and ConfigMap based on the configuration in the CR.

194

8.2 Comparison Between TiDB Operator v2 and v1

With the rapid development of TiDB and the Kubernetes ecosystem, the existing ar-
chitecture and implementation of TiDB Operator v1 have encountered some challenges. To
better adapt to these changes, TiDB Operator v2 introduces a major refactor of v1.

8.2.1 Core changes in TiDB Operator v2

8.2.1.1 Split the TidbCluster CRD
Initially, the TiDB cluster has only three core components: PD, TiKV, and TiDB. To

simplify deployment and reduce user cognitive load, all components of the TiDB cluster are
defined in a single CRD, TidbCluster. However, as TiDB evolves, this design faces several
challenges:

• The number of TiDB cluster components has increased, with eight components cur-
rently defined in the TidbCluster CRD.

• To display status, the state of all nodes is defined in the TidbCluster CRD.
• Heterogeneous clusters are not considered initially, so additional TidbCluster CRs has

to be introduced to support them.
• The /scale API is not supported, making it impossible to integrate with Kubernetes

HorizontalPodAutoscaler (HPA).
• A large CR/CRD can cause difficult-to-resolve performance issues.

TiDB Operator v2 addresses these issues by splitting TidbCluster into multiple inde-
pendent CRDs by component.

8.2.1.2 Remove the StatefulSet dependency and manage Pods directly
Due to the complexity of TiDB clusters, Kubernetes’ native deployment and StatefulSet

controllers cannot fully meet TiDB’s deployment and operation needs. TiDB Operator v1
manages all TiDB components using StatefulSet, but some limitations of StatefulSet prevent
maximizing Kubernetes’ capabilities, such as:

• StatefulSet restricts modifications to VolumeClaimTemplate, making native scaling
impossible.

• StatefulSet enforces the order of scaling and rolling updates, causing repeated leader
scheduling.

• StatefulSet requires all Pods under the same controller to have identical configurations,
necessitating complex startup scripts to differentiate Pod parameters.

• There is no API for defining raft members, leading to semantic conflicts between restart-
ing Pods and removing raft members, and no intuitive way to remove a specific TiKV
node.

TiDB Operator v2 removes the dependency on StatefulSet and introduces the following
CRDs:

195

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

• Cluster
• ComponentGroup
• Instance

These three-layer CRDs can manage Pods directly. TiDB Operator v2 uses the
ComponentGroup CRD to manage nodes with common characteristics, reducing complexity,
and the Instance CRD to facilitate management of individual stateful instances, providing
instance-level operations and ensuring flexibility.

Benefits include:

• Better support for volume configuration changes.
• More reasonable rolling update order, such as restarting the leader last to prevent

repeated leader migration.
• In-place upgrades for non-core components (such as log tail and istio), reducing the

impact of TiDB Operator and infrastructure changes on the TiDB cluster.
• Graceful Pod restarts using kubectl delete ${pod} and rebuilding specific TiKV

nodes using kubectl delete ${instance}.
• More intuitive status display.

8.2.1.3 Introduce the Overlay mechanism and no longer manage Kubernetes
fields unrelated to TiDB directly

Each new version of Kubernetes may introduce new fields that users need, but TiDB
Operator may not care about these fields. In v1, a lot of development effort was spent sup-
porting new Kubernetes features, including manually adding new fields to the TidbCluster
CRD and propagating them. TiDB Operator v2 introduces the Overlay mechanism, which
supports all new Kubernetes resource fields (especially for Pods) in a unified way. For details,
see Overlay.

8.2.1.4 Other new features in TiDB Operator v2

8.2.1.4.1 Enhance validation capabilities
TiDB Operator v2 enhances configuration validation through Validation Rules and Val-

idating Admission Policies, improving usability and robustness.

8.2.1.4.2 Support /status and /scale sub resources
TiDB Operator v2 supports CRD sub resources and can integrate with Kubernetes HPA

for automated scaling.

196

8.2.1.4.3 Remove tidb scheduler component and support the evenly spread
policy

TiDB Operator v2 supports configuring the evenly spread policy to distribute compo-
nents evenly across regions and zones as needed, and removes the tidb scheduler compo-
nent.

8.2.2 Components and features not yet supported in TiDB Operator v2

8.2.2.1 Components

8.2.2.1.1 Binlog (Pump + Drainer)
This component is deprecated. For more information, see TiDB Binlog Overview.

8.2.2.1.2 Dumpling + TiDB Lightning
TiDB Operator no longer provides direct support. It is recommended to use native

Kubernetes jobs to run them.

8.2.2.1.3 TidbInitializer
TiDB Operator v2 no longer supports this CRD. You can use BootstrapSQL to run

initialization SQL statements.

8.2.2.1.4 TidbMonitor
TiDB Operator v2 no longer supports this CRD. Because monitoring systems are often

complex and varied, TidbMonitor is difficult to integrate into production-grade monitoring
systems. TiDB provides more flexible solutions for integrating with common monitoring sys-
tems, rather than running a Prometheus + Grafana + Alert-Manager combination through
CRD. For details, see Deploy Monitoring and Alerts for a TiDB Cluster.

8.2.2.1.5 TidbNgMonitoring
Not supported yet.

8.2.2.1.6 TidbDashboard
Deployment through CRD is not supported. You can use the built-in dashboard or

deploy it yourself through Deployment.

8.2.2.2 Features

8.2.2.2.1 Cross-namespace deployment
Not supported due to potential security issues and unclear user scenarios.

197

https://docs.pingcap.com/tidb/v8.3/tidb-binlog-overview/

8.2.2.2.2 Cross-Kubernetes cluster deployment
Not supported due to potential security issues and unclear user scenarios.

8.2.2.2.3 Back up and restore based on EBS volume snapshots
Backup based on EBS volume snapshots has the following unsolvable issues:

• High cost. EBS volume snapshots are very expensive.
• Long RTO. Recovery from EBS volume snapshots takes a long time.

With continuous optimization, TiDB BR performance has greatly improved, so backup
and restore based on EBS volume snapshots is no longer necessary. Therefore, TiDB Oper-
ator v2 no longer supports this feature.

8.3 Tools

8.3.1 Tools on Kubernetes

This document describes how to use operational tools for TiDB on Kubernetes, including
PD Control, TiKV Control, and TiDB Control.

8.3.1.1 Use PD Control on Kubernetes
PD Control is the command-line tool for PD (Placement Driver). To use PD Control

to operate TiDB clusters on Kubernetes, first establish a local connection to the PD service
using kubectl port-forward:
kubectl port-forward -n ${namespace} svc/${pd_group_name}-pd 2379:2379 &>/

↪→ tmp/portforward-pd.log &

After running this command, you can access the PD service at 127.0.0.1:2379 and
use the default parameters of the pd-ctl command directly. For example, to view the PD
configuration:
pd-ctl -d config show

If port 2379 is already in use, you can specify another local port:
kubectl port-forward -n ${namespace} svc/${pd_group_name}-pd ${local_port

↪→ }:2379 &>/tmp/portforward-pd.log &

In this case, you need to explicitly specify the PD port in the pd-ctl command:
pd-ctl -u 127.0.0.1:${local_port} -d config show

198

https://docs.pingcap.com/tidb/stable/pd-control
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_port-forward/

8.3.1.2 Use TiKV Control on Kubernetes
TiKV Control is the command-line tool for TiKV. To use TiKV Control to operate

TiDB clusters on Kubernetes, first establish local connections to the PD service and the
target TiKV Pod using kubectl port-forward:

The following example forwards the local port 2379 to the PD service:
kubectl port-forward -n ${namespace} svc/${pd_group_name}-pd 2379:2379 &>/

↪→ tmp/portforward-pd.log &

The following example forwards the local port 20160 to the TiKV Pod:
kubectl port-forward -n ${namespace} ${pod_name} 20160:20160 &>/tmp/

↪→ portforward-tikv.log &

After the connections are established, you can access the PD service and TiKV node
through the corresponding local ports:
tikv-ctl --host 127.0.0.1:20160 --pd 127.0.0.1:2379 ${subcommands}

8.3.1.3 Use TiDB Control on Kubernetes
TiDB Control is the command-line tool for TiDB. To use TiDB Control, you need local

access to both the TiDB node and the PD service. It is recommended to use kubectl port
↪→ -forward to establish these connections.

The following example forwards the local port 2379 to the PD service:
kubectl port-forward -n ${namespace} svc/${pd_group_name}-pd 2379:2379 &>/

↪→ tmp/portforward-pd.log &

The following example forwards the local port 10080 to the TiDB Pod:
kubectl port-forward -n ${namespace} ${pod_name} 10080:10080 &>/tmp/

↪→ portforward-tidb.log &

After the connections are established, you can run tidb-ctl to perform various opera-
tions. For example, to view the schema of the mysql database:
tidb-ctl schema in mysql

9 Release Notes

9.1 v2.0

9.1.1 TiDB Operator 2.0.0-beta.0 Release Notes

Release date: July 9, 2025

199

https://docs.pingcap.com/tidb/stable/tikv-control
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_port-forward/
https://docs.pingcap.com/tidb/stable/tidb-control
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_port-forward/
https://kubernetes.io/docs/reference/kubectl/generated/kubectl_port-forward/

TiDB Operator version: 2.0.0-beta.0
With the rapid development of TiDB and the Kubernetes ecosystem, TiDB Operator

releases v2.0.0-beta.0, which includes comprehensive refactoring from v1 to provide a more
stable, efficient, and maintainable cluster management experience.

For a detailed comparison between v2 and v1, see Comparison Between TiDB Operator
v2 and v1.

Warning:
This is a beta release. Test thoroughly before deploying in production
environments.

9.1.1.1 Major changes and improvements

9.1.1.1.1 Core architecture refactoring
TiDB Operator v2 includes a comprehensive redesign of the v1 architecture, with the

following key changes:

• CRD splitting: split the v1 TidbCluster CRD into multiple independent CRDs for
more granular component management, improving maintainability and flexibility.

• Direct Pod management: remove the dependency on StatefulSet. Pods are now
managed directly, providing higher flexibility and more precise control over Pod lifecy-
cle and scheduling behavior.

• Controller architecture upgrade: implement controller logic based on the
controller-runtime framework. This simplifies controller development, improves
development efficiency, and enhances system stability and reliability.

9.1.1.1.2 New features and enhancements

• Support the Overlay field:

– Enable you to flexibly specify all Kubernetes-supported fields for Pods without
modifying the TiDB Operator source code.

– Provide security validation mechanisms to prevent accidental overwrites of critical
system labels.

• Support topology-aware scheduling:

– Support the EvenlySpread strategy to evenly distribute Pods across topology
domains.

200

https://github.com/kubernetes-sigs/controller-runtime

– Support topology weight configuration for flexible control of instance distribution
ratios across topology domains.

– Enhance cluster high availability and fault tolerance.

• Enhance the field validation:

– Integrate Kubernetes Validation Rules and Validating Admission Policy.
– Support field format and value range validation.
– Provide clear and user-friendly error messages to facilitate troubleshooting.

• Support CRD subresources:

– Support the status subresource for unified status management.
– Support the scale subresource to integrate with HorizontalPodAutoscaler (HPA),

enabling auto-scaling.
– Improve compatibility with the Kubernetes ecosystem.

• Optimize the configuration management:

– Optimize the configuration hash algorithm to avoid unnecessary rolling updates
caused by invalid changes.

9.1.1.1.3 Removed features

• Remove the support for Backup and Restore Based on EBS Volume Snapshots.
• Remove the tidb-scheduler component.
• Remove the following CRDs: TiDBInitializer, TiDBDashboard, DMCluster,

FedVolumeBackup, FedVolumeBackupSchedule, and FedVolumeRestore.
• Remove the TiDBMonitor and TiDBNGMonitoring CRDs. Related features are inte-

grated through other methods. For details, see Deploy Monitoring and Alerts for a
TiDB Cluster.

9.1.1.2 Acknowledgments
Thanks to all the developers and community members who contributed to TiDB Oper-

ator! We look forward to your feedback and suggestions to help us improve this milestone
release.

© 2023 PingCAP. All Rights Reserved.

201

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#validation-rules
https://kubernetes.io/docs/reference/access-authn-authz/validating-admission-policy/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/#subresources
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://docs.pingcap.com/tidb-in-kubernetes/v1.6/volume-snapshot-backup-restore/

	TiDB on Kubernetes Docs
	Introduction
	TiDB Operator Overview
	Compatibility between TiDB Operator and TiDB
	Differences between TiDB Operator v2 and v1
	Manage TiDB clusters using TiDB Operator

	Get Started with TiDB on Kubernetes
	Step 1: Create a test Kubernetes cluster
	Step 2: Deploy TiDB Operator
	Install TiDB Operator CRDs
	Install TiDB Operator

	Step 3: Deploy a TiDB cluster
	Step 4: Connect to TiDB
	Install the mysql command-line tool
	Forward port 4000
	Connect to the TiDB service

	Deploy
	Deploy TiDB Operator on Kubernetes
	Prerequisites
	Deploy a Kubernetes cluster
	Deploy TiDB Operator CRDs
	Deploy TiDB Operator

	Deploy a TiDB Cluster on Kubernetes
	Prerequisites
	Configure the TiDB cluster
	Deploy the TiDB cluster

	Access the TiDB Cluster on Kubernetes
	ClusterIP
	NodePort
	LoadBalancer

	Monitor and Alert
	Deploy Monitoring and Alerts for a TiDB Cluster
	Monitor the TiDB cluster
	Configure alerts
	Monitor multiple clusters using Grafana

	Kubernetes Observability: Monitoring, Alerts, and Log Collection
	Monitoring
	Alerts
	Log collection

	Configure
	Component Configuration
	Configure TiDB parameters
	Configure TiKV parameters
	Configure PD parameters
	Configure TiProxy parameters
	Configure TiFlash parameters
	Configure TiCDC startup parameters

	Storage Volume Configuration
	Overview
	Component-specific volume configuration
	Modify storage volumes
	FAQ

	Customize the Configuration of Kubernetes Native Resources
	Supported resource types
	Usage
	Notes
	Example use cases

	Manage
	Security
	Enable TLS for the MySQL Client
	Enable TLS Between TiDB Components
	Run Containers as a Non-Root User
	Renew and Replace the TLS Certificate

	Manually Scale TiDB on Kubernetes
	Horizontal scaling
	Vertical scaling
	Scaling troubleshooting

	Upgrade
	Upgrade TiDB Operator
	Upgrade a TiDB Cluster on Kubernetes

	Backup and Restore
	Backup and Restore Overview
	Backup and Restore Custom Resources
	Grant Permissions to Remote Storage
	Amazon S3 Compatible Storage
	Google Cloud Storage
	Azure Blob Storage

	Maintain
	View TiDB Logs on Kubernetes
	Pause Sync of a TiDB Cluster on Kubernetes
	Suspend and Resume a TiDB Cluster on Kubernetes
	Restart a TiDB Cluster on Kubernetes
	Destroy TiDB Clusters on Kubernetes

	Reference
	Architecture
	TiDB Operator Architecture

	Comparison Between TiDB Operator v2 and v1
	Core changes in TiDB Operator v2
	Components and features not yet supported in TiDB Operator v2

	Tools
	Tools on Kubernetes

	Release Notes
	v2.0
	TiDB Operator 2.0.0-beta.0 Release Notes

